Trigonometry
Lesson Objectives Calculate the value of angles in a right angled triangle using trigonometric ratios. Apply trigonometry to perform calculation checks. Calculate the length of a side in a right angled triangle using trigonometric ratios.
Trigonometric Ratios SOHCAHTOA Sine Ɵ =  opposite__     hypotenuse Cosine Ɵ =  adjacent__   hypotenuse Tangent Ɵ =  opposite   adjacent
Example 2 Find the value of angles Ɵ and  λ  in triangle LMN.   13m 12m 5m θ λ
Example 2 Sin Ɵ =  Opp  =  12  = 0.923    Hyp  13 Ɵ = Sinˉ¹0.923 Ɵ = 67.38º  Sin  λ  =  Opp  =  5  = 0.385   Hyp  13   λ  = 22.62º
Trigonometry Check Check:180º - 90° - 67.38° = 22.62° Sin  λ  =  22.62° Cos  λ  =  12  = 0.923   Cos  λ  =  22.62°   13 Tan  λ  =  5  = 0.416   Tan  λ  =  22.62°   12
Example 3 Find the value of angles QPR and RQP and the length of the side PR. 7m 6m Q P R
Example 3 Find angle QPR Sin QPR =  Opp  =  6     Hyp  7   Sin QPR = 0.857 QPR = Sinˉ¹0.857  QPR = 59º 7m 6m Q R P
Example 3 Find angle RQP Cos RQP =  Adj  =  6     Hyp  7 Cos RQP = 0.857 RQP = Cosˉ¹0.857 RQP = 31º 7m 6m Q P R
Example 3 RQP = 31° PQ = 7m Sin RQP  =  Opp    =  PR       Hyp  PQ  Sin 31° =  PR    7  PR = 7 x Sin 31°   7 x 0.515 PR = 3.6m
Lesson Objectives Calculate the value of angles in a right angled triangle using trigonometric ratios. Apply trigonometry to perform calculation checks. Calculate the length of a side in a right angled triangle using trigonometric ratios.

Trigonometry 2

  • 1.
  • 2.
    Lesson Objectives Calculatethe value of angles in a right angled triangle using trigonometric ratios. Apply trigonometry to perform calculation checks. Calculate the length of a side in a right angled triangle using trigonometric ratios.
  • 3.
    Trigonometric Ratios SOHCAHTOASine Ɵ = opposite__ hypotenuse Cosine Ɵ = adjacent__ hypotenuse Tangent Ɵ = opposite adjacent
  • 4.
    Example 2 Findthe value of angles Ɵ and λ in triangle LMN. 13m 12m 5m θ λ
  • 5.
    Example 2 SinƟ = Opp = 12 = 0.923 Hyp 13 Ɵ = Sinˉ¹0.923 Ɵ = 67.38º Sin λ = Opp = 5 = 0.385 Hyp 13 λ = 22.62º
  • 6.
    Trigonometry Check Check:180º- 90° - 67.38° = 22.62° Sin λ = 22.62° Cos λ = 12 = 0.923 Cos λ = 22.62° 13 Tan λ = 5 = 0.416 Tan λ = 22.62° 12
  • 7.
    Example 3 Findthe value of angles QPR and RQP and the length of the side PR. 7m 6m Q P R
  • 8.
    Example 3 Findangle QPR Sin QPR = Opp = 6 Hyp 7 Sin QPR = 0.857 QPR = Sinˉ¹0.857 QPR = 59º 7m 6m Q R P
  • 9.
    Example 3 Findangle RQP Cos RQP = Adj = 6 Hyp 7 Cos RQP = 0.857 RQP = Cosˉ¹0.857 RQP = 31º 7m 6m Q P R
  • 10.
    Example 3 RQP= 31° PQ = 7m Sin RQP = Opp = PR Hyp PQ Sin 31° = PR 7 PR = 7 x Sin 31° 7 x 0.515 PR = 3.6m
  • 11.
    Lesson Objectives Calculatethe value of angles in a right angled triangle using trigonometric ratios. Apply trigonometry to perform calculation checks. Calculate the length of a side in a right angled triangle using trigonometric ratios.