The document provides an introduction to word embeddings and two related techniques: Word2Vec and Word Movers Distance. Word2Vec is an algorithm that produces word embeddings by training a neural network on a large corpus of text, with the goal of producing dense vector representations of words that encode semantic relationships. Word Movers Distance is a method for calculating the semantic distance between documents based on the embedded word vectors, allowing comparison of documents with different words but similar meanings. The document explains these techniques and provides examples of their applications and properties.