SlideShare a Scribd company logo
Mathematical Induction
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
Test: n = 1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1
Test: n = 1       L.H .S  2
                          1
                         1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                             1
Test: n = 1       L.H .S  2                R.H .S  2 
                          1                              1
                         1                        1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S

                 1 1       1       1
A n  k  1       2  2  2 
                 22 3     k        k
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S

                 1 1       1       1
A n  k  1       2  2  2 
                 22 3     k        k
                  1 1            1            1
P n  k  1 1  2  2              2
                 2 3          k  12
                                            k 1
Proof:
     1 1          1          1 1       1   1
1      2            1 2  2  2 
     22 3      k  12     2 3       k k  12
Proof:
     1 1          1          1 1         1   1
1      2            1 2  2  2 
     22 3      k  12     2 3         k k  12
                             1    1
                         2 
                             k k  12
Proof:
     1 1          1          1 1          1   1
1      2            1 2  2  2 
     22 3      k  12      2 3         k k  12
                             1       1
                         2 
                             k k  12
                             k  1  k
                                    2
                         2
                              k k  1
                                       2
Proof:
     1 1          1          1 1          1    1
1      2            1 2  2  2 
     22 3      k  12      2 3          k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                              k k  1
                                        2

                              k 2  k 1
                         2
                              k k  1
                                        2
Proof:
     1 1          1          1 1            1      1
1      2            1 2  2  2 
     22 3      k  12      2 3            k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                               k k  1
                                        2

                              k 2  k 1
                         2
                              k k  1
                                        2


                                k2  k       1
                         2              
                              k k  1 k k  1
                                       2         2
Proof:
     1 1          1          1 1             1     1
1      2            1 2  2  2 
     22 3      k  12      2 3             k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                               k k  1
                                         2

                              k 2  k 1
                         2
                              k k  1
                                         2


                                k2  k        1
                         2               
                              k k  1 k k  1
                                        2        2

                              k k  1
                         2
                              k k  1
                                       2
Proof:
     1 1          1           1 1             1     1
1      2            1 2  2  2 
     22 3      k  12      2 3              k k  12
                              1        1
                         2 
                              k k  12
                              k  1  k
                                      2
                         2
                                k k  1
                                          2

                               k 2  k 1
                         2
                               k k  1
                                          2


                                 k2  k        1
                         2                
                               k k  1 k k  1
                                         2        2

                               k k  1
                         2
                               k k  1
                                        2

                                    1
                            2
                                  k 1
Proof:
  1 1            1           1 1             1     1
1   2              1 2  2  2 
  22 3        k  12      2 3              k k  12
                             1        1
                        2 
                             k k  12
                             k  1  k
                                     2
                        2
                               k k  1
                                         2

                              k 2  k 1
                         2
                              k k  1
                                         2


                                k2  k        1
                        2                
                              k k  1 k k  1
                                        2        2

                              k k  1
                        2
                              k k  1
                                       2

                                   1
                           2
                                 k 1
     1 1            1              1
1  2  2              2
    2 3          k  12
                                 k 1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1   a1  2  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1   a1  2  2
A n  k  a k  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
           4
          2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
             4
            2
     ak 1  2
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
              x1  5, y1  2      xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10
iii  The sequences xn and yn are defined by;
                                            xn  y n          2 xn y n
             x1  5, y1  2        xn1             , yn1 
                                               2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P   n  k  1 xk 1 yk 1  10
iii  The sequences xn and yn are defined by;
                                            xn  y n          2 xn y n
             x1  5, y1  2        xn1             , yn1 
                                               2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P   n  k  1 xk 1 yk 1  10
Proof:
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 

               xk y k
               10
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 

               xk y k
               10
 xk 1 yk 1  10
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2
  L.H .S  a1
        1
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                          1  5 
  L.H .S  a1                    R.H .S        
                                           2 
        1
                                         1.62
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S
  L.H .S  a2
         1
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S              2
                                       1  5 
  L.H .S  a2                 R.H .S        
                                        2 
         1
                                      2.62
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S              2
                                       1  5 
  L.H .S  a2                 R.H .S        
                                        2 
         1
                                      2.62
                  L.H .S  R.H .S
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                                n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                                  1
                                             1  5 
  L.H .S  a1                     R.H .S           
                                              2 
         1
                                          1.62
                  L.H .S  R.H .S                     2
                                              1  5 
  L.H .S  a2                      R.H .S          
                                               2 
         1
                                           2.62
                   L.H .S  R.H .S
                                           k 1                  k
                                 1  5                1  5 
  A n  k  1 & n  k  ak 1               & ak         
                                  2                    2 
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                                n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                                  1
                                             1  5 
  L.H .S  a1                     R.H .S           
                                              2 
         1
                                          1.62
                  L.H .S  R.H .S                     2
                                              1  5 
  L.H .S  a2                      R.H .S          
                                               2 
         1
                                           2.62
                   L.H .S  R.H .S
                                           k 1                  k
                                 1  5                1  5 
  A n  k  1 & n  k  ak 1               & ak         
                                  2                    2 
                                    k 1
                         1 5 
 P   n  k  1 ak 1  
                             
                         2 
Proof:   ak 1  ak  ak 1
Proof:   ak 1  ak  ak 1
                              k    k 1
               1  5  1  5 
                          
                2   2 
Proof:   ak 1  ak  ak 1
                              k     k 1
               1  5  1       5
                              
                2   2           
                        k 1         1         2
                1  5   1    5    1  5  
                                        
                2   2              2      
Proof:   ak 1  ak  ak 1
                              k   k 1
               1  5  1 5
                        
                2   2     
                        k 1   1         2
                1  5   1 
                            5    1  5  
                                  
                2   2    
                                  2      
                       k 1
               1  5   2       4 
                                 2
                2  1  5 1  5  
Proof:   ak 1  ak  ak 1
                              k                k 1
               1  5  1        5
                               
                2   2            
                        k 1          1         2
                1  5   1     5    1  5  
                                         
                2   2               2      
                           k 1
               1      5  2           4 
                                        2
                2         1  5 1  5  
                           k 1
               1      5  2  2 5  4
                                  2 
                2          1  5  
                              k 1
               1  5               62 5 
                                           2
                2                   1  5  
Proof:   ak 1  ak  ak 1
                              k       k 1
               1  5  1        5
                               
                2   2            
                        k 1          1         2
                1  5   1     5    1  5  
                                         
                2   2               2      
                           k 1
               1      5  2           4 
                                        2
                2         1  5 1  5  
                           k 1
               1      5  2  2 5  4
                                  2 
                2          1  5  
                              k 1
               1  5   6  2 5 
                               
                  2   1  5 2 
                        k 1
               1  5 
                    
                2 
Proof:     ak 1  ak  ak 1
                                k       k 1
                 1  5  1        5
                                 
                  2   2            
                          k 1          1         2
                  1  5   1     5    1  5  
                                           
                  2   2               2      
                             k 1
                 1      5  2           4 
                                          2
                  2         1  5 1  5  
                             k 1
                 1      5  2  2 5  4
                                    2 
                  2          1  5  
                                k 1
                   1  5   6  2 5 
                                   
                      2   1  5 2 
                            k 1
                   1  5 
                        
                    2 
                            k 1
                   1  5 
          ak 1        
                    2 
Proof:           ak 1  ak  ak 1
                                      k       k 1
                       1  5  1        5
                                       
                        2   2            
                                k 1          1         2
                        1  5   1     5    1  5  
                                                 
                        2   2               2      
                                   k 1
                       1      5  2           4 
     Sheets                                     2
                        2         1  5 1  5  
                                   k 1
         +             1      5  2  2 5  4
                                          2 
                        2          1  5  
 Exercise 10E*
                                      k 1
                        1  5   6  2 5 
                                        
                           2   1  5 2 
                                 k 1
                        1  5 
                             
                         2 
                                 k 1
                        1  5 
               ak 1        
                         2 

More Related Content

Viewers also liked

3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
math123b
 
Plate Tectonics Notes
Plate Tectonics NotesPlate Tectonics Notes
Plate Tectonics Notes
duncanpatti
 
Teoria tributaria
Teoria tributariaTeoria tributaria
Teoria tributaria
Arles Antonio Mora Guillen
 
Changes In Education
Changes In EducationChanges In Education
Changes In Education
britte2204
 
Bio3º
Bio3ºBio3º
Bio3º
marcoschis
 
Recomendaciones valiosas
Recomendaciones valiosasRecomendaciones valiosas
Recomendaciones valiosas
Alejandro Manuel Salazar Santibañez
 
Optimistasiempre
OptimistasiempreOptimistasiempre
Acta sesion evaluacion_2
Acta sesion evaluacion_2Acta sesion evaluacion_2
Acta sesion evaluacion_2
TrianaRodriguez22
 
Prueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continentalPrueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continental
Edu 648
 
Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"
PSTTI
 
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCERTyou Formation
 
Final semestral alice ciencia
Final semestral alice cienciaFinal semestral alice ciencia
Final semestral alice ciencia
SUSY84
 
Ruta de cuba
Ruta de cubaRuta de cuba
Ruta de cuba
alunos10h1
 
Recommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook pageRecommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook page
Floria Hong
 
New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012
Subodh Pushpak
 
Modulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blogModulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blog
ProfesorOnline
 
Resume 123
Resume 123Resume 123
Resume 123
Mohd Mazheruddin
 
Analisis laporan keuangan
Analisis laporan keuanganAnalisis laporan keuangan
Analisis laporan keuangan
adelaa09
 
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
Marcial Pons Argentina
 

Viewers also liked (19)

3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
 
Plate Tectonics Notes
Plate Tectonics NotesPlate Tectonics Notes
Plate Tectonics Notes
 
Teoria tributaria
Teoria tributariaTeoria tributaria
Teoria tributaria
 
Changes In Education
Changes In EducationChanges In Education
Changes In Education
 
Bio3º
Bio3ºBio3º
Bio3º
 
Recomendaciones valiosas
Recomendaciones valiosasRecomendaciones valiosas
Recomendaciones valiosas
 
Optimistasiempre
OptimistasiempreOptimistasiempre
Optimistasiempre
 
Acta sesion evaluacion_2
Acta sesion evaluacion_2Acta sesion evaluacion_2
Acta sesion evaluacion_2
 
Prueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continentalPrueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continental
 
Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"
 
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
 
Final semestral alice ciencia
Final semestral alice cienciaFinal semestral alice ciencia
Final semestral alice ciencia
 
Ruta de cuba
Ruta de cubaRuta de cuba
Ruta de cuba
 
Recommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook pageRecommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook page
 
New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012
 
Modulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blogModulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blog
 
Resume 123
Resume 123Resume 123
Resume 123
 
Analisis laporan keuangan
Analisis laporan keuanganAnalisis laporan keuangan
Analisis laporan keuangan
 
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
 

Similar to X2 T08 02 induction

X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
Nigel Simmons
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
Nigel Simmons
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
Nigel Simmons
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
bangqohar
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 

Similar to X2 T08 02 induction (14)

X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 

Recently uploaded (20)

PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 

X2 T08 02 induction

  • 2. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n
  • 3. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n Test: n = 1
  • 4. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 Test: n = 1 L.H .S  2 1 1
  • 5. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1
  • 6. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S
  • 7. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S 1 1 1 1 A n  k  1   2  2  2  22 3 k k
  • 8. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S 1 1 1 1 A n  k  1   2  2  2  22 3 k k 1 1 1 1 P n  k  1 1  2  2     2 2 3 k  12 k 1
  • 9. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12
  • 10. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12
  • 11. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2
  • 12. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2
  • 13. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2
  • 14. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2
  • 15. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2 1  2 k 1
  • 16. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2 1  2 k 1 1 1 1 1 1  2  2     2 2 3 k  12 k 1
  • 17. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1
  • 18. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1
  • 19. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2
  • 20. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2
  • 21. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2
  • 22. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof:
  • 23. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak
  • 24. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22
  • 25. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22  4 2
  • 26. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22  4 2  ak 1  2
  • 27. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1
  • 28. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1
  • 29. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10
  • 30. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10
  • 31. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10
  • 32. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:
  • 33. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k 
  • 34. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k   xk y k  10
  • 35. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k   xk y k  10  xk 1 yk 1  10
  • 36. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2 
  • 37. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2
  • 38. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 L.H .S  a1 1
  • 39. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62
  • 40. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S
  • 41. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S L.H .S  a2 1
  • 42. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62
  • 43. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S
  • 44. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S k 1 k 1  5  1  5  A n  k  1 & n  k  ak 1    & ak     2   2 
  • 45. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S k 1 k 1  5  1  5  A n  k  1 & n  k  ak 1    & ak     2   2  k 1 1 5  P n  k  1 ak 1      2 
  • 46. Proof: ak 1  ak  ak 1
  • 47. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5       2   2 
  • 48. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2   
  • 49. Proof: ak 1  ak  ak 1 k k 1 1  5  1 5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5   2 4      2  2  1  5 1  5  
  • 50. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5  62 5     2  2   1  5  
  • 51. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2 
  • 52. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2  k 1 1  5   ak 1     2 
  • 53. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4  Sheets     2  2  1  5 1  5   k 1 + 1  5  2  2 5  4    2   2   1  5   Exercise 10E* k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2  k 1 1  5   ak 1     2 