ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES(A)
Department of Electronics and Communication Engineering
ECE 216 Electronic circuits and Analysis-I
➢Academic year : 2020-21
➢Class & Section : 2/4 ECE-C
➢Name of the Faculty : Mr.D.Anil Prasad
ANIL PRASAD DADI/DEPT OF ECE/ANITS
ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES(A)
Department of Electronics and Communication Engineering
Non Linear Wave shaping circuits
Transient Analysis
ANIL PRASAD DADI/DEPT OF ECE/ANITS
Transient Analysis
ANIL PRASAD DADI/DEPT OF ECE/ANITS
V0=Vi +Vm
Transient Analysis
ANIL PRASAD DADI/DEPT OF ECE/ANITS
V0=Vi -Vm
ANIL PRASAD DADI/DEPT OF ECE/ANITS
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t0
10
RL
C
+
-
VS V0
RS
t=0+ VS=10V
VC(0
-)=0=VC(0+) Capacitor is initially uncharged
Diode is FB
+
-
RL
+
-
VS V0
RS
-
C
Rf
i
(+)0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
t=0+ VS=10V
VC(0
-)=0=VC(0+) Capacitor is initially uncharged
Diode is FB
+
-
+
-
VS V0
RS
-
C
Rf
i
0
(+)0
+
-
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
t=0+ VS=10V
VC(0
-)=0=VC(0+) Capacitor is initially uncharged
Diode is FB
+
-
VS
V0
-
C Rs
Rf
+
V0=VS
𝑅𝑓
𝑅𝑓+𝑅𝑠
V0=10
100
100+100
V0=5V
5
i
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
0<t<T/2 VS=10V Diode is FB
V0(t)=Vf - (Vf-Vi)𝑒−
(𝑡−𝑡𝑖)
𝜏
Vf=0V ti=0 Vi=5V τ=(Rs+Rf)C
5
+
-
VS
V0
-
Rs
Rf
i
+
C
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
0<t<T/2 VS=10V Diode is FB
5
+
-
VS
V0
-
Rs
Rf
i
+
C
V0(t)=5𝑒−
𝑡
𝜏 V0(t=
𝑇
2
)=5𝑒−
𝑇
2𝜏 V0(t=
𝑇
2
)≈ 3V
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
0<t<T/2 VS=10V Diode is FB
5
+
-
VS
V0
-
Rs
Rf
i
+
V0(t=
𝑇
2
)=5𝑒−
𝑇
2𝜏 V0(t=
𝑇
2
)≈ 3V VC(t=
𝑇
2
)=?
+ VC -
VC(t=
𝑇
2
)= Vs − Vi VC(t=
𝑇
2
)= 10 − (3 + 3) VC(t=
𝑇
2
)= 4
VC(t=
𝑇
−
2
)=VC(t=
𝑇
+
2
)=4
Vi
-
+
0
+ VC -
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
0<t<T/2 VS=10V Diode is FB
5
V0(t=
𝑇
2
)≈ 3V VC(t=
𝑇
−
2
)=VC(t=
𝑇
+
2
)=4 V0(t=
𝑇
+
2
)=?
t=
𝑇
+
2
VS=0V Diode is RB
RL
+
-
VS V0
RS
-
Rr
0
(+)0
+ VC -
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
0<t<T/2 VS=10V Diode is FB
5
V0(t=
𝑇
2
)≈ 3V VC(t=
𝑇
−
2
)=VC(t=
𝑇
+
2
)=4 V0(t=
𝑇
+
2
)=?
V0(t=
𝑇
+
2
)= Vs − Vc
= 0 − 4 = −4 V0(t=
𝑇
+
2
)= -4V
t>
𝑇
+
2
VS=0V Diode is RB
RL
+
-
VS V0
RS
-
since drop across Rs≈0
0
+
-
-
+ +
RS
+
-
+
-
+ VC -
Transient Analysis
VS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
CVS V0
RS
-5
3
RLVS
V0
+
-
Rs
Rfi
+
VS
V0
C
0<t<T/2 VS=10 Diode FB
V0(t=
𝑇
2
)=5𝑒−
𝑇
2𝜏 V0(t=
𝑇
2
)≈ 3VV0(t)=5𝑒−
𝑡
𝜏
VC(t=
𝑇
−
2
)=VC(t=
𝑇
+
2
)=4
V0(t=
𝑇
+
2
)= Vs − Vc
t=
𝑇
+
2
VS=0V Diode is RB
Rs≈0
V0(t=
𝑇
+
2
)=?
V0(t=
𝑇
+
2
)= -4V
-4
0
ANIL PRASAD DADI/DEPT OF ECE/ANITS
+
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
T/2<t<T VS=0V Diode is RB
V0(t)=Vf - (Vf-Vi)𝑒−
(𝑡−𝑡𝑖)
𝜏
Vf=0V ti=
𝑇
2
Vi= -4V τ=(Rs+RL)C
3
RS
-
+
-
+ VC - RLVS V0
0
+
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
T/2<t<T VS=0V Diode is RB
3
RS
-
+
-
+ VC - RLVS V0V0(t)= -4𝑒−
(𝑡−
𝑇
2
)
𝜏 V0(T)= -4V
VC(t= T)= Vs − V0 VC(t= T)= 0 − −4 = 4V
VC(t= T -)= VC(t= T +) = 4V
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
t=T+ VS=10V Diode is FB
V0(T)= -4V VC(t= T -)= VC(t= T +) = 4V
V0(T+)= ? Vi= Vs − Vc = 10 − 4 = 6V
V0(T+)= 3V
3
V0
+
T/2<t<T
i
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
T<t<3T/2 VS=10V Diode is FB
V0(t)= 3𝑒−
(𝑡−𝑇)
𝜏
V0
V0(t=
3𝑇
2
)= 1.8V
Vc(t=
3𝑇
2
)= Vs-Vi Vc(t=
3𝑇
2
)= 10-(1.8+1.8)
Vc(t=
3𝑇
−
2
)= Vc(t=
3𝑇
+
2
)= 6.4
+
i
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
V0(t=
3𝑇
+
2
)=?
t=
3𝑇
+
2
VS=0V Diode is RB
+
-
VS
-
Rs
RL
+
6.4V
V0
V0(t=
3𝑇
+
2
)=Vs-Vc =-6.4
V0(t)= 3𝑒−
(𝑡−𝑇)
𝜏 V0(t=
3𝑇
2
)= 1.8V
Vc(t=
3𝑇
−
2
)= Vc(t=
3𝑇
+
2
)= 6.4
T<t<3T/2 + -
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
+
-
VS
-
Rs
RL
+
6.4V
V0V0(t=
3𝑇
+
2
)= -6.4
V0(t)= 3𝑒−
(𝑡−𝑇)
𝜏 V0(t=
3𝑇
2
)= 1.8V
Vc(t=
3𝑇
−
2
)= Vc(t=
3𝑇
+
2
)= 6.4
T<t<3T/2 + -
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
+
-
VS
-
Rs
RL
+
C
V0
+ -3T/2<t<2T VS=0V Diode is RB
Vc(t=2T-)=Vs-V0=0-(-6.4)=6.4
Vf=0V ti=
3𝑇
2
Vi= -6.4V τ=(Rs+RL)C
V0(t)= -6.4𝑒−
(𝑡−
3𝑇
2 )
𝜏 V0(t=2T)= -6.4V
Vc(t=2T-)= Vc(t=2T+)= 6.4
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
+
-
VS
-
Rs
Rf
+
+ 6.4 -
V0
3T/2<t<2T V0(t=2T-)= -6.4V
Vc(t=2T-)= Vc(t=2T+)= 6.4 V0(t=2T+)= ?
t=2T+ VS=10V Diode is FB
Vi=Vs-Vc =10-6.4=3.6
Vi
-
+
V0(t=2T+)= 1.8V
i
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
+
-
VS
-
Rs
Rf
+
Vc
V0
-
2T<t<5T/2 VS=10 Diode is FB
Vi
-
+
Vf=0V ti= 2T Vi= 1.8V τ=(Rs+Rf)C
V0(t)= 1.8𝑒−
(𝑡−2𝑇)
𝜏 V0(
5𝑇
2
)= 1.1V
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
+
-
VS
-
Rs
RL
+
7.8V
V0
-
2T<t<5T/2
Vi
-
+
V0(
5𝑇
2
)= 1.1V Vc(
5𝑇
−
2
)= Vc(
5𝑇
+
2
)= 7.8V V0(
5𝑇
+
2
)= ?
V0(t=
5𝑇
+
2
)= Vs − VC = 0 − 7.8
V0(t=
5𝑇
+
2
)= -7.8V
0
Since Rs≈0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
5T/2<t<3T VS=0 Diode is RB
Vf=0V ti=
5𝑇
2
Vi= -7.8V τ=(Rs+RL)C
V0(t)= -7.8𝑒−
(𝑡−
5𝑇
2
)
𝜏 V0(3T)= -7.8V
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
5T/2<t<3T
V0(3T)= -7.8V
Vc(3T)=VS-V0=0-(-7.8)=7.8V
Vc(3T-)= Vc(3T+)= 7.8V
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
V0(3T)= -7.8V Vc(3T-)= Vc(3T+)= 7.8V
V0(3T+)= ?
t=3T+ VS=10V Diode is FB
Vi=Vs-Vc =10-7.8=2.2
V0(t=3T+)= 1.1V
5T/2<t<3T
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T
7𝑇
2
t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
V0(3T+)= 1.1V
V0(
7𝑇
2
)= 0.66 Vc(
7𝑇
2
)= 8.68V
t=
7𝑇
2 VS=0V Diode is RB
V0=Vs-Vc =0-8.68=-8.68
V0(t=
7𝑇
+
2
)= -8.68V
3T<t<7T/2
0
Transient Analysis
VS
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝑇
2
T
3𝑇
2
2T
5𝑇
2
3T
7𝑇
2
t
10
RL
C
+
-
VS V0
RS
+
-
5
-4
3
0
The clamping circuit Theorem
• The clamping circuit theorem states that under steady-state
conditions for any input waveform, the ratio of the area under the
output voltage curve in the forward direction to that in the reverse
direction is equal to the ratio Rf /RL.
• This theorem enables us to find the voltage level to which the output is
clamped.
ANIL PRASAD DADI/DEPT OF ECE/ANITS
𝐴𝑓
𝐴𝑟
=
𝑅𝑓
𝑅 𝐿
The clamping circuit Theorem
• To derive the clamping circuit theorem, consider a typical steady-state
output for the clamping circuit
ANIL PRASAD DADI/DEPT OF ECE/ANITS
The clamping circuit Theorem
• In the interval t1 to t2 D is ON. Hence during this period, the charge builds
up on the capacitor C.
• Let if is the diode current , the charge gained by the capacitor during the
interval t1 to t2 is:
ANIL PRASAD DADI/DEPT OF ECE/ANITS
q1= ‫׬‬𝑡1
𝑡2
𝑖 𝑓 𝑑𝑡 =
1
𝑅 𝑓
‫׬‬𝑡1
𝑡2
𝑉𝑓 𝑑𝑡
The clamping circuit Theorem
• In the interval t2 to t3 D is OFF. Hence the capacitor discharges and charges
lost by C is:
ANIL PRASAD DADI/DEPT OF ECE/ANITS
q2= ‫׬‬𝑡2
𝑡3
𝑖 𝑟 𝑑𝑡 =
1
𝑅 𝐿
‫׬‬𝑡2
𝑡3
𝑉𝑟 𝑑𝑡
The clamping circuit Theorem
• At steady-state, the charge gained is equal to the charge lost. In other
words, q1 = q2
ANIL PRASAD DADI/DEPT OF ECE/ANITS
1
𝑅 𝑓
‫׬‬𝑡1
𝑡2
𝑉𝑓 𝑑𝑡=
1
𝑅 𝐿
‫׬‬𝑡2
𝑡3
𝑉𝑟 𝑑𝑡
𝐴𝑓 = න
𝑡1
𝑡2
𝑉𝑓 𝑑𝑡
𝐴𝑟 = න
𝑡2
𝑡3
𝑉𝑟 𝑑𝑡
𝐴𝑓
𝑅𝑓
=
𝐴𝑟
𝑅 𝐿
q1=
1
𝑅 𝑓
‫׬‬𝑡1
𝑡2
𝑉𝑓 𝑑𝑡
q2=
1
𝑅 𝐿
‫׬‬𝑡2
𝑡3
𝑉𝑟 𝑑𝑡
𝐴𝑓
𝐴𝑟
=
𝑅𝑓
𝑅 𝐿
Problem #1
• A unsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This
signal is applied to the circuit shown in figure Rf=50 RL=50K. Find the level to which
output is clamped to
ANIL PRASAD DADI/DEPT OF ECE/ANITS
T1
T2
0 V1
RL
C
-
VS V0
-
+ +
Af
Ar
10V
T1
Problem #1
• A unsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This
signal is applied to the circuit shown in figure Rf=50 RL=50K
ANIL PRASAD DADI/DEPT OF ECE/ANITS
T2
0 V1
RL
C
-
VS V0
-
+ +
Af
Ar
𝐴𝑓
𝐴𝑟
=
𝑉1 𝑥𝑇1
10 − 𝑉1 𝑥𝑇2
=
𝑉1 𝑥1000μ
10 − 𝑉1 𝑥1μ
𝑅𝑓
𝑅 𝐿
=
50
50𝐾
=10-3 𝐴𝑓
𝐴𝑟
=
𝑅𝑓
𝑅 𝐿
𝑉1 𝑥1000
10−𝑉1 𝑥1
=10-3 V1=10-5
10V
(10-V1)
Problem #2
• A unsymmetrical square wave with T1=1us and T2=1ms has an amplitude of 10V. This
signal is applied to the circuit shown in figure Rf=50 RL=50K
ANIL PRASAD DADI/DEPT OF ECE/ANITS
T2
T1
0
V1
RL
C
-
VS V0
-
+ +
Af
Ar
𝐴𝑓
𝐴𝑟
=
𝑉1 𝑥𝑇1
10 − 𝑉1 𝑥𝑇2
=
𝑉1 𝑥1μ
10 − 𝑉1 𝑥1000μ
𝑅𝑓
𝑅 𝐿
=
50
50𝐾
=10-3 𝐴𝑓
𝐴𝑟
=
𝑅𝑓
𝑅 𝐿
𝑉1 𝑥1
10−𝑉1 𝑥1000
=10-3 V1=5V
10V
(10-V1)
Problem #3
• A unsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This
signal is applied to the circuit shown in figure Rf=50 RL=50K
ANIL PRASAD DADI/DEPT OF ECE/ANITS
T2
T1
0
V1
RL
C
-
VS V0
-
+ +
Af
Ar
𝐴𝑓
𝐴𝑟
=
𝑉1 𝑥𝑇1
10 − 𝑉1 𝑥𝑇2
=
𝑉1 𝑥1000𝑢
10 − 𝑉1 𝑥1μ
𝑅𝑓
𝑅 𝐿
=
50
50𝐾
=10-3 𝐴𝑓
𝐴𝑟
=
𝑅𝑓
𝑅 𝐿
𝑉1 𝑥1000
10−𝑉1 𝑥1
=10-3
V1=10-5V
10V(10-V1)
5V
Design of diode clamper
• Design a diode clamper to restore the positive peaks of the input signal to a voltage level
of 5V. Assume Vγ=0.5V f=1KHz, Rf=1K Rr=200K and RLC=10T
• When diode conducts
❑RL>>Rf
❑Let RL=kRf
• When diode doesn’t conduct
❑Rr>>RL
❑Let Rr=kRL
ANIL PRASAD DADI/DEPT OF ECE/ANITS
RL
C
-
VS V0
-
+ +
RL =
R𝑟
RL
𝑅 𝑓
5V
Design of diode clamper
• Design a diode clamper to restore the positive peaks of the input signal to a voltage level
of 5V. Assume Vγ=0.5V f=1KHz, Rf=1K Rr=200K and RC=10T
ANIL PRASAD DADI/DEPT OF ECE/ANITS
RL
C
-
VS V0
-
+ +
RL =
R𝑟
RL
𝑅 𝑓
R2
L = 𝑅 𝑟 𝑅 𝑓
RL = 𝑅 𝑟 𝑅 𝑓 RL = 14.14KΩ
RC=10T C=
10x1
f xRL
C=0.707μF
Let VR=VR1+ Vγ Where VR1=5V is given VR=5+0.5=5.5V

Transient analysis of clamping circuits

  • 1.
    ANIL NEERUKONDA INSTITUTEOF TECHNOLOGY & SCIENCES(A) Department of Electronics and Communication Engineering ECE 216 Electronic circuits and Analysis-I ➢Academic year : 2020-21 ➢Class & Section : 2/4 ECE-C ➢Name of the Faculty : Mr.D.Anil Prasad ANIL PRASAD DADI/DEPT OF ECE/ANITS
  • 2.
    ANIL NEERUKONDA INSTITUTEOF TECHNOLOGY & SCIENCES(A) Department of Electronics and Communication Engineering Non Linear Wave shaping circuits Transient Analysis ANIL PRASAD DADI/DEPT OF ECE/ANITS
  • 3.
    Transient Analysis ANIL PRASADDADI/DEPT OF ECE/ANITS V0=Vi +Vm
  • 4.
    Transient Analysis ANIL PRASADDADI/DEPT OF ECE/ANITS V0=Vi -Vm
  • 5.
  • 6.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t0 10 RL C + - VS V0 RS t=0+ VS=10V VC(0 -)=0=VC(0+) Capacitor is initially uncharged Diode is FB + - RL + - VS V0 RS - C Rf i (+)0
  • 7.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS t=0+ VS=10V VC(0 -)=0=VC(0+) Capacitor is initially uncharged Diode is FB + - + - VS V0 RS - C Rf i 0 (+)0
  • 8.
    + - Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS t=0+ VS=10V VC(0 -)=0=VC(0+) Capacitor is initially uncharged Diode is FB + - VS V0 - C Rs Rf + V0=VS 𝑅𝑓 𝑅𝑓+𝑅𝑠 V0=10 100 100+100 V0=5V 5 i 0
  • 9.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 0<t<T/2 VS=10V Diode is FB V0(t)=Vf - (Vf-Vi)𝑒− (𝑡−𝑡𝑖) 𝜏 Vf=0V ti=0 Vi=5V τ=(Rs+Rf)C 5 + - VS V0 - Rs Rf i + C 0
  • 10.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 0<t<T/2 VS=10V Diode is FB 5 + - VS V0 - Rs Rf i + C V0(t)=5𝑒− 𝑡 𝜏 V0(t= 𝑇 2 )=5𝑒− 𝑇 2𝜏 V0(t= 𝑇 2 )≈ 3V 0
  • 11.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 0<t<T/2 VS=10V Diode is FB 5 + - VS V0 - Rs Rf i + V0(t= 𝑇 2 )=5𝑒− 𝑇 2𝜏 V0(t= 𝑇 2 )≈ 3V VC(t= 𝑇 2 )=? + VC - VC(t= 𝑇 2 )= Vs − Vi VC(t= 𝑇 2 )= 10 − (3 + 3) VC(t= 𝑇 2 )= 4 VC(t= 𝑇 − 2 )=VC(t= 𝑇 + 2 )=4 Vi - + 0
  • 12.
    + VC - TransientAnalysis VS ANIL PRASAD DADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 0<t<T/2 VS=10V Diode is FB 5 V0(t= 𝑇 2 )≈ 3V VC(t= 𝑇 − 2 )=VC(t= 𝑇 + 2 )=4 V0(t= 𝑇 + 2 )=? t= 𝑇 + 2 VS=0V Diode is RB RL + - VS V0 RS - Rr 0 (+)0
  • 13.
    + VC - TransientAnalysis VS ANIL PRASAD DADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 0<t<T/2 VS=10V Diode is FB 5 V0(t= 𝑇 2 )≈ 3V VC(t= 𝑇 − 2 )=VC(t= 𝑇 + 2 )=4 V0(t= 𝑇 + 2 )=? V0(t= 𝑇 + 2 )= Vs − Vc = 0 − 4 = −4 V0(t= 𝑇 + 2 )= -4V t> 𝑇 + 2 VS=0V Diode is RB RL + - VS V0 RS - since drop across Rs≈0 0 +
  • 14.
    - - + + RS + - + - + VC- Transient Analysis VS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL CVS V0 RS -5 3 RLVS V0 + - Rs Rfi + VS V0 C 0<t<T/2 VS=10 Diode FB V0(t= 𝑇 2 )=5𝑒− 𝑇 2𝜏 V0(t= 𝑇 2 )≈ 3VV0(t)=5𝑒− 𝑡 𝜏 VC(t= 𝑇 − 2 )=VC(t= 𝑇 + 2 )=4 V0(t= 𝑇 + 2 )= Vs − Vc t= 𝑇 + 2 VS=0V Diode is RB Rs≈0 V0(t= 𝑇 + 2 )=? V0(t= 𝑇 + 2 )= -4V -4 0 ANIL PRASAD DADI/DEPT OF ECE/ANITS
  • 15.
    + Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 T/2<t<T VS=0V Diode is RB V0(t)=Vf - (Vf-Vi)𝑒− (𝑡−𝑡𝑖) 𝜏 Vf=0V ti= 𝑇 2 Vi= -4V τ=(Rs+RL)C 3 RS - + - + VC - RLVS V0 0
  • 16.
    + Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 T/2<t<T VS=0V Diode is RB 3 RS - + - + VC - RLVS V0V0(t)= -4𝑒− (𝑡− 𝑇 2 ) 𝜏 V0(T)= -4V VC(t= T)= Vs − V0 VC(t= T)= 0 − −4 = 4V VC(t= T -)= VC(t= T +) = 4V 0
  • 17.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 t=T+ VS=10V Diode is FB V0(T)= -4V VC(t= T -)= VC(t= T +) = 4V V0(T+)= ? Vi= Vs − Vc = 10 − 4 = 6V V0(T+)= 3V 3 V0 + T/2<t<T i 0
  • 18.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 T<t<3T/2 VS=10V Diode is FB V0(t)= 3𝑒− (𝑡−𝑇) 𝜏 V0 V0(t= 3𝑇 2 )= 1.8V Vc(t= 3𝑇 2 )= Vs-Vi Vc(t= 3𝑇 2 )= 10-(1.8+1.8) Vc(t= 3𝑇 − 2 )= Vc(t= 3𝑇 + 2 )= 6.4 + i 0
  • 19.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 V0(t= 3𝑇 + 2 )=? t= 3𝑇 + 2 VS=0V Diode is RB + - VS - Rs RL + 6.4V V0 V0(t= 3𝑇 + 2 )=Vs-Vc =-6.4 V0(t)= 3𝑒− (𝑡−𝑇) 𝜏 V0(t= 3𝑇 2 )= 1.8V Vc(t= 3𝑇 − 2 )= Vc(t= 3𝑇 + 2 )= 6.4 T<t<3T/2 + - 0
  • 20.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 + - VS - Rs RL + 6.4V V0V0(t= 3𝑇 + 2 )= -6.4 V0(t)= 3𝑒− (𝑡−𝑇) 𝜏 V0(t= 3𝑇 2 )= 1.8V Vc(t= 3𝑇 − 2 )= Vc(t= 3𝑇 + 2 )= 6.4 T<t<3T/2 + - 0
  • 21.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 + - VS - Rs RL + C V0 + -3T/2<t<2T VS=0V Diode is RB Vc(t=2T-)=Vs-V0=0-(-6.4)=6.4 Vf=0V ti= 3𝑇 2 Vi= -6.4V τ=(Rs+RL)C V0(t)= -6.4𝑒− (𝑡− 3𝑇 2 ) 𝜏 V0(t=2T)= -6.4V Vc(t=2T-)= Vc(t=2T+)= 6.4 0
  • 22.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 + - VS - Rs Rf + + 6.4 - V0 3T/2<t<2T V0(t=2T-)= -6.4V Vc(t=2T-)= Vc(t=2T+)= 6.4 V0(t=2T+)= ? t=2T+ VS=10V Diode is FB Vi=Vs-Vc =10-6.4=3.6 Vi - + V0(t=2T+)= 1.8V i 0
  • 23.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 + - VS - Rs Rf + Vc V0 - 2T<t<5T/2 VS=10 Diode is FB Vi - + Vf=0V ti= 2T Vi= 1.8V τ=(Rs+Rf)C V0(t)= 1.8𝑒− (𝑡−2𝑇) 𝜏 V0( 5𝑇 2 )= 1.1V 0
  • 24.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 + - VS - Rs RL + 7.8V V0 - 2T<t<5T/2 Vi - + V0( 5𝑇 2 )= 1.1V Vc( 5𝑇 − 2 )= Vc( 5𝑇 + 2 )= 7.8V V0( 5𝑇 + 2 )= ? V0(t= 5𝑇 + 2 )= Vs − VC = 0 − 7.8 V0(t= 5𝑇 + 2 )= -7.8V 0 Since Rs≈0
  • 25.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 5T/2<t<3T VS=0 Diode is RB Vf=0V ti= 5𝑇 2 Vi= -7.8V τ=(Rs+RL)C V0(t)= -7.8𝑒− (𝑡− 5𝑇 2 ) 𝜏 V0(3T)= -7.8V 0
  • 26.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 5T/2<t<3T V0(3T)= -7.8V Vc(3T)=VS-V0=0-(-7.8)=7.8V Vc(3T-)= Vc(3T+)= 7.8V 0
  • 27.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T t 10 RL C + - VS V0 RS + - 5 -4 3 V0(3T)= -7.8V Vc(3T-)= Vc(3T+)= 7.8V V0(3T+)= ? t=3T+ VS=10V Diode is FB Vi=Vs-Vc =10-7.8=2.2 V0(t=3T+)= 1.1V 5T/2<t<3T 0
  • 28.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T 7𝑇 2 t 10 RL C + - VS V0 RS + - 5 -4 3 V0(3T+)= 1.1V V0( 7𝑇 2 )= 0.66 Vc( 7𝑇 2 )= 8.68V t= 7𝑇 2 VS=0V Diode is RB V0=Vs-Vc =0-8.68=-8.68 V0(t= 7𝑇 + 2 )= -8.68V 3T<t<7T/2 0
  • 29.
    Transient Analysis VS ANIL PRASADDADI/DEPT OF ECE/ANITS 𝑇 2 T 3𝑇 2 2T 5𝑇 2 3T 7𝑇 2 t 10 RL C + - VS V0 RS + - 5 -4 3 0
  • 30.
    The clamping circuitTheorem • The clamping circuit theorem states that under steady-state conditions for any input waveform, the ratio of the area under the output voltage curve in the forward direction to that in the reverse direction is equal to the ratio Rf /RL. • This theorem enables us to find the voltage level to which the output is clamped. ANIL PRASAD DADI/DEPT OF ECE/ANITS 𝐴𝑓 𝐴𝑟 = 𝑅𝑓 𝑅 𝐿
  • 31.
    The clamping circuitTheorem • To derive the clamping circuit theorem, consider a typical steady-state output for the clamping circuit ANIL PRASAD DADI/DEPT OF ECE/ANITS
  • 32.
    The clamping circuitTheorem • In the interval t1 to t2 D is ON. Hence during this period, the charge builds up on the capacitor C. • Let if is the diode current , the charge gained by the capacitor during the interval t1 to t2 is: ANIL PRASAD DADI/DEPT OF ECE/ANITS q1= ‫׬‬𝑡1 𝑡2 𝑖 𝑓 𝑑𝑡 = 1 𝑅 𝑓 ‫׬‬𝑡1 𝑡2 𝑉𝑓 𝑑𝑡
  • 33.
    The clamping circuitTheorem • In the interval t2 to t3 D is OFF. Hence the capacitor discharges and charges lost by C is: ANIL PRASAD DADI/DEPT OF ECE/ANITS q2= ‫׬‬𝑡2 𝑡3 𝑖 𝑟 𝑑𝑡 = 1 𝑅 𝐿 ‫׬‬𝑡2 𝑡3 𝑉𝑟 𝑑𝑡
  • 34.
    The clamping circuitTheorem • At steady-state, the charge gained is equal to the charge lost. In other words, q1 = q2 ANIL PRASAD DADI/DEPT OF ECE/ANITS 1 𝑅 𝑓 ‫׬‬𝑡1 𝑡2 𝑉𝑓 𝑑𝑡= 1 𝑅 𝐿 ‫׬‬𝑡2 𝑡3 𝑉𝑟 𝑑𝑡 𝐴𝑓 = න 𝑡1 𝑡2 𝑉𝑓 𝑑𝑡 𝐴𝑟 = න 𝑡2 𝑡3 𝑉𝑟 𝑑𝑡 𝐴𝑓 𝑅𝑓 = 𝐴𝑟 𝑅 𝐿 q1= 1 𝑅 𝑓 ‫׬‬𝑡1 𝑡2 𝑉𝑓 𝑑𝑡 q2= 1 𝑅 𝐿 ‫׬‬𝑡2 𝑡3 𝑉𝑟 𝑑𝑡 𝐴𝑓 𝐴𝑟 = 𝑅𝑓 𝑅 𝐿
  • 35.
    Problem #1 • Aunsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This signal is applied to the circuit shown in figure Rf=50 RL=50K. Find the level to which output is clamped to ANIL PRASAD DADI/DEPT OF ECE/ANITS T1 T2 0 V1 RL C - VS V0 - + + Af Ar 10V
  • 36.
    T1 Problem #1 • Aunsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This signal is applied to the circuit shown in figure Rf=50 RL=50K ANIL PRASAD DADI/DEPT OF ECE/ANITS T2 0 V1 RL C - VS V0 - + + Af Ar 𝐴𝑓 𝐴𝑟 = 𝑉1 𝑥𝑇1 10 − 𝑉1 𝑥𝑇2 = 𝑉1 𝑥1000μ 10 − 𝑉1 𝑥1μ 𝑅𝑓 𝑅 𝐿 = 50 50𝐾 =10-3 𝐴𝑓 𝐴𝑟 = 𝑅𝑓 𝑅 𝐿 𝑉1 𝑥1000 10−𝑉1 𝑥1 =10-3 V1=10-5 10V (10-V1)
  • 37.
    Problem #2 • Aunsymmetrical square wave with T1=1us and T2=1ms has an amplitude of 10V. This signal is applied to the circuit shown in figure Rf=50 RL=50K ANIL PRASAD DADI/DEPT OF ECE/ANITS T2 T1 0 V1 RL C - VS V0 - + + Af Ar 𝐴𝑓 𝐴𝑟 = 𝑉1 𝑥𝑇1 10 − 𝑉1 𝑥𝑇2 = 𝑉1 𝑥1μ 10 − 𝑉1 𝑥1000μ 𝑅𝑓 𝑅 𝐿 = 50 50𝐾 =10-3 𝐴𝑓 𝐴𝑟 = 𝑅𝑓 𝑅 𝐿 𝑉1 𝑥1 10−𝑉1 𝑥1000 =10-3 V1=5V 10V (10-V1)
  • 38.
    Problem #3 • Aunsymmetrical square wave with T1=1ms and T2=1us has an amplitude of 10V. This signal is applied to the circuit shown in figure Rf=50 RL=50K ANIL PRASAD DADI/DEPT OF ECE/ANITS T2 T1 0 V1 RL C - VS V0 - + + Af Ar 𝐴𝑓 𝐴𝑟 = 𝑉1 𝑥𝑇1 10 − 𝑉1 𝑥𝑇2 = 𝑉1 𝑥1000𝑢 10 − 𝑉1 𝑥1μ 𝑅𝑓 𝑅 𝐿 = 50 50𝐾 =10-3 𝐴𝑓 𝐴𝑟 = 𝑅𝑓 𝑅 𝐿 𝑉1 𝑥1000 10−𝑉1 𝑥1 =10-3 V1=10-5V 10V(10-V1)
  • 39.
    5V Design of diodeclamper • Design a diode clamper to restore the positive peaks of the input signal to a voltage level of 5V. Assume Vγ=0.5V f=1KHz, Rf=1K Rr=200K and RLC=10T • When diode conducts ❑RL>>Rf ❑Let RL=kRf • When diode doesn’t conduct ❑Rr>>RL ❑Let Rr=kRL ANIL PRASAD DADI/DEPT OF ECE/ANITS RL C - VS V0 - + + RL = R𝑟 RL 𝑅 𝑓
  • 40.
    5V Design of diodeclamper • Design a diode clamper to restore the positive peaks of the input signal to a voltage level of 5V. Assume Vγ=0.5V f=1KHz, Rf=1K Rr=200K and RC=10T ANIL PRASAD DADI/DEPT OF ECE/ANITS RL C - VS V0 - + + RL = R𝑟 RL 𝑅 𝑓 R2 L = 𝑅 𝑟 𝑅 𝑓 RL = 𝑅 𝑟 𝑅 𝑓 RL = 14.14KΩ RC=10T C= 10x1 f xRL C=0.707μF Let VR=VR1+ Vγ Where VR1=5V is given VR=5+0.5=5.5V