6.1 Using
Properties of
Exponents
p. 323
Properties of Exponents
a&b are real numbers, m&n are integers
• Product Property: am
* an
=am+n
• Power of a Power Property: (am
)n
=amn
• Power of a Product Property: (ab)m
=am
bm
• Negative Exponent Property: a-m
= ; a≠0
• Zero Exponent Property: a0
=1; a≠0
• Quotient of Powers: am
= am-n
; a≠0
an
• Power of Quotient: b≠0
m
mm
b
a
b
a
=





m
a
1
Example 1 – Product Property
• (-5)4
* (-5)5
=
• (-5)4+5
=
• (-5)9
=
• -1953125
Example 2
• x5
* x2
=
• x5+2
=
• x7
Example 3 – Power of a Power
• (23
)4
=
• 23*4
=
• 212
=
• 4096
Example 4
• (34
)2
=
• 34*2
=
• 38
=
• 6561
Example 5 – Neg. Exponent
• (-5)-6
(-5)4
=
• (-5)-6+4
=
• (-5)-2
=
( )
=
−
2
5
1
25
1
Example 6 – Quotient of
Powers
=3
5
x
x
=−35
x 2
x
Example 7 – Power of
Quotient
=





−
2
5
s
r
( )
=
− 25
2
s
r
=−10
2
s
r 102
sr
Example 8 – Zero Exponent
• (7b-3
)2
b5
b =
• 72
b-3*2
b5
b =
• 49 b-6+5+1
=
• 49b0
=
• 49
Example 9 – Quotient of
Powers
=10
5
x
x
=−105
x =−5
x 5
1
x
Scientific Notation
• 131,400,000,000=
1.314 x 1011
Move the decimal
behind the 1st
number
How many
places did you
have to move
the decimal?
Put that number here!
Example – Scientific Notation
• 131,400,000,000 =
• 5,284,000
1.314 x 1011
=
5.284 x 106
611
10*
284.5
314.1 −
900,2410*249. 5
≈≈
AssignmentAssignment

properties of exponents

  • 1.
  • 2.
    Properties of Exponents a&bare real numbers, m&n are integers • Product Property: am * an =am+n • Power of a Power Property: (am )n =amn • Power of a Product Property: (ab)m =am bm • Negative Exponent Property: a-m = ; a≠0 • Zero Exponent Property: a0 =1; a≠0 • Quotient of Powers: am = am-n ; a≠0 an • Power of Quotient: b≠0 m mm b a b a =      m a 1
  • 3.
    Example 1 –Product Property • (-5)4 * (-5)5 = • (-5)4+5 = • (-5)9 = • -1953125
  • 4.
    Example 2 • x5 *x2 = • x5+2 = • x7
  • 5.
    Example 3 –Power of a Power • (23 )4 = • 23*4 = • 212 = • 4096
  • 6.
    Example 4 • (34 )2 = •34*2 = • 38 = • 6561
  • 7.
    Example 5 –Neg. Exponent • (-5)-6 (-5)4 = • (-5)-6+4 = • (-5)-2 = ( ) = − 2 5 1 25 1
  • 8.
    Example 6 –Quotient of Powers =3 5 x x =−35 x 2 x
  • 9.
    Example 7 –Power of Quotient =      − 2 5 s r ( ) = − 25 2 s r =−10 2 s r 102 sr
  • 10.
    Example 8 –Zero Exponent • (7b-3 )2 b5 b = • 72 b-3*2 b5 b = • 49 b-6+5+1 = • 49b0 = • 49
  • 11.
    Example 9 –Quotient of Powers =10 5 x x =−105 x =−5 x 5 1 x
  • 12.
    Scientific Notation • 131,400,000,000= 1.314x 1011 Move the decimal behind the 1st number How many places did you have to move the decimal? Put that number here!
  • 13.
    Example – ScientificNotation • 131,400,000,000 = • 5,284,000 1.314 x 1011 = 5.284 x 106 611 10* 284.5 314.1 − 900,2410*249. 5 ≈≈
  • 14.