TRANSFORMATIONS AND ACTIONS
A Visual Guide of the APIhttp://training.databricks.com/visualapi.pdf
Databricks would like to give a special thanks to Jeff Thomspon for contributing 67
visual diagrams depicting the Spark API under the MIT license to the Spark
community.
Jeff’s original, creative work can be found here and you can read more about
Jeff’s project in his blog post.
After talking to Jeff, Databricks commissioned Adam Breindel to further evolve
Jeff’s work into the diagrams you see in this deck.
LinkedIn
Blog: data-frack
making big data simple
Databricks Cloud:
“A unified platform for building Big Data pipelines – from ETL to
Exploration and Dashboards, to Advanced Analytics and Data
Products.”
• Founded in late 2013
• by the creators of Apache Spark
• Original team from UC Berkeley AMPLab
• Raised $47 Million in 2 rounds
• ~55 employees
• We’re hiring!
• Level 2/3 support partnerships with
• Hortonworks
• MapR
• DataStax
(http://databricks.workable.com)
key
RDD Elements
original item
transformed
type
object on driver
RDD
partition(s) A
B
user functions
user input
input
emitted value
Legend
Randomized operation
Legend
Set Theory / Relational operation
Numeric calculation
Operations =
TRANSFORMATIONS
ACTIONS
+
• map
• filter
• flatMap
• mapPartitions
• mapPartitionsWithIndex
• groupBy
• sortBy
= medium
Essential Core & Intermediate Spark OperationsTRANSFORMATIONSACTIONS
General
• sample
• randomSplit
Math / Statistical
= easy
Set Theory / Relational
• union
• intersection
• subtract
• distinct
• cartesian
• zip
• takeOrdered
Data Structure / I/O
• saveAsTextFile
• saveAsSequenceFile
• saveAsObjectFile
• saveAsHadoopDataset
• saveAsHadoopFile
• saveAsNewAPIHadoopDataset
• saveAsNewAPIHadoopFile
• keyBy
• zipWithIndex
• zipWithUniqueID
• zipPartitions
• coalesce
• repartition
• repartitionAndSortWithinPartitions
• pipe
• count
• takeSample
• max
• min
• sum
• histogram
• mean
• variance
• stdev
• sampleVariance
• countApprox
• countApproxDistinct
• reduce
• collect
• aggregate
• fold
• first
• take
• forEach
• top
• treeAggregate
• treeReduce
• forEachPartition
• collectAsMap
= medium
Essential Core & Intermediate PairRDD OperationsTRANSFORMATIONSACTIONS
General
• sampleByKey
Math / Statistical
= easy
Set Theory / Relational Data Structure
• keys
• values
• partitionBy
• countByKey
• countByValue
• countByValueApprox
• countApproxDistinctByKey
• countApproxDistinctByKey
• countByKeyApprox
• sampleByKeyExact
• cogroup (=groupWith)
• join
• subtractByKey
• fullOuterJoin
• leftOuterJoin
• rightOuterJoin
• flatMapValues
• groupByKey
• reduceByKey
• reduceByKeyLocally
• foldByKey
• aggregateByKey
• sortByKey
• combineByKey
vs
narrow wide
each partition of the parent RDD is used by
at most one partition of the child RDD
multiple child RDD partitions may depend
on a single parent RDD partition
“One of the challenges in providing RDDs as an abstraction is choosing a
representation for them that can track lineage across a wide range of
transformations.”
“The most interesting question in designing this interface is how to represent
dependencies between RDDs.”
“We found it both sufficient and useful to classify dependencies into two types:
• narrow dependencies, where each partition of the parent RDD is used by at
most one partition of the child RDD
• wide dependencies, where multiple child partitions may depend on it.”
narrow wide
each partition of the parent RDD is used by
at most one partition of the child RDD
multiple child RDD partitions may depend
on a single parent RDD partition
map, filter union
join w/ inputs
co-partitioned
groupByKey
join w/ inputs not
co-partitioned
TRANSFORMATIONS Core Operations
MAP
3 items in RDD
RDD: x
MAP
User function
applied item by item
RDD: x RDD: y
MAP
RDD: x RDD: y
MAP
RDD: x RDD: y
MAP
RDD: x RDD: y
After map() has been applied…
before after
MAP
RDD: x RDD: y
Return a new RDD by applying a function to each element of this RDD.
MAP
x = sc.parallelize(["b", "a", "c"])
y = x.map(lambda z: (z, 1))
print(x.collect())
print(y.collect())
['b', 'a', 'c']
[('b', 1), ('a', 1), ('c', 1)]
RDD: x RDD: y
x:
y:
map(f, preservesPartitioning=False)
Return a new RDD by applying a function to each element of this RDD
val x = sc.parallelize(Array("b", "a", "c"))
val y = x.map(z => (z,1))
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
FILTER
3 items in RDD
RDD: x
FILTER
Apply user function:
keep item if function
returns true
RDD: x RDD: y
emits
True
FILTER
RDD: x RDD: y
emits
False
FILTER
RDD: x RDD: y
emits
True
FILTER
RDD: x RDD: y
After filter() has been applied…
before after
FILTER
x = sc.parallelize([1,2,3])
y = x.filter(lambda x: x%2 == 1) #keep odd values
print(x.collect())
print(y.collect())
[1, 2, 3]
[1, 3]
RDD: x RDD: y
x:
y:
filter(f)
Return a new RDD containing only the elements that satisfy a predicate
val x = sc.parallelize(Array(1,2,3))
val y = x.filter(n => n%2 == 1)
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
FLATMAP
3 items in RDD
RDD: x
FLATMAP
RDD: x RDD: y
FLATMAP
RDD: x RDD: y
FLATMAP
RDD: x RDD: y
FLATMAP
RDD: x RDD: y
After flatmap() has been applied…
before after
FLATMAP
RDD: x RDD: y
Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results
FLATMAP
x = sc.parallelize([1,2,3])
y = x.flatMap(lambda x: (x, x*100, 42))
print(x.collect())
print(y.collect())
[1, 2, 3]
[1, 100, 42, 2, 200, 42, 3, 300, 42]
x:
y:
RDD: x RDD: y
flatMap(f, preservesPartitioning=False)
Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results
val x = sc.parallelize(Array(1,2,3))
val y = x.flatMap(n => Array(n, n*100, 42))
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
GROUPBY
4 items in RDD
RDD: x
James
Anna
Fred
John
GROUPBY
RDD: x
James
Anna
Fred
John
emits‘J’
J [ “John” ]
RDD: y
F [ “Fred” ]
GROUPBY
RDD: x
James
Anna
Fred
emits‘F’
J [ “John” ]John
RDD: y
[ “Fred” ]
GROUPBY
RDD: x
James
Anna
emits‘A’
J [ “John” ]
A [ “Anna” ]
Fred
John
F
RDD: y
[ “Fred” ]
GROUPBY
RDD: x
James
Anna
emits‘J’
J [ “John”, “James” ]
[ “Anna” ]
Fred
John
F
A
RDD: y
GROUPBY
x = sc.parallelize(['John', 'Fred', 'Anna', 'James'])
y = x.groupBy(lambda w: w[0])
print [(k, list(v)) for (k, v) in y.collect()]
['John', 'Fred', 'Anna', 'James']
[('A',['Anna']),('J',['John','James']),('F',['Fred'])]
RDD: x RDD: y
x:
y:
groupBy(f, numPartitions=None)
Group the data in the original RDD. Create pairs where the key is the output of
a user function, and the value is all items for which the function yields this key.
val x = sc.parallelize(
Array("John", "Fred", "Anna", "James"))
val y = x.groupBy(w => w.charAt(0))
println(y.collect().mkString(", "))
GROUPBYKEY
5 items in RDD
Pair RDD: x
B
B
A
A
A
5
4
3
2
1
GROUPBYKEY
Pair RDD: x
5
4
3
2
1
RDD: y
A [ 2 , 3 , 1 ]
B
B
A
A
A
GROUPBYKEY
Pair RDD: x RDD: y
B [ 5 , 4 ]
A [ 2 , 3 , 1 ]
5
4
3
2
1
B
B
A
A
A
GROUPBYKEY
x = sc.parallelize([('B',5),('B',4),('A',3),('A',2),('A',1)])
y = x.groupByKey()
print(x.collect())
print(list((j[0], list(j[1])) for j in y.collect()))
[('B', 5),('B', 4),('A', 3),('A', 2),('A', 1)]
[('A', [2, 3, 1]),('B',[5, 4])]
RDD: x RDD: y
x:
y:
groupByKey(numPartitions=None)
Group the values for each key in the original RDD. Create a new pair where the
original key corresponds to this collected group of values.
val x = sc.parallelize(
Array(('B',5),('B',4),('A',3),('A',2),('A',1)))
val y = x.groupByKey()
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
MAPPARTITIONS
RDD: x RDD: y
partitions
A
B
A
B
REDUCEBYKEY VS GROUPBYKEY
val words = Array("one", "two", "two", "three", "three", "three")
val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))
val wordCountsWithReduce = wordPairsRDD
.reduceByKey(_ + _)
.collect()
val wordCountsWithGroup = wordPairsRDD
.groupByKey()
.map(t => (t._1, t._2.sum))
.collect()
REDUCEBYKEY
(a, 1)
(b, 1)
(a, 1)
(b, 1)
(a, 1)
(a, 1) (a, 2)
(b, 2)(b, 1)
(b, 1)
(a, 1)
(a, 1)
(a, 3)
(b, 2)
(a, 1)
(b, 1)
(b, 1)
(a, 1)
(a, 2) (a, 6)
(a, 3)
(b, 1)
(b, 2) (b, 5)
(b, 2)
a b
GROUPBYKEY
(a, 1)
(b, 1)
(a, 1)
(a, 1)
(b, 1)
(b, 1)
(a, 1)
(a, 1)
(a, 1)
(b, 1)
(b, 1)
(a, 1)
(a, 1)
(a, 6)
(a, 1)
(b, 5)
a b
(a, 1)
(a, 1)
(a, 1)
(b, 1)
(b, 1)
(b, 1)
(b, 1)
(b, 1)
MAPPARTITIONS
x:
y:
mapPartitions(f, preservesPartitioning=False)
Return a new RDD by applying a function to each partition of this RDD
A
B
A
B
x = sc.parallelize([1,2,3], 2)
def f(iterator): yield sum(iterator); yield 42
y = x.mapPartitions(f)
# glom() flattens elements on the same partition
print(x.glom().collect())
print(y.glom().collect())
[[1], [2, 3]]
[[1, 42], [5, 42]]
MAPPARTITIONS
x:
y:
mapPartitions(f, preservesPartitioning=False)
Return a new RDD by applying a function to each partition of this RDD
A
B
A
B
Array(Array(1), Array(2, 3))
Array(Array(1, 42), Array(5, 42))
val x = sc.parallelize(Array(1,2,3), 2)
def f(i:Iterator[Int])={ (i.sum,42).productIterator }
val y = x.mapPartitions(f)
// glom() flattens elements on the same partition
val xOut = x.glom().collect()
val yOut = y.glom().collect()
MAPPARTITIONSWITHINDEX
RDD: x RDD: y
partitions
A
B
A
B
input
partition index
x:
y:
mapPartitionsWithIndex(f, preservesPartitioning=False)
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition
A
B
A
B
x = sc.parallelize([1,2,3], 2)
def f(partitionIndex, iterator): yield (partitionIndex, sum(iterator))
y = x.mapPartitionsWithIndex(f)
# glom() flattens elements on the same partition
print(x.glom().collect())
print(y.glom().collect())
[[1], [2, 3]]
[[0, 1], [1, 5]]
MAPPARTITIONSWITHINDEX
partition index
B A
x:
y:
mapPartitionsWithIndex(f, preservesPartitioning=False)
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition.
A
B
A
B
Array(Array(1), Array(2, 3))
Array(Array(0, 1), Array(1, 5))
MAPPARTITIONSWITHINDEX
partition index
B A
val x = sc.parallelize(Array(1,2,3), 2)
def f(partitionIndex:Int, i:Iterator[Int]) = {
(partitionIndex, i.sum).productIterator
}
val y = x.mapPartitionsWithIndex(f)
// glom() flattens elements on the same partition
val xOut = x.glom().collect()
val yOut = y.glom().collect()
SAMPLE
RDD: x RDD: y
1
3
5
4
3
2
1
SAMPLE
x = sc.parallelize([1, 2, 3, 4, 5])
y = x.sample(False, 0.4, 42)
print(x.collect())
print(y.collect())
[1, 2, 3, 4, 5]
[1, 3]
RDD: x RDD: y
x:
y:
sample(withReplacement, fraction, seed=None)
Return a new RDD containing a statistical sample of the original RDD
val x = sc.parallelize(Array(1, 2, 3, 4, 5))
val y = x.sample(false, 0.4)
// omitting seed will yield different output
println(y.collect().mkString(", "))
UNION RDD: x RDD: y
4
3
3
2
1
A
B
C
4
3
3
2
1
A
B
C
RDD: z
UNION
x = sc.parallelize([1,2,3], 2)
y = sc.parallelize([3,4], 1)
z = x.union(y)
print(z.glom().collect())
[1, 2, 3]
[3, 4]
[[1], [2, 3], [3, 4]]
x:
y:
union(otherRDD)
Return a new RDD containing all items from two original RDDs. Duplicates are not culled.
val x = sc.parallelize(Array(1,2,3), 2)
val y = sc.parallelize(Array(3,4), 1)
val z = x.union(y)
val zOut = z.glom().collect()
z:
5B
JOIN RDD: x RDD: y
4
2B
A
1A
3A
JOIN RDD: x RDD: y
RDD: z
(1, 3)A
5B
4
2B
A
1A
3A
JOIN RDD: x RDD: y
RDD: z
(1, 4)A
(1, 3)A
5B
4
2B
A
1A
3A
JOIN RDD: x RDD: y
(2, 5) RDD: zB
(1, 4)A
(1, 3)A
5B
4
2B
A
1A
3A
JOIN
x = sc.parallelize([("a", 1), ("b", 2)])
y = sc.parallelize([("a", 3), ("a", 4), ("b", 5)])
z = x.join(y)
print(z.collect()) [("a", 1), ("b", 2)]
[("a", 3), ("a", 4), ("b", 5)]
[('a', (1, 3)), ('a', (1, 4)), ('b', (2, 5))]
x:
y:
union(otherRDD, numPartitions=None)
Return a new RDD containing all pairs of elements having the same key in the original RDDs
val x = sc.parallelize(Array(("a", 1), ("b", 2)))
val y = sc.parallelize(Array(("a", 3), ("a", 4), ("b", 5)))
val z = x.join(y)
println(z.collect().mkString(", "))
z:
DISTINCT
4
3
3
2
1
RDD: x
DISTINCT
RDD: x
4
3
3
2
1
4
3
3
2
1
RDD: y
DISTINCT
RDD: x
4
3
3
2
1
4
3
2
1
RDD: y
DISTINCT
x = sc.parallelize([1,2,3,3,4])
y = x.distinct()
print(y.collect())
[1, 2, 3, 3, 4]
[1, 2, 3, 4]
x:
y:
distinct(numPartitions=None)
Return a new RDD containing distinct items from the original RDD (omitting all duplicates)
val x = sc.parallelize(Array(1,2,3,3,4))
val y = x.distinct()
println(y.collect().mkString(", "))
*
*
*¤
¤
COALESCE
RDD: x
A
B
C
COALESCE
RDD: x
B
C
RDD: y
A
AB
C
COALESCE
RDD: x
B
C
RDD: y
A
AB
COALESCE
x = sc.parallelize([1, 2, 3, 4, 5], 3)
y = x.coalesce(2)
print(x.glom().collect())
print(y.glom().collect())
[[1], [2, 3], [4, 5]]
[[1], [2, 3, 4, 5]]
x:
y:
coalesce(numPartitions, shuffle=False)
Return a new RDD which is reduced to a smaller number of partitions
val x = sc.parallelize(Array(1, 2, 3, 4, 5), 3)
val y = x.coalesce(2)
val xOut = x.glom().collect()
val yOut = y.glom().collect()
C
B
C
A
AB
KEYBY
RDD: x
James
Anna
Fred
John
RDD: y
J “John”
emits‘J’
KEYBY
RDD: x
James
Anna
‘F’
Fred “Fred”F
RDD: y
J “John”John
James
“Anna”A
KEYBY
RDD: x
Anna
‘A’
Fred
John
“Fred”F
RDD: y
J “John”
J “James”
“Anna”A
KEYBY
RDD: x
James
Anna
emits‘J’
Fred
John
“Fred”F
RDD: y
J “John”
KEYBY
x = sc.parallelize(['John', 'Fred', 'Anna', 'James'])
y = x.keyBy(lambda w: w[0])
print y.collect()
['John', 'Fred', 'Anna', 'James']
[('J','John'),('F','Fred'),('A','Anna'),('J','James')]
RDD: x RDD: y
x:
y:
keyBy(f)
Create a Pair RDD, forming one pair for each item in the original RDD. The
pair’s key is calculated from the value via a user-supplied function.
val x = sc.parallelize(
Array("John", "Fred", "Anna", "James"))
val y = x.keyBy(w => w.charAt(0))
println(y.collect().mkString(", "))
PARTITIONBY
RDD: x
J “John”
“Anna”A
“Fred”F
J “James”
PARTITIONBY
RDD: x
J “John”
“Anna”A
“Fred”F
J “James”
RDD: yRDD: y
J “James”
1
PARTITIONBY
RDD: x
J “John”
“Anna”A
“Fred”F
RDD: yRDD: y
J “James”
“Fred”F
0
J “James”
PARTITIONBY
RDD: x
J “John”
“Anna”A
RDD: yRDD: y
J “James”
“Anna”A
“Fred”F
0
“Fred”F
J “James”
PARTITIONBY
RDD: x
J “John”
RDD: yRDD: y
J “John”
J “James”
“Anna”A
“Fred”F1
“Anna”A
“Fred”F
J “James”
PARTITIONBY
x = sc.parallelize([('J','James'),('F','Fred'),
('A','Anna'),('J','John')], 3)
y = x.partitionBy(2, lambda w: 0 if w[0] < 'H' else 1)
print x.glom().collect()
print y.glom().collect()
[[('J', 'James')], [('F', 'Fred')],
[('A', 'Anna'), ('J', 'John')]]
[[('A', 'Anna'), ('F', 'Fred')],
[('J', 'James'), ('J', 'John')]]
x:
y:
partitionBy(numPartitions, partitioner=portable_hash)
Return a new RDD with the specified number of partitions, placing original
items into the partition returned by a user supplied function
PARTITIONBY
Array(Array((A,Anna), (F,Fred)),
Array((J,John), (J,James)))
Array(Array((F,Fred), (A,Anna)),
Array((J,John), (J,James)))
x:
y:
partitionBy(numPartitions, partitioner=portable_hash)
Return a new RDD with the specified number of partitions, placing original
items into the partition returned by a user supplied function.
import org.apache.spark.Partitioner
val x = sc.parallelize(Array(('J',"James"),('F',"Fred"),
('A',"Anna"),('J',"John")), 3)
val y = x.partitionBy(new Partitioner() {
val numPartitions = 2
def getPartition(k:Any) = {
if (k.asInstanceOf[Char] < 'H') 0 else 1
}
})
val yOut = y.glom().collect()
ZIP RDD: x RDD: y
3
2
1
A
B
9
4
1
A
B
ZIP RDD: x RDD: y
3
2
1
A
B
4
A
RDD: z
9
4
1
A
B
1 1
ZIP RDD: x RDD: y
3
2
1
A
B
4
A
RDD: z
9
4
1
A
B
2
1
4
1
ZIP RDD: x RDD: y
3
2
1
A
B
4
3
A
B
RDD: z
9
4
1
A
B
2
1
9
4
1
ZIP
x = sc.parallelize([1, 2, 3])
y = x.map(lambda n:n*n)
z = x.zip(y)
print(z.collect()) [1, 2, 3]
[1, 4, 9]
[(1, 1), (2, 4), (3, 9)]
x:
y:
zip(otherRDD)
Return a new RDD containing pairs whose key is the item in the original RDD, and whose
value is that item’s corresponding element (same partition, same index) in a second RDD
val x = sc.parallelize(Array(1,2,3))
val y = x.map(n=>n*n)
val z = x.zip(y)
println(z.collect().mkString(", "))
z:
ACTIONS Core Operations
vs
distributed driver
occurs across the cluster result must fit in driver JVM
GETNUMPARTITIONS
partition(s) A
B
2
x:
y:
getNumPartitions()
Return the number of partitions in RDD
[[1], [2, 3]]
2
GETNUMPARTITIONS
A
B
2
x = sc.parallelize([1,2,3], 2)
y = x.getNumPartitions()
print(x.glom().collect())
print(y)
val x = sc.parallelize(Array(1,2,3), 2)
val y = x.partitions.size
val xOut = x.glom().collect()
println(y)
COLLECT
partition(s) A
B
[ ]
x:
y:
collect()
Return all items in the RDD to the driver in a single list
[[1], [2, 3]]
[1, 2, 3]
A
B
x = sc.parallelize([1,2,3], 2)
y = x.collect()
print(x.glom().collect())
print(y)
val x = sc.parallelize(Array(1,2,3), 2)
val y = x.collect()
val xOut = x.glom().collect()
println(y)
COLLECT [ ]
REDUCE
3
2
1
emits
4
3
4
REDUCE
3
2
1
emits
3
input
6
4
REDUCE
3
2
1
10
input
6
10
x:
y:
reduce(f)
Aggregate all the elements of the RDD by applying a user function
pairwise to elements and partial results, and returns a result to the driver
[1, 2, 3, 4]
10
x = sc.parallelize([1,2,3,4])
y = x.reduce(lambda a,b: a+b)
print(x.collect())
print(y)
val x = sc.parallelize(Array(1,2,3,4))
val y = x.reduce((a,b) => a+b)
println(x.collect.mkString(", "))
println(y)
REDUCE
******
*
**
***
AGGREGATE
3
2
1
4
A
B
AGGREGATE
3
2
1
4
AGGREGATE
3
2
1
4
emits
([], 0)
([1], 1)
AGGREGATE
3
2
1
4
([], 0)
([2], 2)
([1], 1)
AGGREGATE
3
2
1
4
([2], 2)
([1], 1)([1,2], 3)
AGGREGATE
3
2
1
4
([2], 2)
([1], 1)([1,2], 3)
([3], 3)
([], 0)
AGGREGATE
3
2
1
4
([2], 2)
([1], 1)([1,2], 3)
([3], 3)
([], 0)
([4], 4)
AGGREGATE
3
2
1
4
([2], 2)
([1], 1)([1,2], 3)
([4], 4)
([3], 3)([3,4], 7)
AGGREGATE
3
2
1
4
([2], 2)
([1], 1)([1,2], 3)
([4], 4)
([3], 3)([3,4], 7)
AGGREGATE
3
2
1
4
([1,2], 3)
([3,4], 7)
AGGREGATE
3
2
1
4
([1,2], 3)
([3,4], 7)
([1,2,3,4], 10)
([1,2,3,4], 10)
aggregate(identity, seqOp, combOp)
Aggregate all the elements of the RDD by:
- applying a user function to combine elements with user-supplied objects,
- then combining those user-defined results via a second user function,
- and finally returning a result to the driver.
seqOp = lambda data, item: (data[0] + [item], data[1] + item)
combOp = lambda d1, d2: (d1[0] + d2[0], d1[1] + d2[1])
x = sc.parallelize([1,2,3,4])
y = x.aggregate(([], 0), seqOp, combOp)
print(y)
AGGREGATE
***
****
**
***
[( ),#]
x:
y:
[1, 2, 3, 4]
([1, 2, 3, 4], 10)
def seqOp = (data:(Array[Int], Int), item:Int) =>
(data._1 :+ item, data._2 + item)
def combOp = (d1:(Array[Int], Int), d2:(Array[Int], Int)) =>
(d1._1.union(d2._1), d1._2 + d2._2)
val x = sc.parallelize(Array(1,2,3,4))
val y = x.aggregate((Array[Int](), 0))(seqOp, combOp)
println(y)
x:
y:
aggregate(identity, seqOp, combOp)
Aggregate all the elements of the RDD by:
- applying a user function to combine elements with user-supplied objects,
- then combining those user-defined results via a second user function,
- and finally returning a result to the driver.
[1, 2, 3, 4]
(Array(3, 1, 2, 4),10)
AGGREGATE
***
****
**
***
[( ),#]
MAX
4
2
1
4
x:
y:
max()
Return the maximum item in the RDD
[2, 4, 1]
4
MAX
4
x = sc.parallelize([2,4,1])
y = x.max()
print(x.collect())
print(y)
val x = sc.parallelize(Array(2,4,1))
val y = x.max
println(x.collect().mkString(", "))
println(y)
2
1
4
max
SUM
7
2
1
4
x:
y:
sum()
Return the sum of the items in the RDD
[2, 4, 1]
7
SUM
7
x = sc.parallelize([2,4,1])
y = x.sum()
print(x.collect())
print(y)
val x = sc.parallelize(Array(2,4,1))
val y = x.sum
println(x.collect().mkString(", "))
println(y)
2
1
4
Σ
MEAN
2.33333333
2
1
4
x:
y:
mean()
Return the mean of the items in the RDD
[2, 4, 1]
2.3333333
MEAN
2.3333333
x = sc.parallelize([2,4,1])
y = x.mean()
print(x.collect())
print(y)
val x = sc.parallelize(Array(2,4,1))
val y = x.mean
println(x.collect().mkString(", "))
println(y)
2
1
4
x
STDEV
1.2472191
2
1
4
x:
y:
stdev()
Return the standard deviation of the items in the RDD
[2, 4, 1]
1.2472191
STDEV
1.2472191
x = sc.parallelize([2,4,1])
y = x.stdev()
print(x.collect())
print(y)
val x = sc.parallelize(Array(2,4,1))
val y = x.stdev
println(x.collect().mkString(", "))
println(y)
2
1
4
σ
COUNTBYKEY
{'A': 1, 'J': 2, 'F': 1}
J “John”
“Anna”A
“Fred”F
J “James”
x:
y:
countByKey()
Return a map of keys and counts of their occurrences in the RDD
[('J', 'James'), ('F','Fred'),
('A','Anna'), ('J','John')]
{'A': 1, 'J': 2, 'F': 1}
COUNTBYKEY
{A: 1, 'J': 2, 'F': 1}
x = sc.parallelize([('J', 'James'), ('F','Fred'),
('A','Anna'), ('J','John')])
y = x.countByKey()
print(y)
val x = sc.parallelize(Array(('J',"James"),('F',"Fred"),
('A',"Anna"),('J',"John")))
val y = x.countByKey()
println(y)
SAVEASTEXTFILE
x:
y:
saveAsTextFile(path, compressionCodecClass=None)
Save the RDD to the filesystem indicated in the path
[2, 4, 1]
[u'2', u'4', u'1']
SAVEASTEXTFILE
dbutils.fs.rm("/temp/demo", True)
x = sc.parallelize([2,4,1])
x.saveAsTextFile("/temp/demo")
y = sc.textFile("/temp/demo")
print(y.collect())
dbutils.fs.rm("/temp/demo", true)
val x = sc.parallelize(Array(2,4,1))
x.saveAsTextFile("/temp/demo")
val y = sc.textFile("/temp/demo")
println(y.collect().mkString(", "))
LAB
Q&A

Visual Api Training

  • 1.
    TRANSFORMATIONS AND ACTIONS AVisual Guide of the APIhttp://training.databricks.com/visualapi.pdf
  • 2.
    Databricks would liketo give a special thanks to Jeff Thomspon for contributing 67 visual diagrams depicting the Spark API under the MIT license to the Spark community. Jeff’s original, creative work can be found here and you can read more about Jeff’s project in his blog post. After talking to Jeff, Databricks commissioned Adam Breindel to further evolve Jeff’s work into the diagrams you see in this deck. LinkedIn Blog: data-frack
  • 3.
    making big datasimple Databricks Cloud: “A unified platform for building Big Data pipelines – from ETL to Exploration and Dashboards, to Advanced Analytics and Data Products.” • Founded in late 2013 • by the creators of Apache Spark • Original team from UC Berkeley AMPLab • Raised $47 Million in 2 rounds • ~55 employees • We’re hiring! • Level 2/3 support partnerships with • Hortonworks • MapR • DataStax (http://databricks.workable.com)
  • 4.
    key RDD Elements original item transformed type objecton driver RDD partition(s) A B user functions user input input emitted value Legend
  • 5.
    Randomized operation Legend Set Theory/ Relational operation Numeric calculation
  • 6.
  • 7.
    • map • filter •flatMap • mapPartitions • mapPartitionsWithIndex • groupBy • sortBy = medium Essential Core & Intermediate Spark OperationsTRANSFORMATIONSACTIONS General • sample • randomSplit Math / Statistical = easy Set Theory / Relational • union • intersection • subtract • distinct • cartesian • zip • takeOrdered Data Structure / I/O • saveAsTextFile • saveAsSequenceFile • saveAsObjectFile • saveAsHadoopDataset • saveAsHadoopFile • saveAsNewAPIHadoopDataset • saveAsNewAPIHadoopFile • keyBy • zipWithIndex • zipWithUniqueID • zipPartitions • coalesce • repartition • repartitionAndSortWithinPartitions • pipe • count • takeSample • max • min • sum • histogram • mean • variance • stdev • sampleVariance • countApprox • countApproxDistinct • reduce • collect • aggregate • fold • first • take • forEach • top • treeAggregate • treeReduce • forEachPartition • collectAsMap
  • 8.
    = medium Essential Core& Intermediate PairRDD OperationsTRANSFORMATIONSACTIONS General • sampleByKey Math / Statistical = easy Set Theory / Relational Data Structure • keys • values • partitionBy • countByKey • countByValue • countByValueApprox • countApproxDistinctByKey • countApproxDistinctByKey • countByKeyApprox • sampleByKeyExact • cogroup (=groupWith) • join • subtractByKey • fullOuterJoin • leftOuterJoin • rightOuterJoin • flatMapValues • groupByKey • reduceByKey • reduceByKeyLocally • foldByKey • aggregateByKey • sortByKey • combineByKey
  • 9.
    vs narrow wide each partitionof the parent RDD is used by at most one partition of the child RDD multiple child RDD partitions may depend on a single parent RDD partition
  • 10.
    “One of thechallenges in providing RDDs as an abstraction is choosing a representation for them that can track lineage across a wide range of transformations.” “The most interesting question in designing this interface is how to represent dependencies between RDDs.” “We found it both sufficient and useful to classify dependencies into two types: • narrow dependencies, where each partition of the parent RDD is used by at most one partition of the child RDD • wide dependencies, where multiple child partitions may depend on it.”
  • 11.
    narrow wide each partitionof the parent RDD is used by at most one partition of the child RDD multiple child RDD partitions may depend on a single parent RDD partition map, filter union join w/ inputs co-partitioned groupByKey join w/ inputs not co-partitioned
  • 12.
  • 13.
    MAP 3 items inRDD RDD: x
  • 14.
    MAP User function applied itemby item RDD: x RDD: y
  • 15.
  • 16.
  • 17.
    MAP RDD: x RDD:y After map() has been applied… before after
  • 18.
    MAP RDD: x RDD:y Return a new RDD by applying a function to each element of this RDD.
  • 19.
    MAP x = sc.parallelize(["b","a", "c"]) y = x.map(lambda z: (z, 1)) print(x.collect()) print(y.collect()) ['b', 'a', 'c'] [('b', 1), ('a', 1), ('c', 1)] RDD: x RDD: y x: y: map(f, preservesPartitioning=False) Return a new RDD by applying a function to each element of this RDD val x = sc.parallelize(Array("b", "a", "c")) val y = x.map(z => (z,1)) println(x.collect().mkString(", ")) println(y.collect().mkString(", "))
  • 20.
  • 21.
    FILTER Apply user function: keepitem if function returns true RDD: x RDD: y emits True
  • 22.
    FILTER RDD: x RDD:y emits False
  • 23.
    FILTER RDD: x RDD:y emits True
  • 24.
    FILTER RDD: x RDD:y After filter() has been applied… before after
  • 25.
    FILTER x = sc.parallelize([1,2,3]) y= x.filter(lambda x: x%2 == 1) #keep odd values print(x.collect()) print(y.collect()) [1, 2, 3] [1, 3] RDD: x RDD: y x: y: filter(f) Return a new RDD containing only the elements that satisfy a predicate val x = sc.parallelize(Array(1,2,3)) val y = x.filter(n => n%2 == 1) println(x.collect().mkString(", ")) println(y.collect().mkString(", "))
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
    FLATMAP RDD: x RDD:y After flatmap() has been applied… before after
  • 31.
    FLATMAP RDD: x RDD:y Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results
  • 32.
    FLATMAP x = sc.parallelize([1,2,3]) y= x.flatMap(lambda x: (x, x*100, 42)) print(x.collect()) print(y.collect()) [1, 2, 3] [1, 100, 42, 2, 200, 42, 3, 300, 42] x: y: RDD: x RDD: y flatMap(f, preservesPartitioning=False) Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results val x = sc.parallelize(Array(1,2,3)) val y = x.flatMap(n => Array(n, n*100, 42)) println(x.collect().mkString(", ")) println(y.collect().mkString(", "))
  • 33.
    GROUPBY 4 items inRDD RDD: x James Anna Fred John
  • 34.
  • 35.
    F [ “Fred”] GROUPBY RDD: x James Anna Fred emits‘F’ J [ “John” ]John RDD: y
  • 36.
    [ “Fred” ] GROUPBY RDD:x James Anna emits‘A’ J [ “John” ] A [ “Anna” ] Fred John F RDD: y
  • 37.
    [ “Fred” ] GROUPBY RDD:x James Anna emits‘J’ J [ “John”, “James” ] [ “Anna” ] Fred John F A RDD: y
  • 38.
    GROUPBY x = sc.parallelize(['John','Fred', 'Anna', 'James']) y = x.groupBy(lambda w: w[0]) print [(k, list(v)) for (k, v) in y.collect()] ['John', 'Fred', 'Anna', 'James'] [('A',['Anna']),('J',['John','James']),('F',['Fred'])] RDD: x RDD: y x: y: groupBy(f, numPartitions=None) Group the data in the original RDD. Create pairs where the key is the output of a user function, and the value is all items for which the function yields this key. val x = sc.parallelize( Array("John", "Fred", "Anna", "James")) val y = x.groupBy(w => w.charAt(0)) println(y.collect().mkString(", "))
  • 39.
    GROUPBYKEY 5 items inRDD Pair RDD: x B B A A A 5 4 3 2 1
  • 40.
    GROUPBYKEY Pair RDD: x 5 4 3 2 1 RDD:y A [ 2 , 3 , 1 ] B B A A A
  • 41.
    GROUPBYKEY Pair RDD: xRDD: y B [ 5 , 4 ] A [ 2 , 3 , 1 ] 5 4 3 2 1 B B A A A
  • 42.
    GROUPBYKEY x = sc.parallelize([('B',5),('B',4),('A',3),('A',2),('A',1)]) y= x.groupByKey() print(x.collect()) print(list((j[0], list(j[1])) for j in y.collect())) [('B', 5),('B', 4),('A', 3),('A', 2),('A', 1)] [('A', [2, 3, 1]),('B',[5, 4])] RDD: x RDD: y x: y: groupByKey(numPartitions=None) Group the values for each key in the original RDD. Create a new pair where the original key corresponds to this collected group of values. val x = sc.parallelize( Array(('B',5),('B',4),('A',3),('A',2),('A',1))) val y = x.groupByKey() println(x.collect().mkString(", ")) println(y.collect().mkString(", "))
  • 43.
    MAPPARTITIONS RDD: x RDD:y partitions A B A B
  • 44.
    REDUCEBYKEY VS GROUPBYKEY valwords = Array("one", "two", "two", "three", "three", "three") val wordPairsRDD = sc.parallelize(words).map(word => (word, 1)) val wordCountsWithReduce = wordPairsRDD .reduceByKey(_ + _) .collect() val wordCountsWithGroup = wordPairsRDD .groupByKey() .map(t => (t._1, t._2.sum)) .collect()
  • 45.
    REDUCEBYKEY (a, 1) (b, 1) (a,1) (b, 1) (a, 1) (a, 1) (a, 2) (b, 2)(b, 1) (b, 1) (a, 1) (a, 1) (a, 3) (b, 2) (a, 1) (b, 1) (b, 1) (a, 1) (a, 2) (a, 6) (a, 3) (b, 1) (b, 2) (b, 5) (b, 2) a b
  • 46.
    GROUPBYKEY (a, 1) (b, 1) (a,1) (a, 1) (b, 1) (b, 1) (a, 1) (a, 1) (a, 1) (b, 1) (b, 1) (a, 1) (a, 1) (a, 6) (a, 1) (b, 5) a b (a, 1) (a, 1) (a, 1) (b, 1) (b, 1) (b, 1) (b, 1) (b, 1)
  • 47.
    MAPPARTITIONS x: y: mapPartitions(f, preservesPartitioning=False) Return anew RDD by applying a function to each partition of this RDD A B A B x = sc.parallelize([1,2,3], 2) def f(iterator): yield sum(iterator); yield 42 y = x.mapPartitions(f) # glom() flattens elements on the same partition print(x.glom().collect()) print(y.glom().collect()) [[1], [2, 3]] [[1, 42], [5, 42]]
  • 48.
    MAPPARTITIONS x: y: mapPartitions(f, preservesPartitioning=False) Return anew RDD by applying a function to each partition of this RDD A B A B Array(Array(1), Array(2, 3)) Array(Array(1, 42), Array(5, 42)) val x = sc.parallelize(Array(1,2,3), 2) def f(i:Iterator[Int])={ (i.sum,42).productIterator } val y = x.mapPartitions(f) // glom() flattens elements on the same partition val xOut = x.glom().collect() val yOut = y.glom().collect()
  • 49.
    MAPPARTITIONSWITHINDEX RDD: x RDD:y partitions A B A B input partition index
  • 50.
    x: y: mapPartitionsWithIndex(f, preservesPartitioning=False) Return anew RDD by applying a function to each partition of this RDD, while tracking the index of the original partition A B A B x = sc.parallelize([1,2,3], 2) def f(partitionIndex, iterator): yield (partitionIndex, sum(iterator)) y = x.mapPartitionsWithIndex(f) # glom() flattens elements on the same partition print(x.glom().collect()) print(y.glom().collect()) [[1], [2, 3]] [[0, 1], [1, 5]] MAPPARTITIONSWITHINDEX partition index B A
  • 51.
    x: y: mapPartitionsWithIndex(f, preservesPartitioning=False) Return anew RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. A B A B Array(Array(1), Array(2, 3)) Array(Array(0, 1), Array(1, 5)) MAPPARTITIONSWITHINDEX partition index B A val x = sc.parallelize(Array(1,2,3), 2) def f(partitionIndex:Int, i:Iterator[Int]) = { (partitionIndex, i.sum).productIterator } val y = x.mapPartitionsWithIndex(f) // glom() flattens elements on the same partition val xOut = x.glom().collect() val yOut = y.glom().collect()
  • 52.
    SAMPLE RDD: x RDD:y 1 3 5 4 3 2 1
  • 53.
    SAMPLE x = sc.parallelize([1,2, 3, 4, 5]) y = x.sample(False, 0.4, 42) print(x.collect()) print(y.collect()) [1, 2, 3, 4, 5] [1, 3] RDD: x RDD: y x: y: sample(withReplacement, fraction, seed=None) Return a new RDD containing a statistical sample of the original RDD val x = sc.parallelize(Array(1, 2, 3, 4, 5)) val y = x.sample(false, 0.4) // omitting seed will yield different output println(y.collect().mkString(", "))
  • 54.
    UNION RDD: xRDD: y 4 3 3 2 1 A B C 4 3 3 2 1 A B C RDD: z
  • 55.
    UNION x = sc.parallelize([1,2,3],2) y = sc.parallelize([3,4], 1) z = x.union(y) print(z.glom().collect()) [1, 2, 3] [3, 4] [[1], [2, 3], [3, 4]] x: y: union(otherRDD) Return a new RDD containing all items from two original RDDs. Duplicates are not culled. val x = sc.parallelize(Array(1,2,3), 2) val y = sc.parallelize(Array(3,4), 1) val z = x.union(y) val zOut = z.glom().collect() z:
  • 56.
    5B JOIN RDD: xRDD: y 4 2B A 1A 3A
  • 57.
    JOIN RDD: xRDD: y RDD: z (1, 3)A 5B 4 2B A 1A 3A
  • 58.
    JOIN RDD: xRDD: y RDD: z (1, 4)A (1, 3)A 5B 4 2B A 1A 3A
  • 59.
    JOIN RDD: xRDD: y (2, 5) RDD: zB (1, 4)A (1, 3)A 5B 4 2B A 1A 3A
  • 60.
    JOIN x = sc.parallelize([("a",1), ("b", 2)]) y = sc.parallelize([("a", 3), ("a", 4), ("b", 5)]) z = x.join(y) print(z.collect()) [("a", 1), ("b", 2)] [("a", 3), ("a", 4), ("b", 5)] [('a', (1, 3)), ('a', (1, 4)), ('b', (2, 5))] x: y: union(otherRDD, numPartitions=None) Return a new RDD containing all pairs of elements having the same key in the original RDDs val x = sc.parallelize(Array(("a", 1), ("b", 2))) val y = sc.parallelize(Array(("a", 3), ("a", 4), ("b", 5))) val z = x.join(y) println(z.collect().mkString(", ")) z:
  • 61.
  • 62.
  • 63.
  • 64.
    DISTINCT x = sc.parallelize([1,2,3,3,4]) y= x.distinct() print(y.collect()) [1, 2, 3, 3, 4] [1, 2, 3, 4] x: y: distinct(numPartitions=None) Return a new RDD containing distinct items from the original RDD (omitting all duplicates) val x = sc.parallelize(Array(1,2,3,3,4)) val y = x.distinct() println(y.collect().mkString(", ")) * * *¤ ¤
  • 65.
  • 66.
  • 67.
  • 68.
    COALESCE x = sc.parallelize([1,2, 3, 4, 5], 3) y = x.coalesce(2) print(x.glom().collect()) print(y.glom().collect()) [[1], [2, 3], [4, 5]] [[1], [2, 3, 4, 5]] x: y: coalesce(numPartitions, shuffle=False) Return a new RDD which is reduced to a smaller number of partitions val x = sc.parallelize(Array(1, 2, 3, 4, 5), 3) val y = x.coalesce(2) val xOut = x.glom().collect() val yOut = y.glom().collect() C B C A AB
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
    KEYBY x = sc.parallelize(['John','Fred', 'Anna', 'James']) y = x.keyBy(lambda w: w[0]) print y.collect() ['John', 'Fred', 'Anna', 'James'] [('J','John'),('F','Fred'),('A','Anna'),('J','James')] RDD: x RDD: y x: y: keyBy(f) Create a Pair RDD, forming one pair for each item in the original RDD. The pair’s key is calculated from the value via a user-supplied function. val x = sc.parallelize( Array("John", "Fred", "Anna", "James")) val y = x.keyBy(w => w.charAt(0)) println(y.collect().mkString(", "))
  • 74.
  • 75.
    PARTITIONBY RDD: x J “John” “Anna”A “Fred”F J“James” RDD: yRDD: y J “James” 1
  • 76.
    PARTITIONBY RDD: x J “John” “Anna”A “Fred”F RDD:yRDD: y J “James” “Fred”F 0 J “James”
  • 77.
    PARTITIONBY RDD: x J “John” “Anna”A RDD:yRDD: y J “James” “Anna”A “Fred”F 0 “Fred”F J “James”
  • 78.
    PARTITIONBY RDD: x J “John” RDD:yRDD: y J “John” J “James” “Anna”A “Fred”F1 “Anna”A “Fred”F J “James”
  • 79.
    PARTITIONBY x = sc.parallelize([('J','James'),('F','Fred'), ('A','Anna'),('J','John')],3) y = x.partitionBy(2, lambda w: 0 if w[0] < 'H' else 1) print x.glom().collect() print y.glom().collect() [[('J', 'James')], [('F', 'Fred')], [('A', 'Anna'), ('J', 'John')]] [[('A', 'Anna'), ('F', 'Fred')], [('J', 'James'), ('J', 'John')]] x: y: partitionBy(numPartitions, partitioner=portable_hash) Return a new RDD with the specified number of partitions, placing original items into the partition returned by a user supplied function
  • 80.
    PARTITIONBY Array(Array((A,Anna), (F,Fred)), Array((J,John), (J,James))) Array(Array((F,Fred),(A,Anna)), Array((J,John), (J,James))) x: y: partitionBy(numPartitions, partitioner=portable_hash) Return a new RDD with the specified number of partitions, placing original items into the partition returned by a user supplied function. import org.apache.spark.Partitioner val x = sc.parallelize(Array(('J',"James"),('F',"Fred"), ('A',"Anna"),('J',"John")), 3) val y = x.partitionBy(new Partitioner() { val numPartitions = 2 def getPartition(k:Any) = { if (k.asInstanceOf[Char] < 'H') 0 else 1 } }) val yOut = y.glom().collect()
  • 81.
    ZIP RDD: xRDD: y 3 2 1 A B 9 4 1 A B
  • 82.
    ZIP RDD: xRDD: y 3 2 1 A B 4 A RDD: z 9 4 1 A B 1 1
  • 83.
    ZIP RDD: xRDD: y 3 2 1 A B 4 A RDD: z 9 4 1 A B 2 1 4 1
  • 84.
    ZIP RDD: xRDD: y 3 2 1 A B 4 3 A B RDD: z 9 4 1 A B 2 1 9 4 1
  • 85.
    ZIP x = sc.parallelize([1,2, 3]) y = x.map(lambda n:n*n) z = x.zip(y) print(z.collect()) [1, 2, 3] [1, 4, 9] [(1, 1), (2, 4), (3, 9)] x: y: zip(otherRDD) Return a new RDD containing pairs whose key is the item in the original RDD, and whose value is that item’s corresponding element (same partition, same index) in a second RDD val x = sc.parallelize(Array(1,2,3)) val y = x.map(n=>n*n) val z = x.zip(y) println(z.collect().mkString(", ")) z:
  • 86.
  • 87.
    vs distributed driver occurs acrossthe cluster result must fit in driver JVM
  • 88.
  • 89.
    x: y: getNumPartitions() Return the numberof partitions in RDD [[1], [2, 3]] 2 GETNUMPARTITIONS A B 2 x = sc.parallelize([1,2,3], 2) y = x.getNumPartitions() print(x.glom().collect()) print(y) val x = sc.parallelize(Array(1,2,3), 2) val y = x.partitions.size val xOut = x.glom().collect() println(y)
  • 90.
  • 91.
    x: y: collect() Return all itemsin the RDD to the driver in a single list [[1], [2, 3]] [1, 2, 3] A B x = sc.parallelize([1,2,3], 2) y = x.collect() print(x.glom().collect()) print(y) val x = sc.parallelize(Array(1,2,3), 2) val y = x.collect() val xOut = x.glom().collect() println(y) COLLECT [ ]
  • 92.
  • 93.
  • 94.
  • 95.
    x: y: reduce(f) Aggregate all theelements of the RDD by applying a user function pairwise to elements and partial results, and returns a result to the driver [1, 2, 3, 4] 10 x = sc.parallelize([1,2,3,4]) y = x.reduce(lambda a,b: a+b) print(x.collect()) print(y) val x = sc.parallelize(Array(1,2,3,4)) val y = x.reduce((a,b) => a+b) println(x.collect.mkString(", ")) println(y) REDUCE ****** * ** ***
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
    AGGREGATE 3 2 1 4 ([2], 2) ([1], 1)([1,2],3) ([3], 3) ([], 0) ([4], 4)
  • 103.
    AGGREGATE 3 2 1 4 ([2], 2) ([1], 1)([1,2],3) ([4], 4) ([3], 3)([3,4], 7)
  • 104.
    AGGREGATE 3 2 1 4 ([2], 2) ([1], 1)([1,2],3) ([4], 4) ([3], 3)([3,4], 7)
  • 105.
  • 106.
  • 107.
    aggregate(identity, seqOp, combOp) Aggregateall the elements of the RDD by: - applying a user function to combine elements with user-supplied objects, - then combining those user-defined results via a second user function, - and finally returning a result to the driver. seqOp = lambda data, item: (data[0] + [item], data[1] + item) combOp = lambda d1, d2: (d1[0] + d2[0], d1[1] + d2[1]) x = sc.parallelize([1,2,3,4]) y = x.aggregate(([], 0), seqOp, combOp) print(y) AGGREGATE *** **** ** *** [( ),#] x: y: [1, 2, 3, 4] ([1, 2, 3, 4], 10)
  • 108.
    def seqOp =(data:(Array[Int], Int), item:Int) => (data._1 :+ item, data._2 + item) def combOp = (d1:(Array[Int], Int), d2:(Array[Int], Int)) => (d1._1.union(d2._1), d1._2 + d2._2) val x = sc.parallelize(Array(1,2,3,4)) val y = x.aggregate((Array[Int](), 0))(seqOp, combOp) println(y) x: y: aggregate(identity, seqOp, combOp) Aggregate all the elements of the RDD by: - applying a user function to combine elements with user-supplied objects, - then combining those user-defined results via a second user function, - and finally returning a result to the driver. [1, 2, 3, 4] (Array(3, 1, 2, 4),10) AGGREGATE *** **** ** *** [( ),#]
  • 109.
  • 110.
    x: y: max() Return the maximumitem in the RDD [2, 4, 1] 4 MAX 4 x = sc.parallelize([2,4,1]) y = x.max() print(x.collect()) print(y) val x = sc.parallelize(Array(2,4,1)) val y = x.max println(x.collect().mkString(", ")) println(y) 2 1 4 max
  • 111.
  • 112.
    x: y: sum() Return the sumof the items in the RDD [2, 4, 1] 7 SUM 7 x = sc.parallelize([2,4,1]) y = x.sum() print(x.collect()) print(y) val x = sc.parallelize(Array(2,4,1)) val y = x.sum println(x.collect().mkString(", ")) println(y) 2 1 4 Σ
  • 113.
  • 114.
    x: y: mean() Return the meanof the items in the RDD [2, 4, 1] 2.3333333 MEAN 2.3333333 x = sc.parallelize([2,4,1]) y = x.mean() print(x.collect()) print(y) val x = sc.parallelize(Array(2,4,1)) val y = x.mean println(x.collect().mkString(", ")) println(y) 2 1 4 x
  • 115.
  • 116.
    x: y: stdev() Return the standarddeviation of the items in the RDD [2, 4, 1] 1.2472191 STDEV 1.2472191 x = sc.parallelize([2,4,1]) y = x.stdev() print(x.collect()) print(y) val x = sc.parallelize(Array(2,4,1)) val y = x.stdev println(x.collect().mkString(", ")) println(y) 2 1 4 σ
  • 117.
    COUNTBYKEY {'A': 1, 'J':2, 'F': 1} J “John” “Anna”A “Fred”F J “James”
  • 118.
    x: y: countByKey() Return a mapof keys and counts of their occurrences in the RDD [('J', 'James'), ('F','Fred'), ('A','Anna'), ('J','John')] {'A': 1, 'J': 2, 'F': 1} COUNTBYKEY {A: 1, 'J': 2, 'F': 1} x = sc.parallelize([('J', 'James'), ('F','Fred'), ('A','Anna'), ('J','John')]) y = x.countByKey() print(y) val x = sc.parallelize(Array(('J',"James"),('F',"Fred"), ('A',"Anna"),('J',"John"))) val y = x.countByKey() println(y)
  • 119.
  • 120.
    x: y: saveAsTextFile(path, compressionCodecClass=None) Save theRDD to the filesystem indicated in the path [2, 4, 1] [u'2', u'4', u'1'] SAVEASTEXTFILE dbutils.fs.rm("/temp/demo", True) x = sc.parallelize([2,4,1]) x.saveAsTextFile("/temp/demo") y = sc.textFile("/temp/demo") print(y.collect()) dbutils.fs.rm("/temp/demo", true) val x = sc.parallelize(Array(2,4,1)) x.saveAsTextFile("/temp/demo") val y = sc.textFile("/temp/demo") println(y.collect().mkString(", "))
  • 121.
  • 122.