SlideShare a Scribd company logo
Mathematical Induction
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
is)
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
is)
Step 2: Assume the result is true for n = k, where k is a positive
integer (or another condition that matches the question)
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
is)
Step 2: Assume the result is true for n = k, where k is a positive
integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
is)
Step 2: Assume the result is true for n = k, where k is a positive
integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
NOTE: It is important to note in your conclusion that the result is
true for n = k + 1 if it is true for n = k
Mathematical Induction
Step 1: Prove the result is true for n = 1 (or whatever the first term
is)
Step 2: Assume the result is true for n = k, where k is a positive
integer (or another condition that matches the question)
Step 3: Prove the result is true for n = k + 1
NOTE: It is important to note in your conclusion that the result is
true for n = k + 1 if it is true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
all positive integral values of n by induction
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
2

2

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
2

2

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
2

2

LHS  12
1

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
2

2

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
2

2

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
Hence the result is true for n = 1
2

2

2

2
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
Hence the result is true for n = 1
2

2

2

2

Step 2: Assume the result is true for n = k, where k is a positive
integer
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
Hence the result is true for n = 1
2

2

2

2

Step 2: Assume the result is true for n = k, where k is a positive
integer
1
2
i.e. 12  32  52    2k  1  k 2k  12k  1
3
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
Hence the result is true for n = 1
2

2

2

2

Step 2: Assume the result is true for n = k, where k is a positive
integer
1
2
i.e. 12  32  52    2k  1  k 2k  12k  1
3
Step 3: Prove the result is true for n = k + 1
1
e.g.i  1  3  5    2n  1  n2n  12n  1
3
Step 1: Prove the result is true for n = 1
1
LHS  12
RHS  12  12  1
3
1
1
 113
3
1
 LHS  RHS
Hence the result is true for n = 1
2

2

2

2

Step 2: Assume the result is true for n = k, where k is a positive
integer
1
2
i.e. 12  32  52    2k  1  k 2k  12k  1
3
Step 3: Prove the result is true for n = k + 1
1
2
i.e. Prove : 12  32  52    2k  1  k  12k  12k  3
3
Proof:
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1
2

2
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1
 


2

Sk

2
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

1
2
 k 2k  12k  1  2k  1
3

2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

1
2
 k 2k  12k  1  2k  1
3
1

 2k  1 k 2k  1  2k  1
3


2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

1
2
 k 2k  12k  1  2k  1
3
1

 2k  1 k 2k  1  2k  1
3

1
 2k  1k 2k  1  32k  1
3

2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

1
2
 k 2k  12k  1  2k  1
3
1

 2k  1 k 2k  1  2k  1
3

1
 2k  1k 2k  1  32k  1
3
1
 2k  12k 2  k  6k  3
3
1
 2k  12k 2  5k  3
3

2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

1
2
 k 2k  12k  1  2k  1
3
1

 2k  1 k 2k  1  2k  1
3

1
 2k  1k 2k  1  32k  1
3
1
 2k  12k 2  k  6k  3
3
1
 2k  12k 2  5k  3
3
1
 2k  1k  12k  3
3

2

Tk 1
Proof:

12  32  52    2k  1

2

 12  32  52    2k  1  2k  1

 


2

Sk

2

Tk 1

1
2
 k 2k  12k  1  2k  1
3
1

 2k  1 k 2k  1  2k  1
3

1
 2k  1k 2k  1  32k  1
3
1
 2k  12k 2  k  6k  3
3
1
 2k  12k 2  5k  3
3
1
 2k  1k  12k  3
3
Hence the result is true for n = k + 1 if it is also true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
all positive integral values of n by induction
n

1
n
ii  

2n  1
k 1 2k  12k  1
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
LHS 
1 3
1

3
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
1
LHS 
RHS 
1 3
2 1
1
1


3
3
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
1
LHS 
RHS 
1 3
2 1
1
1


3
3

 LHS  RHS
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
1
LHS 
RHS 
1 3
2 1
1
1


3
3

 LHS  RHS
Hence the result is true for n = 1
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
1
LHS 
RHS 
1 3
2 1
1
1


3
3

 LHS  RHS
Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
integer
n

1
n
ii  

2n  1
k 1 2k  12k  1
1
1
1
1
n




1 3 3  5 5  7
2n  12n  1 2n  1
Step 1: Prove the result is true for n = 1
1
1
LHS 
RHS 
1 3
2 1
1
1


3
3

 LHS  RHS
Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
integer
1
1
1
1
k
i.e.




1 3 3  5 5  7
2k  12k  1 2k  1
Step 3: Prove the result is true for n = k + 1
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
1
1
1
1



1 3 3  5 5  7
2k  12k  3
1
1
1
1
1





1 3 3  5 5  7
2k  12k  1 2k  12k  3
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
1
1
1
1



1 3 3  5 5  7
2k  12k  3
1
1
1
1
1





1 3 3  5 5  7
2k  12k  1 2k  12k  3
k
1


2k  1 2k  12k  3
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
1
1
1
1



1 3 3  5 5  7
2k  12k  3
1
1
1
1
1





1 3 3  5 5  7
2k  12k  1 2k  12k  3
k
1


2k  1 2k  12k  3
k 2k  3  1

2k  12k  3
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
1
1
1
1



1 3 3  5 5  7
2k  12k  3
1
1
1
1
1





1 3 3  5 5  7
2k  12k  1 2k  12k  3
k
1


2k  1 2k  12k  3
k 2k  3  1

2k  12k  3
2k 2  3k  1

2k  12k  3
Step 3: Prove the result is true for n = k + 1
1
1
1
1
k 1
i.e. Prove :




1 3 3  5 5  7
2k  12k  3 2k  3
Proof:
1
1
1
1



1 3 3  5 5  7
2k  12k  3
1
1
1
1
1





1 3 3  5 5  7
2k  12k  1 2k  12k  3
k
1


2k  1 2k  12k  3
k 2k  3  1

2k  12k  3
2k 2  3k  1

2k  12k  3
2k  1k  1

2k  12k  3


k  1
2k  3


k  1
2k  3

Hence the result is true for n = k + 1 if it is also true for n = k


k  1
2k  3

Hence the result is true for n = k + 1 if it is also true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
all positive integral values of n by induction


k  1
2k  3

Hence the result is true for n = k + 1 if it is also true for n = k
Step 4: Since the result is true for n = 1, then the result is true for
all positive integral values of n by induction

Exercise 6N; 1 ace etc, 10(polygon), 13

More Related Content

Similar to 11 x1 t14 08 mathematical induction 1 (2013)

11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)Nigel Simmons
 
11X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 111X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 1Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)Nigel Simmons
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3Nigel Simmons
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)Nigel Simmons
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)Nigel Simmons
 
5.4 mathematical induction t
5.4 mathematical induction t5.4 mathematical induction t
5.4 mathematical induction t
math260
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical InductionEdelyn Cagas
 
B02404014
B02404014B02404014
11-Induction CIIT.pptx
11-Induction CIIT.pptx11-Induction CIIT.pptx
11-Induction CIIT.pptx
jaffarbikat
 

Similar to 11 x1 t14 08 mathematical induction 1 (2013) (20)

11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)11 x1 t14 08 mathematical induction 1 (2012)
11 x1 t14 08 mathematical induction 1 (2012)
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
11X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 111X1 T10 08 mathematical induction 1
11X1 T10 08 mathematical induction 1
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
5.4 mathematical induction t
5.4 mathematical induction t5.4 mathematical induction t
5.4 mathematical induction t
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical Induction
 
B02404014
B02404014B02404014
B02404014
 
11-Induction CIIT.pptx
11-Induction CIIT.pptx11-Induction CIIT.pptx
11-Induction CIIT.pptx
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 

Recently uploaded (20)

Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 

11 x1 t14 08 mathematical induction 1 (2013)

  • 2. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is)
  • 3. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question)
  • 4. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1
  • 5. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1 NOTE: It is important to note in your conclusion that the result is true for n = k + 1 if it is true for n = k
  • 6. Mathematical Induction Step 1: Prove the result is true for n = 1 (or whatever the first term is) Step 2: Assume the result is true for n = k, where k is a positive integer (or another condition that matches the question) Step 3: Prove the result is true for n = k + 1 NOTE: It is important to note in your conclusion that the result is true for n = k + 1 if it is true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 7. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 2 2 2 2
  • 8. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 2 2 2 2
  • 9. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 2 2 LHS  12 1 2 2
  • 10. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1 2 2 2 2
  • 11. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS 2 2 2 2
  • 12. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 2 2 2 2
  • 13. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 2 2 2 2 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 14. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 2 2 2 2 Step 2: Assume the result is true for n = k, where k is a positive integer 1 2 i.e. 12  32  52    2k  1  k 2k  12k  1 3
  • 15. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 2 2 2 2 Step 2: Assume the result is true for n = k, where k is a positive integer 1 2 i.e. 12  32  52    2k  1  k 2k  12k  1 3 Step 3: Prove the result is true for n = k + 1
  • 16. 1 e.g.i  1  3  5    2n  1  n2n  12n  1 3 Step 1: Prove the result is true for n = 1 1 LHS  12 RHS  12  12  1 3 1 1  113 3 1  LHS  RHS Hence the result is true for n = 1 2 2 2 2 Step 2: Assume the result is true for n = k, where k is a positive integer 1 2 i.e. 12  32  52    2k  1  k 2k  12k  1 3 Step 3: Prove the result is true for n = k + 1 1 2 i.e. Prove : 12  32  52    2k  1  k  12k  12k  3 3
  • 18. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1 2 2
  • 19. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1     2 Sk 2
  • 20. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 2 Tk 1
  • 21. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 1 2  k 2k  12k  1  2k  1 3 2 Tk 1
  • 22. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 1 2  k 2k  12k  1  2k  1 3 1   2k  1 k 2k  1  2k  1 3  2 Tk 1
  • 23. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 1 2  k 2k  12k  1  2k  1 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3 2 Tk 1
  • 24. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 1 2  k 2k  12k  1  2k  1 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3 1  2k  12k 2  k  6k  3 3 1  2k  12k 2  5k  3 3 2 Tk 1
  • 25. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 1 2  k 2k  12k  1  2k  1 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3 1  2k  12k 2  k  6k  3 3 1  2k  12k 2  5k  3 3 1  2k  1k  12k  3 3 2 Tk 1
  • 26. Proof: 12  32  52    2k  1 2  12  32  52    2k  1  2k  1      2 Sk 2 Tk 1 1 2  k 2k  12k  1  2k  1 3 1   2k  1 k 2k  1  2k  1 3  1  2k  1k 2k  1  32k  1 3 1  2k  12k 2  k  6k  3 3 1  2k  12k 2  5k  3 3 1  2k  1k  12k  3 3 Hence the result is true for n = k + 1 if it is also true for n = k
  • 27. Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 28. n 1 n ii    2n  1 k 1 2k  12k  1
  • 29. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1
  • 30. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1
  • 31. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 LHS  1 3 1  3
  • 32. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3
  • 33. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS
  • 34. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1
  • 35. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 36. n 1 n ii    2n  1 k 1 2k  12k  1 1 1 1 1 n     1 3 3  5 5  7 2n  12n  1 2n  1 Step 1: Prove the result is true for n = 1 1 1 LHS  RHS  1 3 2 1 1 1   3 3  LHS  RHS Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer 1 1 1 1 k i.e.     1 3 3  5 5  7 2k  12k  1 2k  1
  • 37. Step 3: Prove the result is true for n = k + 1
  • 38. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3
  • 39. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof:
  • 40. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3
  • 41. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3
  • 42. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3
  • 43. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3 2k 2  3k  1  2k  12k  3
  • 44. Step 3: Prove the result is true for n = k + 1 1 1 1 1 k 1 i.e. Prove :     1 3 3  5 5  7 2k  12k  3 2k  3 Proof: 1 1 1 1    1 3 3  5 5  7 2k  12k  3 1 1 1 1 1      1 3 3  5 5  7 2k  12k  1 2k  12k  3 k 1   2k  1 2k  12k  3 k 2k  3  1  2k  12k  3 2k 2  3k  1  2k  12k  3 2k  1k  1  2k  12k  3
  • 46.  k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k
  • 47.  k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction
  • 48.  k  1 2k  3 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction Exercise 6N; 1 ace etc, 10(polygon), 13