Block 3
Trigonometric Graphs
What is to be learned?
• A reminder of how to draw and identify trig
graphs.
• Take it a bit further.
90 180 270 360
1
0
-1
Y = sinx
Maximum Value = 1
Minimum Value = -1
90 180 270 360
1
0
-1
Y = cosx
Maximum Value = 1
Minimum Value = -1
90 180 270 360
7
0
-7
Y = 7sinx
Maximum Value = 7
Minimum Value = -7
Range = Max - Min
Range = 7 – (-7)
= 14
→range = 14
Range
90 180 270 360
4
0
-4
Y = 4cosx
Maximum Value = 4
Minimum Value = -4
→range = 8
90 180 270 360
8
0
-8
Y = - 8sinx
Maximum Value = 8
Minimum Value = -8
“Opposite” to Sin x
90 180 270 360
6
0
-6
Y = - 6cosx
Maximum Value = 6
Minimum Value = -6
“Opposite” to Cos x
900
1800
2700
3600
900
1800
2700
3600
3
-3
6
-6
Write the Equations
1. 2.
y = -3sinx y = -6cosx
y = 9sinx y = cosx
3. 4.
9
-9
1
-1
900
1800
2700
3600
900
1800
2700
3600
90 180 270 360
1
0
-1
Y = sin x
540450
Period of graph is 3600
Cycle starts again
Also applies to Y = cos x
Between 00
and 3600
there is 1 cycle
Taking it Further
90 180 270 360
1
0
-1
Y = sin 2x
Period of graph is 1800
There are 2 cycles between 00
and 3600
Combining these rules
Draw y = 6sin2x
Max 6
Min -6
2 cycles
Period = 360 ÷ 2 = 1800
90 180 270 360
6
0
-6
Y = 6sin 2x
Recognising Graph
Max 8
Min -8
4 cycles
90 180 270 360
8
0
-8
Y = 8cos4x
Cosine
900
1800
2700
3600 900
1800
2700
3600
900
1800
2700
3600 900
1800
2700
3600
7
-7
5
-5
3
- 3
2
-2
Write the Equations
1. 2.
3. 4.
y = 7sin2x y = 5cos2x
y = 3cos4x y = 2sin3x
Changing the Scale
Nice for Drawing Graphs 
y = 4 Sin 6x
Cycles?
Period
6
360 ÷ 6 = 600
15 30 45 60
4
0
-4
300 600
900
1200
7
Not so nice for recognising graphs 
Period = 1200
No of Cycles in 360? 360 ÷ 120 = 3
y = 7 cos 3x
2400 3600
Find equation of graph below.
Cycles
Max 7
Negative sin
360 ÷ 60 = 6
15 30 45 60
7
0
-7
y = -7sin6x
Remember rules for y = (x – 3 )2
+ 5
Same rules for trig graphs!
3 units to right Up 5
Extra Trig Graph Rules
90 180 270 360
4
0
-4
Y = 4cos (x – 450
)
450
Y = 4cosx 450
to right
Sketch Normal Graph
Move each point
right/left
y =4cos(x – 450
)
90 180 270 360
11
0
-11
Recognising
Sin Graph
300
to right
y = 11 sin(x – 300
)
300
90 180 270 360
13
0
-13
Recognising
Cos Graph
200
to left
y = 13 cos(x + 200
)
-200
90 180 270 360
11
0
-11
A Bit of Confusion
Sin Graph
300
to left
y = 11 sin(x + 300
)
-300
600
Cos Graph
600
to right
y = 11 cos(x – 600
)
Both correct
6
-6
y = 6cos(x + 300
)
-300
Identify this graph
900
1800
2700
3600
90 180 270 360
1
0
-1
Y = sinx + 2
Y = sinx
2
3
90 180 270 360
4
0
-4
Y = 4cosx + 6
8
12
range = 8
Graph Type
y = 4cosx
2
6
10
-2
Equation?
90 180 270 360
0
No Maximum (or minimum)
What about y = Tanx ???
Goes to infinity
Cycle complete
Period is 1800
90 180 270 360
0
Changing the period
Cycle complete
Normal Period is 1800
2 cycles
y = tan2x
90 180 270 360
0
y = -Tanx
Also
Can now use radians!
90 180 270 360
1
0
-1
Y = sinx
π
/2 π 3π
/2 2π
Trigonometric Graphs
Follow all the same rules as other function
graphs.
Range is handy for identifying (max – min)
e.g. for y = 7sinx →range = 14
π
/2
π 2π
2
0
-2
y = 2cos(x – π
/4)
4
6
y = 2cosx
Sketch y = 2cos(x – π
/4) + 1
y = 2cos(x – π
/4) + 1
3π
/2
0
-2
-4
Sketch y = 3sin(x + π
/4) – 1
Y = 3sinx
2
4
Y = 3sin(x + π
/4)
Y = 3sin(x + π
/4) – 1
Key Question
2π
3π
/2ππ
/2

Trigonometric graphs

  • 1.
  • 2.
    What is tobe learned? • A reminder of how to draw and identify trig graphs. • Take it a bit further.
  • 3.
    90 180 270360 1 0 -1 Y = sinx Maximum Value = 1 Minimum Value = -1
  • 4.
    90 180 270360 1 0 -1 Y = cosx Maximum Value = 1 Minimum Value = -1
  • 5.
    90 180 270360 7 0 -7 Y = 7sinx Maximum Value = 7 Minimum Value = -7 Range = Max - Min Range = 7 – (-7) = 14 →range = 14 Range
  • 6.
    90 180 270360 4 0 -4 Y = 4cosx Maximum Value = 4 Minimum Value = -4 →range = 8
  • 7.
    90 180 270360 8 0 -8 Y = - 8sinx Maximum Value = 8 Minimum Value = -8 “Opposite” to Sin x
  • 8.
    90 180 270360 6 0 -6 Y = - 6cosx Maximum Value = 6 Minimum Value = -6 “Opposite” to Cos x
  • 9.
    900 1800 2700 3600 900 1800 2700 3600 3 -3 6 -6 Write the Equations 1.2. y = -3sinx y = -6cosx y = 9sinx y = cosx 3. 4. 9 -9 1 -1 900 1800 2700 3600 900 1800 2700 3600
  • 10.
    90 180 270360 1 0 -1 Y = sin x 540450 Period of graph is 3600 Cycle starts again Also applies to Y = cos x Between 00 and 3600 there is 1 cycle Taking it Further
  • 11.
    90 180 270360 1 0 -1 Y = sin 2x Period of graph is 1800 There are 2 cycles between 00 and 3600
  • 12.
    Combining these rules Drawy = 6sin2x Max 6 Min -6 2 cycles Period = 360 ÷ 2 = 1800 90 180 270 360 6 0 -6 Y = 6sin 2x
  • 13.
    Recognising Graph Max 8 Min-8 4 cycles 90 180 270 360 8 0 -8 Y = 8cos4x Cosine
  • 14.
    900 1800 2700 3600 900 1800 2700 3600 900 1800 2700 3600 900 1800 2700 3600 7 -7 5 -5 3 -3 2 -2 Write the Equations 1. 2. 3. 4. y = 7sin2x y = 5cos2x y = 3cos4x y = 2sin3x
  • 15.
    Changing the Scale Nicefor Drawing Graphs  y = 4 Sin 6x Cycles? Period 6 360 ÷ 6 = 600 15 30 45 60 4 0 -4
  • 16.
    300 600 900 1200 7 Not sonice for recognising graphs  Period = 1200 No of Cycles in 360? 360 ÷ 120 = 3 y = 7 cos 3x 2400 3600
  • 17.
    Find equation ofgraph below. Cycles Max 7 Negative sin 360 ÷ 60 = 6 15 30 45 60 7 0 -7 y = -7sin6x
  • 18.
    Remember rules fory = (x – 3 )2 + 5 Same rules for trig graphs! 3 units to right Up 5 Extra Trig Graph Rules
  • 19.
    90 180 270360 4 0 -4 Y = 4cos (x – 450 ) 450 Y = 4cosx 450 to right Sketch Normal Graph Move each point right/left y =4cos(x – 450 )
  • 20.
    90 180 270360 11 0 -11 Recognising Sin Graph 300 to right y = 11 sin(x – 300 ) 300
  • 21.
    90 180 270360 13 0 -13 Recognising Cos Graph 200 to left y = 13 cos(x + 200 ) -200
  • 22.
    90 180 270360 11 0 -11 A Bit of Confusion Sin Graph 300 to left y = 11 sin(x + 300 ) -300 600 Cos Graph 600 to right y = 11 cos(x – 600 ) Both correct
  • 23.
    6 -6 y = 6cos(x+ 300 ) -300 Identify this graph 900 1800 2700 3600
  • 24.
    90 180 270360 1 0 -1 Y = sinx + 2 Y = sinx 2 3
  • 25.
    90 180 270360 4 0 -4 Y = 4cosx + 6 8 12 range = 8 Graph Type y = 4cosx 2 6 10 -2 Equation?
  • 26.
    90 180 270360 0 No Maximum (or minimum) What about y = Tanx ??? Goes to infinity Cycle complete Period is 1800
  • 27.
    90 180 270360 0 Changing the period Cycle complete Normal Period is 1800 2 cycles y = tan2x
  • 28.
    90 180 270360 0 y = -Tanx
  • 29.
  • 30.
    90 180 270360 1 0 -1 Y = sinx π /2 π 3π /2 2π
  • 31.
    Trigonometric Graphs Follow allthe same rules as other function graphs. Range is handy for identifying (max – min) e.g. for y = 7sinx →range = 14
  • 32.
    π /2 π 2π 2 0 -2 y =2cos(x – π /4) 4 6 y = 2cosx Sketch y = 2cos(x – π /4) + 1 y = 2cos(x – π /4) + 1 3π /2
  • 33.
    0 -2 -4 Sketch y =3sin(x + π /4) – 1 Y = 3sinx 2 4 Y = 3sin(x + π /4) Y = 3sin(x + π /4) – 1 Key Question 2π 3π /2ππ /2