Multiplication of
Polynomials
1. -t4 + 5t3 + 3t2 - 16
Answer to the assignment:
2. 5x + 2y - 6
Review:
Multiply the following monomials:
(3)(4x) = 12x
(5x3 y2)(2x3y) =
(y3)(-y3) =
(3x2)(4xy3) =
(6xy4)(2x3y3) =
(-x4y3)(-x3y3) =
(2xy5)(-8x3y) =
(7xy4)(2x3y3) =
10x6y3
-y6
12x3y3
12x4y7
x7y6
-16x4y6
14x4y7
Combine like terms (if you can).
Distribute each term of the first
polynomial to every term of the second
polynomial.
Remember that when you multiply two
terms together you must multiply the
coefficient (numbers) and add the
exponents.
Multiply:
1. 3x2(4x2 – 5x + 7)
12x4 – 15x3 + 21x2
2. 6v(2v + 3)
12v2 + 18v
3. –6xy(4x2 – 5xy – 2y2)
-24x2y + 30x2y2 + 12xy3
4. (3x – 4y)(5x – 2y)
15x2 – 6xy
- 20xy + 8y2
15x2 – 26xy + 8y2
+
5. (x − 3)(6x − 2)
6x2 − 2x
− 18x + 6
+
6x2 − 20x + 6
6. (8x − 2)(6x + 2)
48x2 + 16x
+
− 12x - 4
48x2 + 4x - 4
7. (4x – 5)(2x2 + 3x – 6)
8x3 + 12x2 - 24x
- 10x2 - 15x + 30
+
8x3 + 2x2 - 39x + 30
8. (3x + 2)(4x2 – 7x + 5)
12x3 – 21x2 + 15x
8x2 – 14x + 10
+
12x3 – 13x2 + x + 10
9. (x2 − 7x − 6)(7x2 − 3x − 7)
7x4 − 3x3 − 7x2
− 49x3 + 21x2 + 49x
− 42x2 + 18x + 42
+
7x4 − 52x3 − 28x2 + 67x + 42
Special Products:
Sum and Difference of Two Binomials
1. (x + 5)(x − 5) 1. x2 - 25
(a)2 – (b) 2
2. (x - 8)(x + 8) 2. x2 - 64
3. (x – 2y)(x + 2y) 3. x2 – 4y2
(a – b)(a+b) =
Squares of Two Binomials
(a+b)2 = (a + b)(a + b) = (a)2 ± 2(a)(b) +(b)2
1. (x − 1)2 = (x)2 ± 2(x)(1) +(1)2
= x2 + 2x + 1
2. (x − 6)(x – 6)2 = (x − 6)2
= (x)2 - 2(x)(6) +(6)2 = x2 - 12x + 36
3. (2x − 5)2 = (2x)2 - 2(2x)(5) +(5)2
= 4x2 - 20x + 25
Cube of a Binomial:
(a+b)3 = (a + b)(a + b)(a + b) =
(a)3 ± 3(a) 2(b) ± 3(a)(b)2 ± (b) 3
1. (x + 3)3
= (x)3 + 3(x) 2(3) + 3(x)(3)2 + (3) 3
= x3 + 9x 2 + 27x + 27
2. (2x - 5)3
= (2x)3 - 3(2x) 2(5) + 3(2x)(5)2 - (5) 3
= 8x3 - 60x2 + 150x - 125
2. (3x + 7)3
= (3x)3 + 3(3x) 2(7) + 3(3x)(7)2 + (7) 3
= 27x3 + 189x2 + 441x + 343
Find the product:
1. 5x2y(7x2 – 4xy2 + 2y3)
2. (4x – 7)(2x – 9)
3. (4x + 3)(7x – 5)
4. (2x2 – 5x)(9x2 + 6x + 4)
5. (6x2 − 4x − 5)(7x3 + 5x − 5)
6. (x − 3)(x + 3)
7. (2x + 3)2
8. (8a2 + 4)(8a2 − 4)
9. (3x − 7)(3x + 7)
10. (2x − 7)3
Answers:
1. 35x4y - 20x3y3 + 10x2y4
5. 42x5 − 28x4 − 5x3 – 50x2 – 5x + 25
2. 8x2 - 50x + 63
3. 28x2 + x - 15
4. 18x4 - 33x3 + 38x2 - 20x
6. x2 - 9
7. 4x2 + 24x + 9
8. 64x4 - 16
9. 9x2 - 49
10. 8x3 - 84x2 + 294x - 373
Assignment:
1. The dimensions of a window
are 3x + 10 and 2x + 6.
What is the area of the window?
(assuming the window is rectangle)

Multiplication of polynomials

  • 1.
  • 2.
    1. -t4 +5t3 + 3t2 - 16 Answer to the assignment: 2. 5x + 2y - 6
  • 3.
    Review: Multiply the followingmonomials: (3)(4x) = 12x (5x3 y2)(2x3y) = (y3)(-y3) = (3x2)(4xy3) = (6xy4)(2x3y3) = (-x4y3)(-x3y3) = (2xy5)(-8x3y) = (7xy4)(2x3y3) = 10x6y3 -y6 12x3y3 12x4y7 x7y6 -16x4y6 14x4y7
  • 4.
    Combine like terms(if you can). Distribute each term of the first polynomial to every term of the second polynomial. Remember that when you multiply two terms together you must multiply the coefficient (numbers) and add the exponents.
  • 5.
    Multiply: 1. 3x2(4x2 –5x + 7) 12x4 – 15x3 + 21x2 2. 6v(2v + 3) 12v2 + 18v
  • 6.
    3. –6xy(4x2 –5xy – 2y2) -24x2y + 30x2y2 + 12xy3 4. (3x – 4y)(5x – 2y) 15x2 – 6xy - 20xy + 8y2 15x2 – 26xy + 8y2 +
  • 7.
    5. (x −3)(6x − 2) 6x2 − 2x − 18x + 6 + 6x2 − 20x + 6 6. (8x − 2)(6x + 2) 48x2 + 16x + − 12x - 4 48x2 + 4x - 4
  • 8.
    7. (4x –5)(2x2 + 3x – 6) 8x3 + 12x2 - 24x - 10x2 - 15x + 30 + 8x3 + 2x2 - 39x + 30
  • 9.
    8. (3x +2)(4x2 – 7x + 5) 12x3 – 21x2 + 15x 8x2 – 14x + 10 + 12x3 – 13x2 + x + 10
  • 10.
    9. (x2 −7x − 6)(7x2 − 3x − 7) 7x4 − 3x3 − 7x2 − 49x3 + 21x2 + 49x − 42x2 + 18x + 42 + 7x4 − 52x3 − 28x2 + 67x + 42
  • 11.
    Special Products: Sum andDifference of Two Binomials 1. (x + 5)(x − 5) 1. x2 - 25 (a)2 – (b) 2 2. (x - 8)(x + 8) 2. x2 - 64 3. (x – 2y)(x + 2y) 3. x2 – 4y2 (a – b)(a+b) =
  • 12.
    Squares of TwoBinomials (a+b)2 = (a + b)(a + b) = (a)2 ± 2(a)(b) +(b)2 1. (x − 1)2 = (x)2 ± 2(x)(1) +(1)2 = x2 + 2x + 1 2. (x − 6)(x – 6)2 = (x − 6)2 = (x)2 - 2(x)(6) +(6)2 = x2 - 12x + 36 3. (2x − 5)2 = (2x)2 - 2(2x)(5) +(5)2 = 4x2 - 20x + 25
  • 13.
    Cube of aBinomial: (a+b)3 = (a + b)(a + b)(a + b) = (a)3 ± 3(a) 2(b) ± 3(a)(b)2 ± (b) 3 1. (x + 3)3 = (x)3 + 3(x) 2(3) + 3(x)(3)2 + (3) 3 = x3 + 9x 2 + 27x + 27
  • 14.
    2. (2x -5)3 = (2x)3 - 3(2x) 2(5) + 3(2x)(5)2 - (5) 3 = 8x3 - 60x2 + 150x - 125
  • 15.
    2. (3x +7)3 = (3x)3 + 3(3x) 2(7) + 3(3x)(7)2 + (7) 3 = 27x3 + 189x2 + 441x + 343
  • 16.
    Find the product: 1.5x2y(7x2 – 4xy2 + 2y3) 2. (4x – 7)(2x – 9) 3. (4x + 3)(7x – 5) 4. (2x2 – 5x)(9x2 + 6x + 4) 5. (6x2 − 4x − 5)(7x3 + 5x − 5)
  • 17.
    6. (x −3)(x + 3) 7. (2x + 3)2 8. (8a2 + 4)(8a2 − 4) 9. (3x − 7)(3x + 7) 10. (2x − 7)3
  • 18.
    Answers: 1. 35x4y -20x3y3 + 10x2y4 5. 42x5 − 28x4 − 5x3 – 50x2 – 5x + 25 2. 8x2 - 50x + 63 3. 28x2 + x - 15 4. 18x4 - 33x3 + 38x2 - 20x
  • 19.
    6. x2 -9 7. 4x2 + 24x + 9 8. 64x4 - 16 9. 9x2 - 49 10. 8x3 - 84x2 + 294x - 373
  • 20.
    Assignment: 1. The dimensionsof a window are 3x + 10 and 2x + 6. What is the area of the window? (assuming the window is rectangle)