SlideShare a Scribd company logo
Thi thử Đại học www.toanpt.net
SỞ GD-ĐT HÀ TĨNH
TRƯỜNG THPT TRẦN PHÚ
--------
ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2010 - 2011
MÔN TOÁN
Thời gian: 180 phút (không kể thời gian giao đề)
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (2 điểm) Cho hàm số   3 2
3 2y x x có đồ thị là đường cong  C .
1. Khảo sát sự biến thiên của hàm số và vẽ đường cong  C .
2. Lập phương trình tiếp tuyến của đường cong  C biết tiếp tuyến cắt các trục ,Ox Oy lần lượt tại
A, B thoả mãn 9OB OA .
Câu II (2 điểm)
1. Giải hệ phương trình

   


    
6 2 3 3
2 3 3 6 3 4
x
x y y
y
x x y x y
2. Giải phương trình
 
   
 
1 5 sin2
tan 2cos
2 sin cos2
x
x x
x x
.
Câu III (1 điểm) Tính tích phân
 

 

2 5
2 2
2 1 5
xdx
I
x x
.
Câu IV (1 điểm) Cho lăng trụ tam giác đều 1 1 1.ABC A B C có cạnh đáy bằng a . M là điểm trên cạnh
1AA sao cho 1 3AA AM . Biết 0
1 90BMC  . Tính thể tích khối cầu ngoại tiếp lăng trụ 1 1 1.ABC A B C .
Câu V (1 điểm) Cho , ,x y z là các số thực dương, thoả mãn 3x y z   . Tìm giá trị nhỏ nhất của biểu
thức
3 3 3
(2 ) (2 ) (2 )
x y z
P
y z x z x y x y z
  
  
.
II. PHẦN RIÊNG CHO CÁC THÍ SINH (3,0 điểm) Thí sinh chỉ được làm một trong hai phần
1.Phần dành cho thí sinh theo chương trình chuẩn
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC cân tại A, cạnh BC nằm trên đường
thẳng có phương trình 2 2 0x y   . Đường cao kẻ từ B có phương trình 4 0x y   , điểm
 1;0M  thuộc đường cao kẻ từ đỉnh C. Xác định toạ độ các đỉnh của tam giác ABC.
2. Trong không gian với hệ toạ độ Oxyz ,cho điểm    5; 2;2 , 3; 2;6B C  . Tìm toạ độ điểm A
thuộc mặt phẳng ( ) :P 2 5 0x y z    sao cho tam giác ABC vuông cân tại đỉnh A.
Câu VII.a (1 điểm) Tìm phần ảo của số phức z , biết  
2
3 1 2z z i   .
2.Phần dành cho thí sinh theo chương trình nâng cao
Câu VI.b (2 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC, phân giác trong AD có phương trình
2 0x y   , đường cao CH có phương trình 2 5 0x y   . Điểm  3;0M thuộc cạnh AC thoả
mãn 2AB AM . Xác định toạ độ các đỉnh của tam giác ABC.
2. Trong không gian với hệ toạ độ Oxyz ,cho điểm    1;2; 1 , 3;0;5B C .Tìm toạ độ điểm A thuộc
mặt phẳng ( ) : 2 2 10 0P x y z     sao cho tam giác ABC cân tại A và có diện tích bằng 2 11 .
Câu VII.b (1 điểm) Tìm phần ảo của số phức z , biết    
2
1 1 2z i z i    .
----------Hết-----------
Cán bộ xem thi không giải thích gì thêm
Họ và tên thí sinh: ............................................ Số báo danh......
Thi thử Đại học www.toanpt.net
ĐÁP ÁN VẮN TẮT VÀ HƯỚNG DẪN CHẤM MÔN TOÁN
Câu I
1
1 đ
Câu I. 1. Khảo sát   3 2
3 2y x x - Tập xác định D R
- Sự biến thiên của hàm số + lim , lim
x x
y y
 
    Đồ thị không có đường tiệm cận
 ' 2
3 6 3 2y x x x x    '
0 0 2y x x    
Hàm số đồng biến trên mỗi khoảng     ;0 vµ 2; Hàm số nghịch biến trên  0;2
Điểm cực đại  0;2 , Điểm cực tiểu  2; 2 0,25
-Đồ thị.(0,25) Đi qua  1; 2  , 1;0  3;2 . Đồ thị nhận  1;0I làm điểm uốn
HS có thể trình bày theo sơ đồ của CT cơ bản
x  0 2 
y’ + 0 - 0 +
y 2 
 -2
0,25
0,25
0,5
Câu I 2
1 đ
Gọi toạ độ điểm   0 0;M x f x là toạ độ tiếp điểm.
Theo giả thiết OB=9OA suy ra hệ số góc của tiếp tuyến bằng 9 hoặc -9
 
 
 
 
22
0 0 00 0
22
0 0 00 0
' 9 2 3 0 13 6 9 0
' 9 2 3 0 23 6 9 0
f x x xx x
f x x xx x
      
   
       
.
Phương trình (2) vô nghiệmPhương trình (1) suy ra 0 01, 3x x  
Với 0 1x   suy ra phương trình tiếp tuyến 9 7y x 
Với 0 3x  suy ra phương trình tiếp tuyến 9 25y x 
0,25
0,25
0,25
0,25
Câu
II .1
1 đ
Điều kiện 3 0,3 3 0, 0x y x x y y     
     
          2
2 3 2 3 3
6 2 3 3 3 3 3
x y x y x yx
x y y y x y
y y y y
Đặt


3x y
t
y
suy ra 2 3
2 3 0 1
2
t t t t       
+Với 1t   ta có 3x y y   (3) 2
0
3
y
x y y

 
 
thay vào (2) ta có
2 2
2 2 5 4y y y   2
2 2 5 4y y y     2
2 7 4 0y y    
1
4
2
y y    (loại)
Thay 4y   vào (3) ta có 4x  . suy ra  4; 4 là nghiệm
+Với
3
2
t  ta có
3
3
2
x y y  (3) 2
0
9
3
4
y
x y y


 
 
từ (2)  2 29 5 9
2 5 4
4 2 2
y y y y   
Đặt 29 5
4 2
y y u  ( 0u  )Ta có 2
2 2 4 0u u    2 1u u    (loại)
Với 2 8
2 9 10 16 0 2
9
u y y y y          (loại)
Thay
8
9
y  vào (3) ta có
8
9
x  . suy ra
8 8
;
9 9
 
 
 
là nghiệm
0,25
0,25
0,25
0,25
Câu
II 2
1 đ
Điều kiện cos 0,sin cos 0x x x   0,25
   

1 sin 2sin cos
2sin 0
cos sin cos2
x x x
x
x x x
  

2
1 sin 2sin
0
cos sin cos2
x x
x x x 0,25
y
x
2
-2
20
1 3
-1
Thi thử Đại học www.toanpt.net
2
sin .sin 2sin .cos
4
x x x x
 
  
 
sin 0
2 2
sin2 sin 4
4
5
2 2
4
x k
x
x x k
x x
x x k






 
 
           
   

2
4
5 2
12 3
x k
x k
k
x



 

 

   


  

0,5
Câu
III
1đ
Đặt 2 2 2
5 5t x t x xdx tdt       Với 2 3x t   , 2 5 5x t  
Vậy
5 5
2 2
3 3( 4) 4
tdt dt
I
t t t
 
   (0,25 )
5
3
1 1 1
4 2 2
dt
t t
 
  
  
 (0,25)
5
3
1 2 1 15
ln ln
4 2 4 7
t
t

 

(0,25)
0,25
0,75
Câu
IV
1đ
Đặt 1AA x suy ra 1
2
;
3 3
x x
AM A M 
Tam giác 1MBC vuông tại M 2 2 2
1 1MB MC BC  
2 2 2
2 2 2 2 24 4 3
9 9 9 2
x x x a
a a x a a x        
Gọi 1,O O là tâm của đáy ABC và 1 1 1A B C , I là trung điểm của
1OO , Suy ra I là tâm mặt cầu ngoại tiếp lăng trụ.
2 2 2
2 2 2 3 3 43
3 4 48
a a a
R AO OI
   
           
43
4 3
R a 
Vậy
3
3 34 4 43 43 43
3 3 144 34 3
V R a a  
 
    
 
0,25
0,25
0,25
0,25
Câu
V
1đ
Áp dụng bất đẳng thức Côsi cho 3 số dương ta có
3
2
(2 ) 3 9
x y z x
x
y z x

  

(1)
Tương tự
3
2
(2 ) 3 9
y z x y
y
z x y

  

(2)
3
2
(2 ) 3 9
z x y z
z
x y z

  

(3)
Cộng theo vế của (1), (2), (3) ta có
3
x y z
P
 
 1 Dấu  xảy ra khi 1x y z  
0,5
0,25
0,25
Phần dành cho thí sinh theo chương trình chuẩn
Câu
VIa.
1
Toạ độ B là nghiệm của hệ
4 0
2 2 0
x y
x y
  

  
Suy ra  2;2B 
Gọi d là đường thẳng qua M song song với BC : 2 1 0d x y   
Gọi N là giao điểm của d với đường cao kẻ từ B. Toạ độ N là nghiệm
của hệ
4 0
2 1 0
x y
x y
  

  
Suy ra  3;1N 
Gọi I là trung điểm MN
1
2;
2
I
 
  
 
. Gọi E là trung điểm BC. Do tam giác ABC cân nên IE
là đường trung trực BC .IE đi qua I vuông góc với BC : 4 2 9 0IE x y    . Toạ độ E là
nghiệm của hệ
2 2 0 7 17
,
4 2 9 0 5 10
x y
E
x y
    
      
4 7
;
5 5
C
 
  
 
.
CA đi qua C vuông góc với BN suy ra
3
: 0
5
CA x y   Toạ đô A là nghiệm của hệ
4 2 9 0
3
0
5
x y
x y
  


  
13 19
;
10 10
A
 
  
 
0,25
0,25
0,25
00,25
I
B
C
A
NM
E
A B
C
A1 B1
C1
M
O
O1
I
Thi thử Đại học www.toanpt.net
Câu
VIa.
2
( 2;0;4)BC  

.Trung điểm của BC có toạ độ  4; 2;4
Gọi (Q) là mặt phẳng trung trực của BC.
       : 2 4 0 2 4 4 0Q x y z        : 2 4 0Q x z   
Gọi d là giao tuyến của mặt phẳng (P) và (Q)
Chọn  , 2; 5;1d P Qu n n    
  
, Điểm  0;3;2 thuộc mặt phẳng (p) và (Q) suy ra
2
3 5
2
x t
d y t
z t


 
  
. Ta có tam giác ABC cân suy ra A thuộc d.
Gọi toạ độ  2 ;3 5 ;2A t t t  (2 5;5 5 ; ); (2 3;5 5 ; 4)BA t t t CA t t t       
 
Tam giác ABC vuông suy ra       
2
0 2 5 2 3 5 5 4 0BACA t t t t t        

2 4
3 7 4 0 1
3
t t t t      
Với  1 2; 2;3t A   ,
4 8 11 10
; ;
3 3 3 3
t A
 
   
 
0,25
0,25
0,25
0,25
Câu
VIIa.
Tìm phần ảo của số phức z biết  
2
3 1 2z z i  
Đặt z a bi z a bi    
Ta có    
2
3 1 2 4 2 1 4 4 4 2 3 4a bi a bi i a bi i a bi i              
3
4 3
4
2 4
2
a a
b
b

   
  
    
. Vậy
3
2
4
z i

  . Vậy phần ảo của z bằng -2
0,25
0,25
0,5
Phần dành cho thí sinh theo chương trình nâng cao
Câu
VIb.
1
Đường thẳng d qua M vuông góc với AD của có phương trình
3 0x y   ; Gọi I, E là giao diểm của AD, AB với d. Dễ
thấy tam giác AME cân tại A
Toạ độ I là nghiệm của hệ
 
3 0 5 1
; 2; 1
2 0 2 2
x y
I E
x y
    
        
AB là đường thẳng qua E vuông góc với CH : 2 3 0AB x y  
Toạ độ A là nghiệm của hệ  
2 3 0
1;1
2 0
x y
A
x y
  

  
.
Do 2AB AM E là trung điểm AB suy ra  3; 3B 
Phương trình : 2 3 0AM x y   Toạ độ C là nghiệm của hệ  
2 3 0
1;2
2 5 0
x y
C
x y
  
 
  
0,25
0,25
0,25
0,25
Câu
VIb
2
(2; 2;6)BC  

.Trung điểm của BC có toạ độ I 2;1;2
Gọi (Q) là mặt phẳng trung trực của BC.
       :2 2 2 1 6 2 0Q x y z       : 3 7 0Q x y z    
Gọi d là giao tuyến của mặt phẳng (P) và (Q)
Chọn  , 4; 1;1d P Qu n n     
  
, Điểm  4; 3;0 thuộc mặt
phẳng (p) và (Q) suy ra
4 4
3
x t
d y t
z t
 

  
 
. Ta có tam giác ABC cân suy ra A thuộc d.
0,25
d
I
B C
A
D
E
M
H
d
B
C
A
I
Thi thử Đại học www.toanpt.net
Gọi toạ độ  4 4 ; 3 ;A t t t     2 4 ; 4 ; 2IA t t t     

1
2 11 . 11 2
2
ABCS BC AI   . Do 2 11 22BC AI  
     
2 2 2 2
2 4 4 2 22 18 12 24 22t t t t t          2 1
9 6 1 0
3
t t t     
Suy ra
8 10 1
; ;
3 3 3
A
 
 
 
0,25
0,25
0,25
Câu
VIIb
Đặt z a bi z a bi    
Ta có       
2
1 1 2 1 4 4a bi i a bi i a bi a ai bi b i              
 
3 3
2 3 4
2 4 10
b b
b b a i i
b a a
  
        
    
Vậy 10 3z i 
Suy ra phần ảo của z bằng 3
0,25
0,25
0,5

More Related Content

What's hot

Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011
BẢO Hí
 
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
Vui Lên Bạn Nhé
 
Toan pt.de064.2010
Toan pt.de064.2010Toan pt.de064.2010
Toan pt.de064.2010
BẢO Hí
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)
BẢO Hí
 
Dgnl dhqg ha noi 2022 de so 2
Dgnl dhqg ha noi 2022 de so 2Dgnl dhqg ha noi 2022 de so 2
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
BẢO Hí
 
BỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATHBỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATH
DANAMATH
 
Toan pt.de044.2011
Toan pt.de044.2011Toan pt.de044.2011
Toan pt.de044.2011
BẢO Hí
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
BẢO Hí
 
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
haic2hv.net
 
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
BẢO Hí
 
Toan pt.de110.2011
Toan pt.de110.2011Toan pt.de110.2011
Toan pt.de110.2011
BẢO Hí
 
[Vnmath.com] de thi thi thpt- 2015-lnq-thai-nguyen
[Vnmath.com]  de thi thi thpt- 2015-lnq-thai-nguyen[Vnmath.com]  de thi thi thpt- 2015-lnq-thai-nguyen
[Vnmath.com] de thi thi thpt- 2015-lnq-thai-nguyen
Marco Reus Le
 
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
Zaj Bé Đẹp
 
đề Khó
đề Khóđề Khó
đề Khó
btkhanhchi
 
Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010
BẢO Hí
 
Toan pt.de054.2011
Toan pt.de054.2011Toan pt.de054.2011
Toan pt.de054.2011
BẢO Hí
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
Marco Reus Le
 
Dgnl dhqg ha noi 2022 de so 1
Dgnl dhqg ha noi 2022 de so 1Dgnl dhqg ha noi 2022 de so 1

What's hot (20)

Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011
 
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)3 đề thi thử toán 2015 + đáp án (Bình Thuận)
3 đề thi thử toán 2015 + đáp án (Bình Thuận)
 
Toan pt.de064.2010
Toan pt.de064.2010Toan pt.de064.2010
Toan pt.de064.2010
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)
 
Dgnl dhqg ha noi 2022 de so 2
Dgnl dhqg ha noi 2022 de so 2Dgnl dhqg ha noi 2022 de so 2
Dgnl dhqg ha noi 2022 de so 2
 
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
 
BỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATHBỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATH
 
Toan pt.de044.2011
Toan pt.de044.2011Toan pt.de044.2011
Toan pt.de044.2011
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
 
Hn ams thi-thul1
Hn ams thi-thul1Hn ams thi-thul1
Hn ams thi-thul1
 
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
 
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
 
Toan pt.de110.2011
Toan pt.de110.2011Toan pt.de110.2011
Toan pt.de110.2011
 
[Vnmath.com] de thi thi thpt- 2015-lnq-thai-nguyen
[Vnmath.com]  de thi thi thpt- 2015-lnq-thai-nguyen[Vnmath.com]  de thi thi thpt- 2015-lnq-thai-nguyen
[Vnmath.com] de thi thi thpt- 2015-lnq-thai-nguyen
 
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
25 Đề Thi thử quốc gia năm 2015 môn Toán Hay
 
đề Khó
đề Khóđề Khó
đề Khó
 
Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010
 
Toan pt.de054.2011
Toan pt.de054.2011Toan pt.de054.2011
Toan pt.de054.2011
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
 
Dgnl dhqg ha noi 2022 de so 1
Dgnl dhqg ha noi 2022 de so 1Dgnl dhqg ha noi 2022 de so 1
Dgnl dhqg ha noi 2022 de so 1
 

Viewers also liked

Toan pt.de073.2010
Toan pt.de073.2010Toan pt.de073.2010
Toan pt.de073.2010
BẢO Hí
 
Toan pt.de141.2011
Toan pt.de141.2011Toan pt.de141.2011
Toan pt.de141.2011
BẢO Hí
 
Toan pt.de087.2010
Toan pt.de087.2010Toan pt.de087.2010
Toan pt.de087.2010
BẢO Hí
 
Toan pt.de085.2010
Toan pt.de085.2010Toan pt.de085.2010
Toan pt.de085.2010
BẢO Hí
 
Toan pt.de065.2011
Toan pt.de065.2011Toan pt.de065.2011
Toan pt.de065.2011
BẢO Hí
 
Toan pt.de052.2011
Toan pt.de052.2011Toan pt.de052.2011
Toan pt.de052.2011
BẢO Hí
 
Toan pt.de060.2011
Toan pt.de060.2011Toan pt.de060.2011
Toan pt.de060.2011
BẢO Hí
 
Toan pt.de058.2011
Toan pt.de058.2011Toan pt.de058.2011
Toan pt.de058.2011
BẢO Hí
 
Toan pt.de078.2010
Toan pt.de078.2010Toan pt.de078.2010
Toan pt.de078.2010
BẢO Hí
 
Toan pt.de101.2011
Toan pt.de101.2011Toan pt.de101.2011
Toan pt.de101.2011
BẢO Hí
 
Toan pt.de097.2011
Toan pt.de097.2011Toan pt.de097.2011
Toan pt.de097.2011
BẢO Hí
 
Toan pt.de138.2011
Toan pt.de138.2011Toan pt.de138.2011
Toan pt.de138.2011
BẢO Hí
 
Toan pt.de011.2012
Toan pt.de011.2012Toan pt.de011.2012
Toan pt.de011.2012
BẢO Hí
 

Viewers also liked (13)

Toan pt.de073.2010
Toan pt.de073.2010Toan pt.de073.2010
Toan pt.de073.2010
 
Toan pt.de141.2011
Toan pt.de141.2011Toan pt.de141.2011
Toan pt.de141.2011
 
Toan pt.de087.2010
Toan pt.de087.2010Toan pt.de087.2010
Toan pt.de087.2010
 
Toan pt.de085.2010
Toan pt.de085.2010Toan pt.de085.2010
Toan pt.de085.2010
 
Toan pt.de065.2011
Toan pt.de065.2011Toan pt.de065.2011
Toan pt.de065.2011
 
Toan pt.de052.2011
Toan pt.de052.2011Toan pt.de052.2011
Toan pt.de052.2011
 
Toan pt.de060.2011
Toan pt.de060.2011Toan pt.de060.2011
Toan pt.de060.2011
 
Toan pt.de058.2011
Toan pt.de058.2011Toan pt.de058.2011
Toan pt.de058.2011
 
Toan pt.de078.2010
Toan pt.de078.2010Toan pt.de078.2010
Toan pt.de078.2010
 
Toan pt.de101.2011
Toan pt.de101.2011Toan pt.de101.2011
Toan pt.de101.2011
 
Toan pt.de097.2011
Toan pt.de097.2011Toan pt.de097.2011
Toan pt.de097.2011
 
Toan pt.de138.2011
Toan pt.de138.2011Toan pt.de138.2011
Toan pt.de138.2011
 
Toan pt.de011.2012
Toan pt.de011.2012Toan pt.de011.2012
Toan pt.de011.2012
 

Similar to Toan pt.de063.2011

thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
Oanh MJ
 
Toan pt.de078.2011
Toan pt.de078.2011Toan pt.de078.2011
Toan pt.de078.2011
BẢO Hí
 
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
schoolantoreecom
 
đề Thi thử môn toán khối d
đề Thi thử môn toán khối dđề Thi thử môn toán khối d
đề Thi thử môn toán khối d
adminseo
 
Toan pt.de082.2010
Toan pt.de082.2010Toan pt.de082.2010
Toan pt.de082.2010
BẢO Hí
 
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
Dang_Khoi
 
Thi thử Toán THPT Triệu Sơn 4 2013
Thi thử Toán THPT Triệu Sơn 4 2013Thi thử Toán THPT Triệu Sơn 4 2013
Thi thử Toán THPT Triệu Sơn 4 2013
dlinh123
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
BẢO Hí
 
Toan pt.de126.2011
Toan pt.de126.2011Toan pt.de126.2011
Toan pt.de126.2011
BẢO Hí
 
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
Dang_Khoi
 
Toan pt.de088.2010
Toan pt.de088.2010Toan pt.de088.2010
Toan pt.de088.2010
BẢO Hí
 
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
Vui Lên Bạn Nhé
 
Toan pt.de033.2011
Toan pt.de033.2011Toan pt.de033.2011
Toan pt.de033.2011
BẢO Hí
 
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
Marco Reus Le
 
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010
BẢO Hí
 
Toan pt.de069.2011
Toan pt.de069.2011Toan pt.de069.2011
Toan pt.de069.2011
BẢO Hí
 
Mathvn.com 10. toan-thuan-thanh1 lan 1-new
Mathvn.com   10. toan-thuan-thanh1 lan 1-newMathvn.com   10. toan-thuan-thanh1 lan 1-new
Mathvn.com 10. toan-thuan-thanh1 lan 1-new
Miễn Cưỡng
 
De thi thu dai hoc mon toan nam 2013
De thi thu dai hoc mon toan nam 2013De thi thu dai hoc mon toan nam 2013
De thi thu dai hoc mon toan nam 2013
adminseo
 
Toan pt.de093.2011
Toan pt.de093.2011Toan pt.de093.2011
Toan pt.de093.2011
BẢO Hí
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
BẢO Hí
 

Similar to Toan pt.de063.2011 (20)

thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
 
Toan pt.de078.2011
Toan pt.de078.2011Toan pt.de078.2011
Toan pt.de078.2011
 
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
Đề thi thử THPT Quốc gia môn Toán Trường THPT Lam Kinh – Thanh Hóa lần 1 năm ...
 
đề Thi thử môn toán khối d
đề Thi thử môn toán khối dđề Thi thử môn toán khối d
đề Thi thử môn toán khối d
 
Toan pt.de082.2010
Toan pt.de082.2010Toan pt.de082.2010
Toan pt.de082.2010
 
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
[Vnmath.com] thpt-chuyen- vo nguyen gipa qb 2015
 
Thi thử Toán THPT Triệu Sơn 4 2013
Thi thử Toán THPT Triệu Sơn 4 2013Thi thử Toán THPT Triệu Sơn 4 2013
Thi thử Toán THPT Triệu Sơn 4 2013
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
 
Toan pt.de126.2011
Toan pt.de126.2011Toan pt.de126.2011
Toan pt.de126.2011
 
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
 
Toan pt.de088.2010
Toan pt.de088.2010Toan pt.de088.2010
Toan pt.de088.2010
 
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
De thi thu dai hoc khoi a a mon toan truong thpt lang giang so 1
 
Toan pt.de033.2011
Toan pt.de033.2011Toan pt.de033.2011
Toan pt.de033.2011
 
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
 
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010
 
Toan pt.de069.2011
Toan pt.de069.2011Toan pt.de069.2011
Toan pt.de069.2011
 
Mathvn.com 10. toan-thuan-thanh1 lan 1-new
Mathvn.com   10. toan-thuan-thanh1 lan 1-newMathvn.com   10. toan-thuan-thanh1 lan 1-new
Mathvn.com 10. toan-thuan-thanh1 lan 1-new
 
De thi thu dai hoc mon toan nam 2013
De thi thu dai hoc mon toan nam 2013De thi thu dai hoc mon toan nam 2013
De thi thu dai hoc mon toan nam 2013
 
Toan pt.de093.2011
Toan pt.de093.2011Toan pt.de093.2011
Toan pt.de093.2011
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
 

More from BẢO Hí

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
BẢO Hí
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
BẢO Hí
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
BẢO Hí
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
BẢO Hí
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
BẢO Hí
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
BẢO Hí
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
BẢO Hí
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
BẢO Hí
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
BẢO Hí
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
BẢO Hí
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
BẢO Hí
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
BẢO Hí
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
BẢO Hí
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
BẢO Hí
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
BẢO Hí
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
BẢO Hí
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
BẢO Hí
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
BẢO Hí
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
BẢO Hí
 
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
BẢO Hí
 

More from BẢO Hí (20)

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
 
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
 

Toan pt.de063.2011

  • 1. Thi thử Đại học www.toanpt.net SỞ GD-ĐT HÀ TĨNH TRƯỜNG THPT TRẦN PHÚ -------- ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2010 - 2011 MÔN TOÁN Thời gian: 180 phút (không kể thời gian giao đề) I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số   3 2 3 2y x x có đồ thị là đường cong  C . 1. Khảo sát sự biến thiên của hàm số và vẽ đường cong  C . 2. Lập phương trình tiếp tuyến của đường cong  C biết tiếp tuyến cắt các trục ,Ox Oy lần lượt tại A, B thoả mãn 9OB OA . Câu II (2 điểm) 1. Giải hệ phương trình             6 2 3 3 2 3 3 6 3 4 x x y y y x x y x y 2. Giải phương trình         1 5 sin2 tan 2cos 2 sin cos2 x x x x x . Câu III (1 điểm) Tính tích phân       2 5 2 2 2 1 5 xdx I x x . Câu IV (1 điểm) Cho lăng trụ tam giác đều 1 1 1.ABC A B C có cạnh đáy bằng a . M là điểm trên cạnh 1AA sao cho 1 3AA AM . Biết 0 1 90BMC  . Tính thể tích khối cầu ngoại tiếp lăng trụ 1 1 1.ABC A B C . Câu V (1 điểm) Cho , ,x y z là các số thực dương, thoả mãn 3x y z   . Tìm giá trị nhỏ nhất của biểu thức 3 3 3 (2 ) (2 ) (2 ) x y z P y z x z x y x y z       . II. PHẦN RIÊNG CHO CÁC THÍ SINH (3,0 điểm) Thí sinh chỉ được làm một trong hai phần 1.Phần dành cho thí sinh theo chương trình chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC cân tại A, cạnh BC nằm trên đường thẳng có phương trình 2 2 0x y   . Đường cao kẻ từ B có phương trình 4 0x y   , điểm  1;0M  thuộc đường cao kẻ từ đỉnh C. Xác định toạ độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ toạ độ Oxyz ,cho điểm    5; 2;2 , 3; 2;6B C  . Tìm toạ độ điểm A thuộc mặt phẳng ( ) :P 2 5 0x y z    sao cho tam giác ABC vuông cân tại đỉnh A. Câu VII.a (1 điểm) Tìm phần ảo của số phức z , biết   2 3 1 2z z i   . 2.Phần dành cho thí sinh theo chương trình nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC, phân giác trong AD có phương trình 2 0x y   , đường cao CH có phương trình 2 5 0x y   . Điểm  3;0M thuộc cạnh AC thoả mãn 2AB AM . Xác định toạ độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ toạ độ Oxyz ,cho điểm    1;2; 1 , 3;0;5B C .Tìm toạ độ điểm A thuộc mặt phẳng ( ) : 2 2 10 0P x y z     sao cho tam giác ABC cân tại A và có diện tích bằng 2 11 . Câu VII.b (1 điểm) Tìm phần ảo của số phức z , biết     2 1 1 2z i z i    . ----------Hết----------- Cán bộ xem thi không giải thích gì thêm Họ và tên thí sinh: ............................................ Số báo danh......
  • 2. Thi thử Đại học www.toanpt.net ĐÁP ÁN VẮN TẮT VÀ HƯỚNG DẪN CHẤM MÔN TOÁN Câu I 1 1 đ Câu I. 1. Khảo sát   3 2 3 2y x x - Tập xác định D R - Sự biến thiên của hàm số + lim , lim x x y y       Đồ thị không có đường tiệm cận  ' 2 3 6 3 2y x x x x    ' 0 0 2y x x     Hàm số đồng biến trên mỗi khoảng     ;0 vµ 2; Hàm số nghịch biến trên  0;2 Điểm cực đại  0;2 , Điểm cực tiểu  2; 2 0,25 -Đồ thị.(0,25) Đi qua  1; 2  , 1;0  3;2 . Đồ thị nhận  1;0I làm điểm uốn HS có thể trình bày theo sơ đồ của CT cơ bản x  0 2  y’ + 0 - 0 + y 2   -2 0,25 0,25 0,5 Câu I 2 1 đ Gọi toạ độ điểm   0 0;M x f x là toạ độ tiếp điểm. Theo giả thiết OB=9OA suy ra hệ số góc của tiếp tuyến bằng 9 hoặc -9         22 0 0 00 0 22 0 0 00 0 ' 9 2 3 0 13 6 9 0 ' 9 2 3 0 23 6 9 0 f x x xx x f x x xx x                    . Phương trình (2) vô nghiệmPhương trình (1) suy ra 0 01, 3x x   Với 0 1x   suy ra phương trình tiếp tuyến 9 7y x  Với 0 3x  suy ra phương trình tiếp tuyến 9 25y x  0,25 0,25 0,25 0,25 Câu II .1 1 đ Điều kiện 3 0,3 3 0, 0x y x x y y                      2 2 3 2 3 3 6 2 3 3 3 3 3 x y x y x yx x y y y x y y y y y Đặt   3x y t y suy ra 2 3 2 3 0 1 2 t t t t        +Với 1t   ta có 3x y y   (3) 2 0 3 y x y y      thay vào (2) ta có 2 2 2 2 5 4y y y   2 2 2 5 4y y y     2 2 7 4 0y y     1 4 2 y y    (loại) Thay 4y   vào (3) ta có 4x  . suy ra  4; 4 là nghiệm +Với 3 2 t  ta có 3 3 2 x y y  (3) 2 0 9 3 4 y x y y       từ (2)  2 29 5 9 2 5 4 4 2 2 y y y y    Đặt 29 5 4 2 y y u  ( 0u  )Ta có 2 2 2 4 0u u    2 1u u    (loại) Với 2 8 2 9 10 16 0 2 9 u y y y y          (loại) Thay 8 9 y  vào (3) ta có 8 9 x  . suy ra 8 8 ; 9 9       là nghiệm 0,25 0,25 0,25 0,25 Câu II 2 1 đ Điều kiện cos 0,sin cos 0x x x   0,25      1 sin 2sin cos 2sin 0 cos sin cos2 x x x x x x x     2 1 sin 2sin 0 cos sin cos2 x x x x x 0,25 y x 2 -2 20 1 3 -1
  • 3. Thi thử Đại học www.toanpt.net 2 sin .sin 2sin .cos 4 x x x x        sin 0 2 2 sin2 sin 4 4 5 2 2 4 x k x x x k x x x x k                            2 4 5 2 12 3 x k x k k x                    0,5 Câu III 1đ Đặt 2 2 2 5 5t x t x xdx tdt       Với 2 3x t   , 2 5 5x t   Vậy 5 5 2 2 3 3( 4) 4 tdt dt I t t t      (0,25 ) 5 3 1 1 1 4 2 2 dt t t          (0,25) 5 3 1 2 1 15 ln ln 4 2 4 7 t t     (0,25) 0,25 0,75 Câu IV 1đ Đặt 1AA x suy ra 1 2 ; 3 3 x x AM A M  Tam giác 1MBC vuông tại M 2 2 2 1 1MB MC BC   2 2 2 2 2 2 2 24 4 3 9 9 9 2 x x x a a a x a a x         Gọi 1,O O là tâm của đáy ABC và 1 1 1A B C , I là trung điểm của 1OO , Suy ra I là tâm mặt cầu ngoại tiếp lăng trụ. 2 2 2 2 2 2 3 3 43 3 4 48 a a a R AO OI                 43 4 3 R a  Vậy 3 3 34 4 43 43 43 3 3 144 34 3 V R a a            0,25 0,25 0,25 0,25 Câu V 1đ Áp dụng bất đẳng thức Côsi cho 3 số dương ta có 3 2 (2 ) 3 9 x y z x x y z x      (1) Tương tự 3 2 (2 ) 3 9 y z x y y z x y      (2) 3 2 (2 ) 3 9 z x y z z x y z      (3) Cộng theo vế của (1), (2), (3) ta có 3 x y z P    1 Dấu  xảy ra khi 1x y z   0,5 0,25 0,25 Phần dành cho thí sinh theo chương trình chuẩn Câu VIa. 1 Toạ độ B là nghiệm của hệ 4 0 2 2 0 x y x y        Suy ra  2;2B  Gọi d là đường thẳng qua M song song với BC : 2 1 0d x y    Gọi N là giao điểm của d với đường cao kẻ từ B. Toạ độ N là nghiệm của hệ 4 0 2 1 0 x y x y        Suy ra  3;1N  Gọi I là trung điểm MN 1 2; 2 I        . Gọi E là trung điểm BC. Do tam giác ABC cân nên IE là đường trung trực BC .IE đi qua I vuông góc với BC : 4 2 9 0IE x y    . Toạ độ E là nghiệm của hệ 2 2 0 7 17 , 4 2 9 0 5 10 x y E x y             4 7 ; 5 5 C        . CA đi qua C vuông góc với BN suy ra 3 : 0 5 CA x y   Toạ đô A là nghiệm của hệ 4 2 9 0 3 0 5 x y x y         13 19 ; 10 10 A        0,25 0,25 0,25 00,25 I B C A NM E A B C A1 B1 C1 M O O1 I
  • 4. Thi thử Đại học www.toanpt.net Câu VIa. 2 ( 2;0;4)BC    .Trung điểm của BC có toạ độ  4; 2;4 Gọi (Q) là mặt phẳng trung trực của BC.        : 2 4 0 2 4 4 0Q x y z        : 2 4 0Q x z    Gọi d là giao tuyến của mặt phẳng (P) và (Q) Chọn  , 2; 5;1d P Qu n n        , Điểm  0;3;2 thuộc mặt phẳng (p) và (Q) suy ra 2 3 5 2 x t d y t z t        . Ta có tam giác ABC cân suy ra A thuộc d. Gọi toạ độ  2 ;3 5 ;2A t t t  (2 5;5 5 ; ); (2 3;5 5 ; 4)BA t t t CA t t t          Tam giác ABC vuông suy ra        2 0 2 5 2 3 5 5 4 0BACA t t t t t          2 4 3 7 4 0 1 3 t t t t       Với  1 2; 2;3t A   , 4 8 11 10 ; ; 3 3 3 3 t A         0,25 0,25 0,25 0,25 Câu VIIa. Tìm phần ảo của số phức z biết   2 3 1 2z z i   Đặt z a bi z a bi     Ta có     2 3 1 2 4 2 1 4 4 4 2 3 4a bi a bi i a bi i a bi i               3 4 3 4 2 4 2 a a b b              . Vậy 3 2 4 z i    . Vậy phần ảo của z bằng -2 0,25 0,25 0,5 Phần dành cho thí sinh theo chương trình nâng cao Câu VIb. 1 Đường thẳng d qua M vuông góc với AD của có phương trình 3 0x y   ; Gọi I, E là giao diểm của AD, AB với d. Dễ thấy tam giác AME cân tại A Toạ độ I là nghiệm của hệ   3 0 5 1 ; 2; 1 2 0 2 2 x y I E x y               AB là đường thẳng qua E vuông góc với CH : 2 3 0AB x y   Toạ độ A là nghiệm của hệ   2 3 0 1;1 2 0 x y A x y        . Do 2AB AM E là trung điểm AB suy ra  3; 3B  Phương trình : 2 3 0AM x y   Toạ độ C là nghiệm của hệ   2 3 0 1;2 2 5 0 x y C x y         0,25 0,25 0,25 0,25 Câu VIb 2 (2; 2;6)BC    .Trung điểm của BC có toạ độ I 2;1;2 Gọi (Q) là mặt phẳng trung trực của BC.        :2 2 2 1 6 2 0Q x y z       : 3 7 0Q x y z     Gọi d là giao tuyến của mặt phẳng (P) và (Q) Chọn  , 4; 1;1d P Qu n n         , Điểm  4; 3;0 thuộc mặt phẳng (p) và (Q) suy ra 4 4 3 x t d y t z t         . Ta có tam giác ABC cân suy ra A thuộc d. 0,25 d I B C A D E M H d B C A I
  • 5. Thi thử Đại học www.toanpt.net Gọi toạ độ  4 4 ; 3 ;A t t t     2 4 ; 4 ; 2IA t t t       1 2 11 . 11 2 2 ABCS BC AI   . Do 2 11 22BC AI         2 2 2 2 2 4 4 2 22 18 12 24 22t t t t t          2 1 9 6 1 0 3 t t t      Suy ra 8 10 1 ; ; 3 3 3 A       0,25 0,25 0,25 Câu VIIb Đặt z a bi z a bi     Ta có        2 1 1 2 1 4 4a bi i a bi i a bi a ai bi b i                 3 3 2 3 4 2 4 10 b b b b a i i b a a                  Vậy 10 3z i  Suy ra phần ảo của z bằng 3 0,25 0,25 0,5