SlideShare a Scribd company logo
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 1
SỞ GD&ĐT NGHỆ AN
TRƯỜNG THPT ĐẶNG THÚC HỨA
ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM 2012
Môn thi: TOÁN; Khối: A & B
Thời gian làm bài: 180 phút, không kể thời gian phát đề.
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):
Câu I (2,0 điểm) Cho hàm số 3 2 2 3
3 3( 1) 1y x mx m x m= − + − − + , (1) (m là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1m = .
2. Gọi d là tiếp tuyến tại điểm cực đại A của đồ thị hàm số (1). Đường thẳng d cắt trục toạ độ Oy tại điểm .B
Tìm các giá trị thực của tham số m để diện tích tam giác OAB bằng 6, trong đó O là gốc của hệ toạ độ.
Câu II (2,0 điểm)
1. Giải phương trình
2 sin 1 1
2 cos cos
2 cos2 1 2 sin 1 3 3 2
x
x x
x x
π π      + = + − +     − +    
2. Giải hệ phương trình
2 1
( , )
5 1 1
x
x y
x y x y
y x y
 − = − ∈
 − − =
ℝ
Câu III (1,0 điểm) Tính tích phân
( )6
1
ln 2 3
3
x x
I dx
x
+ +
=
+
∫
Câu IV (1,0 điểm) Cho hình lăng trụ . ' ' 'ABC A B C có đáy ABC là tam giác vuông tại A,
2 , 4 , ' 2 3AB a BC a A C a= = = ( 0)a > . Gọi M là trung điểm của cạnh BC . Biết 'A B vuông góc với mặt
phẳng ( ' )AB M . Chứng minh tam giác 'A BC vuông và tính thể tích khối lăng trụ . ' ' 'ABC A B C theo a .
Câu V (1,0 điểm) Cho các số thực dương , ,a b c thoả mãn 2 2 2
2 2 0a b c ab bc ca+ + + − − = . Tìm giá trị nhỏ nhất
của biểu thức
2 2
2 2 2
( )
c c ab
P
a ba b c a b
= + +
++ − +
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ ,Oxy cho đường tròn 2 2
( ) : 10 10 30 0C x y x y+ − − + = . Viết phương trình
đường thẳng ∆ tiếp xúc với đường tròn ( )C sao cho đường thẳng ∆ cắt hai trục toạ độ ,Ox Oy lần lượt tại
,A B thoả mãn 2 2
1 1 1
5OA OB
+ = .
2. Trong không gian với hệ toạ độ ,Oxyz cho đường thẳng
1 3 2
:
2 2 1
x y z
d
+ − −
= =
−
, mặt phẳng
( ) : 2 2 5 0P x y z− − − = và điểm (0; 1;1).A − Xác định toạ độ điểm M trên đường thẳng d và điểm N
trên mặt phẳng ( )P sao cho mặt phẳng ( )AMN vuông góc với đường thẳng d và tam giác AMN cân tại A.
Câu VII.a (1,0 điểm) Tìm số phức z thoả mãn
2 2
2
2 1 2
iz z i
z
i i
− +
− =
+ −
.
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ ,Oxy cho hình vuông ABCD có đỉnh A thuộc đường thẳng
: 4 0d x y− − = , đường thẳng ,BC CD lần lượt đi qua hai điểm (4;0)M và (0;2).N Biết tam giác AMN
cân tại A, xác định toạ độ các đỉnh của hình vuông .ABCD
2. Trong không gian với hệ toạ độ ,Oxyz cho điểm (1;2;1)M và đường thẳng :
1 2 2
x y z
d = =
−
. Viết phương
trình mặt phẳng ( )P đi qua M và song song với đường thẳng d sao cho mặt phẳng ( )P cắt các tia
, ,Ox Oy Oz lần lượt tại các điểm , ,A B C sao cho thể tích khối chóp .O ABC bằng 9.
Câu VII.b (1,0 điểm) Trong các số phức z thoả mãn 2
| | 1z i− = , tìm số phức z có môđun lớn nhất.
---------------Hết---------------
Chú ý: Thí sinh có thể xem điểm thi và đáp án tại các địa chỉ: http://thpt-dangthuchua-nghean.edu.vn hoặc www.k2pi.net
Thi thử Đại học www.toanpt.net
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 2
-3 -2 -1 1 2 3 4 5 6
-5
-4
-3
-2
-1
1
2
3
x
y
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 2 – NĂM 2012
CÂU NỘI DUNG ĐIỂM
Khi m =1 ta có hàm số 3 2
3y x x= − . Tập xác định D = ℝ .
Sự biến thiên
Chiều biến thiên:
2
' 3 6y x x= − ; ' 0 0 v 2y x x= ⇔ = =
' 0 ( ;0) (2; )y x> ∀ ∈ −∞ ∪ +∞ . Hàm số đồng biến trên các khoảng ( ;0)−∞ và (2; )+∞
' 0 (0;2)y x< ∀ ∈ . Hàm số nghịch biến trên khoảng (0;2).
0,25
Cực trị: Hàm số đạt cực đại tại x = 0, yCĐ=0. Hàm số đạt cực tiểu tại x =2, yCT= -4.
Giới hạn: 3 2 3 2
lim ( 3 ) , lim ( 3 )
x x
x x x x
→−∞ →+∞
− = −∞ − = +∞ 0,25
Bảng biến thiên
x -∞ 0 2 +∞
y’ + 0 - 0 +
y
0 +∞
-∞ - 4
0,25
I.1
(1 điểm)
Đồ thị:
Đồ thị hàm số cắt trục Ox tại các điểm (0;0) và (3;0)
Đồ thị hàm số cắt trục Oy tại điểm (0;0).
0,25
Ta có 2 2
' 3 6 3( 1)y x mx m= − + − ;
2 2
' 0 2 1 0 1 v 1y x mx m x m x m= ⇔ − + − = ⇔ = − = +
Hàm số có cực đại, cực tiểu m∀ ∈ ℝ .
0,25
Khi đó điểm cực đại là ( 1; 3 3)A m m− − + .
Phương trình tiếp tuyến d tại điểm A là: '( )( )A A A
y y x x x y= − + 3 3y m⇔ = − + .
0,25
Ta có { } (0; 3 3)B d Oy B m= ∩ ⇒ − +
Điều kiện để có tam giác OAB là 1m ≠ .
Do tiếp tuyến d song song với trục Ox nên tam giác OAB vuông tại B
0,25
I.2
(1 điểm)
| 1 |, | 3 3 |AB m OB m= − = − +
Diện tích tam giác OAB là 21
. ( 1) 4
2OAB
S ABOB m= ⇔ − = 1 v 3m m⇔ = − = .
0,25
Điều kiện:
1
cos2
2 ,
1 6
sin
2
x
x k k
x
π
π
 ≠ ⇔ ≠ ± + ∈
 ≠ −
ℤ . 0,25
II.1
(1 điểm)
Phương trình đã cho tương đương với 2
2 sin 1 2 1
cos cos2
2 sin 1 3 21 4 sin
x
x
xx
π  + = + +  +−  
0,25
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 3
1
cos2
2 cos2 1
x
x
⇔ =
−
2
2 cos 2 cos2 1 0x x⇔ − − = 0,25
cos2 1
( )1
cos2
2 3
x x k
k
x x k
π
π
π
 = = 
 ⇔ ⇔ ∈
 = − = ± +  
ℤ (Thoả mãn điều kiện). 0,25
Điều kiện:
0
1
5
x
y
 ≠
 ≥
Phương trình (1) tương đương với
2
2 2
0 ( )( 1) 0
x y
x y x y xy
xy
−
− + = ⇔ − + =
2
1
y x
x
y
 =
⇔  = −

0,25
* Với 2
y x= thế vào phương trình (2) ta có 2 2
5 1 1x x x− = + (3)
+ Nếu 0x > thì phương trình (3) trở thành 2 2 4 2
5 1 1 3 2 0x x x x− = + ⇔ − + =
2 2
1
1 v 2
2
x
x x
x
 =⇔ = = ⇔ 
=
(Thoả mãn)
1
v
2
x
x
 = −

= −
(Loại)
Hệ phương trình có 2 nghiệm
1 2
,
1 2
x x
y y
  = =  
 = =  
0,25
+ Nếu 0x < thì phương trình (3) trở thành
2
2 2
4 2
1
5 1 1
7 2 0
x
x x
x x
 ≤− = − ⇔ 
 − + =
2 7 41
2
x
−
⇔ =
7 41
2
x
−
⇔ = − (Thoả mãn) v
7 41
2
x
−
= (Loại)
Hệ phương trình có 1 nghiệm
7 41
2
7 41
2
x
y
 − = −
 − =
0,25
* Với
1
x
y
= − thế vào phương trình (2) ta có
1
5 1 1y
y
− + = (4)
Nếu
1
1
5
y≤ < thì
1
1
y
> nên phương trình (4) vô nghiệm ⇒ Hệ phương trình vô nghiệm.
Nếu 1y ≥ thì 5 1 2y − ≥ nên phương trình (4) vô nghiệm ⇒ Hệ phương trình vô nghiệm.
0,25
II.2
(1 điểm)
Kết luận: Hệ phương trình có 3 nghiệm:
1 2
,
1 2
x x
y y
  = =  
 = =  
,
7 41
2
7 41
2
x
y
 − = −
 − =
Đặt 2
3 3t x t x= + ⇔ = +
Khi x = 1 thì t = 2; khi x = 6 thì t = 3 ; Ta có dx = 2tdt
0,25
III
(1 điểm)
Do đó
3 3 3 3
3 2
2 2 2 2
2 ln( 3 2) 2 ln ( 1) ( 2) 4 ln( 1) 2 ln( 2)I t t dt t t dt t dt t dt = − + = − + = − + +  ∫ ∫ ∫ ∫ 0,25
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 4
* Tính
3
1
2
4 ln( 1)I t dt= −∫ . Đặt
ln( 1)
1
1
dtu t du
t
dv dt v t
  = − = ⇒  − =  = − 
Do đó
3
1
2
3
4( 1)ln( 1) 4 8 ln 2 4
2
I t t dt= − − − = −∫
0,25
* Tính
3
2
2
2 ln( 2)I t dt= +∫ . Đặt
ln( 2)
2
2
dtu t du
t
dv dt v t
  = + = ⇒  +
 =  = + 
Do đó
3
2
2
3
2( 2)ln( 2) 2 10 ln 5 8 ln 4 2
2
I t t dt= + + − = − −∫
Vì vậy, 1 2
10 ln 5 8 ln 2 6I I I= + = − − .
0,25
0,25
Gọi {I}=AB’∩A’B
A’B⊥(AB’M) ⇒ A’B⊥MI
MI là đường trung bình của tam giác A’BC ⇒MI//A’C
Do đó A’B⊥ A’C ⇒ 'A BC∆ vuông tại A’
'A BC∆ vuông tại A’⇒
1
' 2
2
A M BC a= =
và A’B=2a
ABC∆ vuông tại A ⇒
1
2
2
AM BC a= =
A’B⊥(AB’M) ⇒ A’B⊥AB’⇒ Tứ giác ABB’A’ là
hình thoi ⇒ AA’ = AB = 2a.
Do đó tứ diện A’ABM là tứ diện đều với cạnh bằng 2a.
0,25
Gọi N là trung điểm của cạnh AB ⇒ 3MN a= .
Gọi H là tâm của tam giác đều ABM ⇒ A’H⊥(ABM) và
2 2 3
3 3
a
HM MN= =
⇒ 2 2 2 6
' '
3
a
A H A M HM= − =
0,25
IV
(1 điểm)
Thề tích khối lăng trụ ABC.A’B’C’ là 3
. ' ' '
1
. ' . . ' 4 2
2ABC A B C ABC
V S A H AB AC A H a= = = 0,25
Từ giả thiết ta có 2
( )a b c ab+ − = . Đặt ,
a b
x y
c c
= = ( , 0x y > ) 0,25
Áp dụng BĐT
2
( )
4
x y
xy
+
≤ .Từ giả thiết ta có
2
2 ( ) 2
( 1) 2
4 3
x y
xy x y x y
+
= + − ≤ ⇒ ≤ + ≤ 0,25
Áp dụng bất đẳng thức : 2
2
( )
xy xy
x y x y
≥
+ +
và
1 1 4
, , 0A B
A B A B
+ ≥ ∀ >
+
Khi đó 2 2 2 2 2 2
1 1 1 1 2
( 1) ( )
xy xy
P
x y xyx y x y x y x y
= + + ≥ + +
++ − + + +
0,25
V
(1 điểm)
2 2 2 2 2 2 2
1 1 1 2 4 1 2 4 2
2 2
2 2 2 ( )( ) 2 ( ) ( )
xy xy
xy xy xy x yx y x y x y xy x y x y
     = + + + ≥ + = + ≥     ++ + + + + +   
Vậy min 2P = đạt được khi 1x y= =
0,25
VI.a.1 Đường tròn (C) có tâm I(5;5), bán kính 2 5R = 0,25
A
B
M
C
A’ C’
B’
I
K
HN
2a2a
2 3 a
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 5
Giả sử A(a,0), B(0 ;b) (a,b ≠0). Phương trình đường thẳng : 1
x y
a b
∆ + = 0,25
Từ giả thiết ta có hệ phương trình
2 2
2 2
2 2
2 2
1 1 1
5 1 1 1
1 1 1 5 5 515 5 5
( , ) 1 22 5
1 1
a b
a b
OA OB a b
d I R
a b
a b
 + =    + = + =   + −⇔ ⇔  
    ∆ = + − ==      +
0,25
(1 điểm)
1 1 3 1 1 1
5 5v
1 2 1 2
25 25
a b a b
ab ab
   + = + = −   ⇔  
  = = −    
1 1 1 2 1 2 1 1
5 5 5 5v v v
1 2 1 1 1 1 1 2
5 5 5 5
a a a a
b b b b
         = = = − =         ⇔    
      = = = = −            
Các phương trình đường thẳng ∆ là: x+2y-5=0; 2x+y-5=0; 2x – y +5 =0; x -2y -5 = 0.
0,25
Một vectơ chỉ phương của đường thẳng d là (2; 2;1)u = −
Do ( )AMN d⊥ nên một vectơ pháp tuyến của mặt phẳng (AMN) là (2; 2;1)n u= = −
Phương trình mặt phẳng (AMN) là : 2x -2y + z -3 = 0.
0,25
Ta có { } ( )M d AMN= ∩ . Toạ độ điểm M là nghiệm của hệ phương trình
11 3 2
12 2 1
2 2 3 0 3
xx y z
y
x y z z
 = + − −  = =  ⇔ = −  − + − = =  
. Ta có M(1 ;1 ; 3)
0,25
Ta có { } ( ) ( )N P AMN= ∩ . Giả sử N(a; b; c)
Từ giả thiết ta có hệ phương trình
( )
( )
N P
N AMN
AM AN
 ∈ ∈
 =
2 2 2
2 2 5 0
2 2 3 0
( 1) ( 1) 9
a b c
a b c
a b c
 − − − =⇔ − + − =
 + + + − =
0,25
VI.a.2
(1 điểm)
2 2
( 1) 5 2 1
2 0 v 3
1 1 1
a a a a
b a b b
c c c
    + − = = = −      ⇔ = − ⇔ = = −  
    = − = − = −      
Ta có N(2 ; 0 ; -1) thoả mãn, N(- 1 ; - 3 ; - 1) bị loại do A là trung điểm của đoạn thẳng MN.
0,25
Phương trình đã cho tương đương với (2 )(1 2 ) ( 2 )(2 ) 2(2 )(1 2 )iz i z i i i i z− − − + + = + − 0,25
(2 4 ) (2 ) (4 3 )i i z i z⇔ − − + = − (1) 0,25
Giả sử ,( , )z x yi x y= + ∈ ℝ
Khi đó phương trình (1) tương đương với (2 4 ) (2 )( ) (4 3 )( )i i x yi i x yi− − + + = − −
(2 2 ) (4 2 ) (4 3 ) (3 4 )x y x y i x y x y i⇔ − + − + + = − − +
0,25
VII.a.
(1 điểm)
2 2 4 3 3 2 1 1
4 2 3 4 2 1
x y x y x y x
x y x y x y y
    − + = − − = =    ⇔ ⇔ ⇔  
  + + = + + = =      
Vậy số phức 1z i= + .
0,25
Giả sử A(t ;t-4) ∈d. Do tam giác AMN cân tại A nên AM =AN
2 2 2 2
( 4) ( 4) ( 6) 1t t t t t⇔ − + − = + − ⇔ = − . Ta có A( - 1 ; -5 )
0,25
VI.b.1
(1 điểm)
Giả sử phương trình đường thẳng BC đi qua M(4;0) có dạng: 4 0ax by a+ − = ( 2 2
0a b+ ≠ )
Do CD⊥BC và đường thẳng CD đi qua điểm N(0 ;2)
⇒ phương trình đường thẳng CD là 2 0bx ay a− + =
0,25
Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 6
Do ABCD là hình vuông nên khoảng cách
2 2 2 2
| 5 5 | | 7 |
( , ) ( , )
a b a b
d A BC d A CD
a b a b
− − −
= ⇔ =
+ +
3 v 3a b a b⇔ = − = 0,25
* Với 3a = - b chọn a= 1, b = - 3. Phương trình các cạnh
AB: 3x + y + 8= 0
BC: x-3y-4=0
CD: 3x + y – 2= 0
DA: x-3y-14=0
Ta có A(-1;-5), B(-2; -2), C(1;-1), D(2;-4).
*Với a = 3b chọn a = 3, b = 1. Phương trình các cạnh
AB: x -3y-14=0
BC: 3x+y-12=0
CD: x -3y + 6 = 0
DA: 3x+y + 8 = 0
Ta có A(-1; - 5), B(5;-3), C(3;3), D(-3;1).
0,25
Giả sử A(a;0;0), B(0;b;0), C(0;0;c), ( , , 0a b c > )
Phương trình mặt phẳng (P): 1
x y z
a b c
+ + = .
0,25
Một vectơ pháp tuyến của mặt phẳng (P) là
1 1 1
( ; ; )n
a b c
= .
Một vectơ chỉ phương của đường thẳng d là (1;2; 2)u = −
0,25
Từ giả thiết ta có hệ phương trình
.
1 2 1
1
( )
1 2 2
. 0 0
9
9
6
O ABC
M P a b c
n u
a b c
V abc
 + + =  ∈    = ⇔ + − = 
  =    =
0,25
VI.b.2
(1 điểm)
1 2 2 1 1
3 3
1 2 1 1 1
.
9 6
1 1 1 1
3 3
a b a
a b b
c c
   + = =      ⇔ = ⇔ = 
     = =    
. Phương trình mặt phẳng (P) là: 2 2 6 0x y z+ + − = 0,25
Giả sử ,( , )z x yi x y= + ∈ ℝ . Ta có 2 2
| |z x y= +
Áp dụng Bất đẳng thức Cauchy ta có 2 2 2 2
2 2 | | 2x y x y xy xy+ ≥ = ≥ hay 2
2 | |xy z≤ (1)
0,25
Ta có 2 2 2
( ) 2z x y xyi= − + .
Từ giả thiết 2 2 2 2 2
| | 1 ( ) (2 1) 1z i x y xy− = ⇔ − + − = 2 2 2
( ) 4x y xy⇔ + = (2)
0,25
Từ (1) và (2) ta có 4 2
| | | | | | 2z z z≤ ⇒ ≤ 0,25
VII.b.
(1 điểm)
Vậy max | | 2z = , đạt được khi
2 2
| |
2
x y
xy xy
x y
 = =
 + =
1 1
v
1 1
x x
y y
  = = −  ⇔  
 = = −   
hay 1z i= + hoặc 1z i= − −
0,25
Chú ý: Những thí sinh có lời giải khác với đáp án, Giám khảo tự điều chỉnh thang điểm cho phù hợp.
Xin chân thành cảm ơn các thầy giáo, cô giáo: Phạm Kim Chung, Nguyễn Thị Thoả (THPT Đặng Thúc Hứa) đã giải và
phản biện đề thi!
CHÚC CÁC THÍ SINH ĐẠT ĐƯỢC KẾT QUẢ CAO TRONG KỲ THI TUYỂN SINH VÀO ĐẠI HỌC!

More Related Content

What's hot

Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Trungtâmluyệnthi Qsc
 
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
BẢO Hí
 
De thi thu dai hoc so 88
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88
Trần Văn Khoa Tieuphong
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungtâmluyệnthi Qsc
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Jo Calderone
 
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Jo Calderone
 
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012
BẢO Hí
 
On thi-dh-su-tuong-giao-cua-dths
On thi-dh-su-tuong-giao-cua-dthsOn thi-dh-su-tuong-giao-cua-dths
On thi-dh-su-tuong-giao-cua-dths
vanthuan1982
 
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)
Song Tử Mắt Nâu
 
Khoi a+a1.2012
Khoi a+a1.2012Khoi a+a1.2012
Khoi a+a1.2012
BẢO Hí
 
Tai lieu luyen thi dai hoc de thi dh toan khoi a1 - nam 2012
Tai lieu luyen thi dai hoc   de thi dh toan khoi a1 - nam 2012Tai lieu luyen thi dai hoc   de thi dh toan khoi a1 - nam 2012
Tai lieu luyen thi dai hoc de thi dh toan khoi a1 - nam 2012
Trungtâmluyệnthi Qsc
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
hai tran
 
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vnĐề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
Megabook
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
BẢO Hí
 
Toan pt.de096.2011
Toan pt.de096.2011Toan pt.de096.2011
Toan pt.de096.2011
BẢO Hí
 
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiếtBộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
Webdiemthi.vn - Trang Thông tin tuyển sinh và Du học
 
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
Dang_Khoi
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
BẢO Hí
 
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
Dương Ngọc Taeny
 

What's hot (20)

Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
 
De thi thu dai hoc so 88
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
 
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
Đề thi thử ĐH toán Chuyên Quốc Học Huế 2014 - Khối B - Lần 1
 
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012
 
On thi-dh-su-tuong-giao-cua-dths
On thi-dh-su-tuong-giao-cua-dthsOn thi-dh-su-tuong-giao-cua-dths
On thi-dh-su-tuong-giao-cua-dths
 
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)
 
Khoi a+a1.2012
Khoi a+a1.2012Khoi a+a1.2012
Khoi a+a1.2012
 
Tai lieu luyen thi dai hoc de thi dh toan khoi a1 - nam 2012
Tai lieu luyen thi dai hoc   de thi dh toan khoi a1 - nam 2012Tai lieu luyen thi dai hoc   de thi dh toan khoi a1 - nam 2012
Tai lieu luyen thi dai hoc de thi dh toan khoi a1 - nam 2012
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
 
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vnĐề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
Đề thi thử và đáp án chi tiết môn Toán học số 3 - Megabook.vn
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
 
Toan pt.de096.2011
Toan pt.de096.2011Toan pt.de096.2011
Toan pt.de096.2011
 
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiếtBộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
 
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
 
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
 
Laisac.de2.2012
Laisac.de2.2012Laisac.de2.2012
Laisac.de2.2012
 

Viewers also liked

Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
BẢO Hí
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
BẢO Hí
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
BẢO Hí
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
BẢO Hí
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
BẢO Hí
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
BẢO Hí
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
BẢO Hí
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
BẢO Hí
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
BẢO Hí
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
BẢO Hí
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
BẢO Hí
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
BẢO Hí
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
BẢO Hí
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
BẢO Hí
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
BẢO Hí
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
BẢO Hí
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
BẢO Hí
 
Toan pt.de006.2012
Toan pt.de006.2012Toan pt.de006.2012
Toan pt.de006.2012
BẢO Hí
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
BẢO Hí
 

Viewers also liked (19)

Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
 
Toan pt.de006.2012
Toan pt.de006.2012Toan pt.de006.2012
Toan pt.de006.2012
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
 

Similar to Toan pt.de083.2012

Tai lieu luyen thi dai hoc de thi dh toan khoi b
Tai lieu luyen thi dai hoc   de thi dh toan khoi bTai lieu luyen thi dai hoc   de thi dh toan khoi b
Tai lieu luyen thi dai hoc de thi dh toan khoi b
Trungtâmluyệnthi Qsc
 
Khoi b.2011
Khoi b.2011Khoi b.2011
Khoi b.2011
BẢO Hí
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Trungtâmluyệnthi Qsc
 
Khoi d.2012
Khoi d.2012Khoi d.2012
Khoi d.2012
BẢO Hí
 
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
dlinh123
 
Mathvn.com 3. toan d lan 1 pdluu nghe an
Mathvn.com   3. toan d lan 1 pdluu nghe anMathvn.com   3. toan d lan 1 pdluu nghe an
Mathvn.com 3. toan d lan 1 pdluu nghe an
Miễn Cưỡng
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
Trungtâmluyệnthi Qsc
 
Khoi b.2010
Khoi b.2010Khoi b.2010
Khoi b.2010
BẢO Hí
 
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
GiaSư NhaTrang
 
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
Linh Nguyễn
 
đáp án đề thi đại học khối a, a1 năm 2013 môn toán
đáp án đề thi đại học khối a, a1 năm 2013 môn toánđáp án đề thi đại học khối a, a1 năm 2013 môn toán
đáp án đề thi đại học khối a, a1 năm 2013 môn toán
Đề thi đại học edu.vn
 
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
Hương Lan Hoàng
 
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
dethinet
 
Tai lieu luyen thi dai hoc de thi dh toan khoi a 2011
Tai lieu luyen thi dai hoc   de thi dh toan khoi a 2011Tai lieu luyen thi dai hoc   de thi dh toan khoi a 2011
Tai lieu luyen thi dai hoc de thi dh toan khoi a 2011
Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Trungtâmluyệnthi Qsc
 

Similar to Toan pt.de083.2012 (20)

Da toan a
Da toan aDa toan a
Da toan a
 
Tai lieu luyen thi dai hoc de thi dh toan khoi b
Tai lieu luyen thi dai hoc   de thi dh toan khoi bTai lieu luyen thi dai hoc   de thi dh toan khoi b
Tai lieu luyen thi dai hoc de thi dh toan khoi b
 
Khoi b.2011
Khoi b.2011Khoi b.2011
Khoi b.2011
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
Khoi d.2012
Khoi d.2012Khoi d.2012
Khoi d.2012
 
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
Thi thử toán THPT Lý Thái Tổ BN lần 1 2014
 
Mathvn.com 3. toan d lan 1 pdluu nghe an
Mathvn.com   3. toan d lan 1 pdluu nghe anMathvn.com   3. toan d lan 1 pdluu nghe an
Mathvn.com 3. toan d lan 1 pdluu nghe an
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
 
Khoi b.2010
Khoi b.2010Khoi b.2010
Khoi b.2010
 
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
[Www.giasunhatrang.net]dap an-toan dh-k_a_1a_2013
 
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
Dap an-de-thi-dai-hoc-mon-toan-khoi-a-a1-2013
 
Da toana a1ct_dh_k13
Da toana a1ct_dh_k13Da toana a1ct_dh_k13
Da toana a1ct_dh_k13
 
đáp án đề thi đại học khối a, a1 năm 2013 môn toán
đáp án đề thi đại học khối a, a1 năm 2013 môn toánđáp án đề thi đại học khối a, a1 năm 2013 môn toán
đáp án đề thi đại học khối a, a1 năm 2013 môn toán
 
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
Dap an-mon-toan-khoi-a a1-dai-hoc-nam2013
 
Da toan a-cd
Da toan a-cdDa toan a-cd
Da toan a-cd
 
Da toan b-cd
Da toan b-cdDa toan b-cd
Da toan b-cd
 
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Toán - Khối A - Kỳ thi Đại học năm 2012
 
Tai lieu luyen thi dai hoc de thi dh toan khoi a 2011
Tai lieu luyen thi dai hoc   de thi dh toan khoi a 2011Tai lieu luyen thi dai hoc   de thi dh toan khoi a 2011
Tai lieu luyen thi dai hoc de thi dh toan khoi a 2011
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
 

More from BẢO Hí

Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
BẢO Hí
 
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
BẢO Hí
 
Toan pt.de054.2012
Toan pt.de054.2012Toan pt.de054.2012
Toan pt.de054.2012
BẢO Hí
 
Toan pt.de052.2012
Toan pt.de052.2012Toan pt.de052.2012
Toan pt.de052.2012
BẢO Hí
 
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012
BẢO Hí
 
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012
BẢO Hí
 
Toan pt.de048.2012
Toan pt.de048.2012Toan pt.de048.2012
Toan pt.de048.2012
BẢO Hí
 
Toan pt.de047.2012
Toan pt.de047.2012Toan pt.de047.2012
Toan pt.de047.2012
BẢO Hí
 
Toan pt.de046.2012
Toan pt.de046.2012Toan pt.de046.2012
Toan pt.de046.2012
BẢO Hí
 
Toan pt.de045.2012
Toan pt.de045.2012Toan pt.de045.2012
Toan pt.de045.2012
BẢO Hí
 
Toan pt.de044.2012
Toan pt.de044.2012Toan pt.de044.2012
Toan pt.de044.2012
BẢO Hí
 
Toan pt.de043.2012
Toan pt.de043.2012Toan pt.de043.2012
Toan pt.de043.2012
BẢO Hí
 

More from BẢO Hí (12)

Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
 
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
 
Toan pt.de054.2012
Toan pt.de054.2012Toan pt.de054.2012
Toan pt.de054.2012
 
Toan pt.de052.2012
Toan pt.de052.2012Toan pt.de052.2012
Toan pt.de052.2012
 
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012
 
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012
 
Toan pt.de048.2012
Toan pt.de048.2012Toan pt.de048.2012
Toan pt.de048.2012
 
Toan pt.de047.2012
Toan pt.de047.2012Toan pt.de047.2012
Toan pt.de047.2012
 
Toan pt.de046.2012
Toan pt.de046.2012Toan pt.de046.2012
Toan pt.de046.2012
 
Toan pt.de045.2012
Toan pt.de045.2012Toan pt.de045.2012
Toan pt.de045.2012
 
Toan pt.de044.2012
Toan pt.de044.2012Toan pt.de044.2012
Toan pt.de044.2012
 
Toan pt.de043.2012
Toan pt.de043.2012Toan pt.de043.2012
Toan pt.de043.2012
 

Toan pt.de083.2012

  • 1. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 1 SỞ GD&ĐT NGHỆ AN TRƯỜNG THPT ĐẶNG THÚC HỨA ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM 2012 Môn thi: TOÁN; Khối: A & B Thời gian làm bài: 180 phút, không kể thời gian phát đề. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số 3 2 2 3 3 3( 1) 1y x mx m x m= − + − − + , (1) (m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1m = . 2. Gọi d là tiếp tuyến tại điểm cực đại A của đồ thị hàm số (1). Đường thẳng d cắt trục toạ độ Oy tại điểm .B Tìm các giá trị thực của tham số m để diện tích tam giác OAB bằng 6, trong đó O là gốc của hệ toạ độ. Câu II (2,0 điểm) 1. Giải phương trình 2 sin 1 1 2 cos cos 2 cos2 1 2 sin 1 3 3 2 x x x x x π π      + = + − +     − +     2. Giải hệ phương trình 2 1 ( , ) 5 1 1 x x y x y x y y x y  − = − ∈  − − = ℝ Câu III (1,0 điểm) Tính tích phân ( )6 1 ln 2 3 3 x x I dx x + + = + ∫ Câu IV (1,0 điểm) Cho hình lăng trụ . ' ' 'ABC A B C có đáy ABC là tam giác vuông tại A, 2 , 4 , ' 2 3AB a BC a A C a= = = ( 0)a > . Gọi M là trung điểm của cạnh BC . Biết 'A B vuông góc với mặt phẳng ( ' )AB M . Chứng minh tam giác 'A BC vuông và tính thể tích khối lăng trụ . ' ' 'ABC A B C theo a . Câu V (1,0 điểm) Cho các số thực dương , ,a b c thoả mãn 2 2 2 2 2 0a b c ab bc ca+ + + − − = . Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 ( ) c c ab P a ba b c a b = + + ++ − + PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy cho đường tròn 2 2 ( ) : 10 10 30 0C x y x y+ − − + = . Viết phương trình đường thẳng ∆ tiếp xúc với đường tròn ( )C sao cho đường thẳng ∆ cắt hai trục toạ độ ,Ox Oy lần lượt tại ,A B thoả mãn 2 2 1 1 1 5OA OB + = . 2. Trong không gian với hệ toạ độ ,Oxyz cho đường thẳng 1 3 2 : 2 2 1 x y z d + − − = = − , mặt phẳng ( ) : 2 2 5 0P x y z− − − = và điểm (0; 1;1).A − Xác định toạ độ điểm M trên đường thẳng d và điểm N trên mặt phẳng ( )P sao cho mặt phẳng ( )AMN vuông góc với đường thẳng d và tam giác AMN cân tại A. Câu VII.a (1,0 điểm) Tìm số phức z thoả mãn 2 2 2 2 1 2 iz z i z i i − + − = + − . B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy cho hình vuông ABCD có đỉnh A thuộc đường thẳng : 4 0d x y− − = , đường thẳng ,BC CD lần lượt đi qua hai điểm (4;0)M và (0;2).N Biết tam giác AMN cân tại A, xác định toạ độ các đỉnh của hình vuông .ABCD 2. Trong không gian với hệ toạ độ ,Oxyz cho điểm (1;2;1)M và đường thẳng : 1 2 2 x y z d = = − . Viết phương trình mặt phẳng ( )P đi qua M và song song với đường thẳng d sao cho mặt phẳng ( )P cắt các tia , ,Ox Oy Oz lần lượt tại các điểm , ,A B C sao cho thể tích khối chóp .O ABC bằng 9. Câu VII.b (1,0 điểm) Trong các số phức z thoả mãn 2 | | 1z i− = , tìm số phức z có môđun lớn nhất. ---------------Hết--------------- Chú ý: Thí sinh có thể xem điểm thi và đáp án tại các địa chỉ: http://thpt-dangthuchua-nghean.edu.vn hoặc www.k2pi.net Thi thử Đại học www.toanpt.net
  • 2. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 2 -3 -2 -1 1 2 3 4 5 6 -5 -4 -3 -2 -1 1 2 3 x y ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 2 – NĂM 2012 CÂU NỘI DUNG ĐIỂM Khi m =1 ta có hàm số 3 2 3y x x= − . Tập xác định D = ℝ . Sự biến thiên Chiều biến thiên: 2 ' 3 6y x x= − ; ' 0 0 v 2y x x= ⇔ = = ' 0 ( ;0) (2; )y x> ∀ ∈ −∞ ∪ +∞ . Hàm số đồng biến trên các khoảng ( ;0)−∞ và (2; )+∞ ' 0 (0;2)y x< ∀ ∈ . Hàm số nghịch biến trên khoảng (0;2). 0,25 Cực trị: Hàm số đạt cực đại tại x = 0, yCĐ=0. Hàm số đạt cực tiểu tại x =2, yCT= -4. Giới hạn: 3 2 3 2 lim ( 3 ) , lim ( 3 ) x x x x x x →−∞ →+∞ − = −∞ − = +∞ 0,25 Bảng biến thiên x -∞ 0 2 +∞ y’ + 0 - 0 + y 0 +∞ -∞ - 4 0,25 I.1 (1 điểm) Đồ thị: Đồ thị hàm số cắt trục Ox tại các điểm (0;0) và (3;0) Đồ thị hàm số cắt trục Oy tại điểm (0;0). 0,25 Ta có 2 2 ' 3 6 3( 1)y x mx m= − + − ; 2 2 ' 0 2 1 0 1 v 1y x mx m x m x m= ⇔ − + − = ⇔ = − = + Hàm số có cực đại, cực tiểu m∀ ∈ ℝ . 0,25 Khi đó điểm cực đại là ( 1; 3 3)A m m− − + . Phương trình tiếp tuyến d tại điểm A là: '( )( )A A A y y x x x y= − + 3 3y m⇔ = − + . 0,25 Ta có { } (0; 3 3)B d Oy B m= ∩ ⇒ − + Điều kiện để có tam giác OAB là 1m ≠ . Do tiếp tuyến d song song với trục Ox nên tam giác OAB vuông tại B 0,25 I.2 (1 điểm) | 1 |, | 3 3 |AB m OB m= − = − + Diện tích tam giác OAB là 21 . ( 1) 4 2OAB S ABOB m= ⇔ − = 1 v 3m m⇔ = − = . 0,25 Điều kiện: 1 cos2 2 , 1 6 sin 2 x x k k x π π  ≠ ⇔ ≠ ± + ∈  ≠ − ℤ . 0,25 II.1 (1 điểm) Phương trình đã cho tương đương với 2 2 sin 1 2 1 cos cos2 2 sin 1 3 21 4 sin x x xx π  + = + +  +−   0,25
  • 3. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 3 1 cos2 2 cos2 1 x x ⇔ = − 2 2 cos 2 cos2 1 0x x⇔ − − = 0,25 cos2 1 ( )1 cos2 2 3 x x k k x x k π π π  = =   ⇔ ⇔ ∈  = − = ± +   ℤ (Thoả mãn điều kiện). 0,25 Điều kiện: 0 1 5 x y  ≠  ≥ Phương trình (1) tương đương với 2 2 2 0 ( )( 1) 0 x y x y x y xy xy − − + = ⇔ − + = 2 1 y x x y  = ⇔  = −  0,25 * Với 2 y x= thế vào phương trình (2) ta có 2 2 5 1 1x x x− = + (3) + Nếu 0x > thì phương trình (3) trở thành 2 2 4 2 5 1 1 3 2 0x x x x− = + ⇔ − + = 2 2 1 1 v 2 2 x x x x  =⇔ = = ⇔  = (Thoả mãn) 1 v 2 x x  = −  = − (Loại) Hệ phương trình có 2 nghiệm 1 2 , 1 2 x x y y   = =    = =   0,25 + Nếu 0x < thì phương trình (3) trở thành 2 2 2 4 2 1 5 1 1 7 2 0 x x x x x  ≤− = − ⇔   − + = 2 7 41 2 x − ⇔ = 7 41 2 x − ⇔ = − (Thoả mãn) v 7 41 2 x − = (Loại) Hệ phương trình có 1 nghiệm 7 41 2 7 41 2 x y  − = −  − = 0,25 * Với 1 x y = − thế vào phương trình (2) ta có 1 5 1 1y y − + = (4) Nếu 1 1 5 y≤ < thì 1 1 y > nên phương trình (4) vô nghiệm ⇒ Hệ phương trình vô nghiệm. Nếu 1y ≥ thì 5 1 2y − ≥ nên phương trình (4) vô nghiệm ⇒ Hệ phương trình vô nghiệm. 0,25 II.2 (1 điểm) Kết luận: Hệ phương trình có 3 nghiệm: 1 2 , 1 2 x x y y   = =    = =   , 7 41 2 7 41 2 x y  − = −  − = Đặt 2 3 3t x t x= + ⇔ = + Khi x = 1 thì t = 2; khi x = 6 thì t = 3 ; Ta có dx = 2tdt 0,25 III (1 điểm) Do đó 3 3 3 3 3 2 2 2 2 2 2 ln( 3 2) 2 ln ( 1) ( 2) 4 ln( 1) 2 ln( 2)I t t dt t t dt t dt t dt = − + = − + = − + +  ∫ ∫ ∫ ∫ 0,25
  • 4. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 4 * Tính 3 1 2 4 ln( 1)I t dt= −∫ . Đặt ln( 1) 1 1 dtu t du t dv dt v t   = − = ⇒  − =  = −  Do đó 3 1 2 3 4( 1)ln( 1) 4 8 ln 2 4 2 I t t dt= − − − = −∫ 0,25 * Tính 3 2 2 2 ln( 2)I t dt= +∫ . Đặt ln( 2) 2 2 dtu t du t dv dt v t   = + = ⇒  +  =  = +  Do đó 3 2 2 3 2( 2)ln( 2) 2 10 ln 5 8 ln 4 2 2 I t t dt= + + − = − −∫ Vì vậy, 1 2 10 ln 5 8 ln 2 6I I I= + = − − . 0,25 0,25 Gọi {I}=AB’∩A’B A’B⊥(AB’M) ⇒ A’B⊥MI MI là đường trung bình của tam giác A’BC ⇒MI//A’C Do đó A’B⊥ A’C ⇒ 'A BC∆ vuông tại A’ 'A BC∆ vuông tại A’⇒ 1 ' 2 2 A M BC a= = và A’B=2a ABC∆ vuông tại A ⇒ 1 2 2 AM BC a= = A’B⊥(AB’M) ⇒ A’B⊥AB’⇒ Tứ giác ABB’A’ là hình thoi ⇒ AA’ = AB = 2a. Do đó tứ diện A’ABM là tứ diện đều với cạnh bằng 2a. 0,25 Gọi N là trung điểm của cạnh AB ⇒ 3MN a= . Gọi H là tâm của tam giác đều ABM ⇒ A’H⊥(ABM) và 2 2 3 3 3 a HM MN= = ⇒ 2 2 2 6 ' ' 3 a A H A M HM= − = 0,25 IV (1 điểm) Thề tích khối lăng trụ ABC.A’B’C’ là 3 . ' ' ' 1 . ' . . ' 4 2 2ABC A B C ABC V S A H AB AC A H a= = = 0,25 Từ giả thiết ta có 2 ( )a b c ab+ − = . Đặt , a b x y c c = = ( , 0x y > ) 0,25 Áp dụng BĐT 2 ( ) 4 x y xy + ≤ .Từ giả thiết ta có 2 2 ( ) 2 ( 1) 2 4 3 x y xy x y x y + = + − ≤ ⇒ ≤ + ≤ 0,25 Áp dụng bất đẳng thức : 2 2 ( ) xy xy x y x y ≥ + + và 1 1 4 , , 0A B A B A B + ≥ ∀ > + Khi đó 2 2 2 2 2 2 1 1 1 1 2 ( 1) ( ) xy xy P x y xyx y x y x y x y = + + ≥ + + ++ − + + + 0,25 V (1 điểm) 2 2 2 2 2 2 2 1 1 1 2 4 1 2 4 2 2 2 2 2 2 ( )( ) 2 ( ) ( ) xy xy xy xy xy x yx y x y x y xy x y x y      = + + + ≥ + = + ≥     ++ + + + + +    Vậy min 2P = đạt được khi 1x y= = 0,25 VI.a.1 Đường tròn (C) có tâm I(5;5), bán kính 2 5R = 0,25 A B M C A’ C’ B’ I K HN 2a2a 2 3 a
  • 5. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 5 Giả sử A(a,0), B(0 ;b) (a,b ≠0). Phương trình đường thẳng : 1 x y a b ∆ + = 0,25 Từ giả thiết ta có hệ phương trình 2 2 2 2 2 2 2 2 1 1 1 5 1 1 1 1 1 1 5 5 515 5 5 ( , ) 1 22 5 1 1 a b a b OA OB a b d I R a b a b  + =    + = + =   + −⇔ ⇔       ∆ = + − ==      + 0,25 (1 điểm) 1 1 3 1 1 1 5 5v 1 2 1 2 25 25 a b a b ab ab    + = + = −   ⇔     = = −     1 1 1 2 1 2 1 1 5 5 5 5v v v 1 2 1 1 1 1 1 2 5 5 5 5 a a a a b b b b          = = = − =         ⇔           = = = = −             Các phương trình đường thẳng ∆ là: x+2y-5=0; 2x+y-5=0; 2x – y +5 =0; x -2y -5 = 0. 0,25 Một vectơ chỉ phương của đường thẳng d là (2; 2;1)u = − Do ( )AMN d⊥ nên một vectơ pháp tuyến của mặt phẳng (AMN) là (2; 2;1)n u= = − Phương trình mặt phẳng (AMN) là : 2x -2y + z -3 = 0. 0,25 Ta có { } ( )M d AMN= ∩ . Toạ độ điểm M là nghiệm của hệ phương trình 11 3 2 12 2 1 2 2 3 0 3 xx y z y x y z z  = + − −  = =  ⇔ = −  − + − = =   . Ta có M(1 ;1 ; 3) 0,25 Ta có { } ( ) ( )N P AMN= ∩ . Giả sử N(a; b; c) Từ giả thiết ta có hệ phương trình ( ) ( ) N P N AMN AM AN  ∈ ∈  = 2 2 2 2 2 5 0 2 2 3 0 ( 1) ( 1) 9 a b c a b c a b c  − − − =⇔ − + − =  + + + − = 0,25 VI.a.2 (1 điểm) 2 2 ( 1) 5 2 1 2 0 v 3 1 1 1 a a a a b a b b c c c     + − = = = −      ⇔ = − ⇔ = = −       = − = − = −       Ta có N(2 ; 0 ; -1) thoả mãn, N(- 1 ; - 3 ; - 1) bị loại do A là trung điểm của đoạn thẳng MN. 0,25 Phương trình đã cho tương đương với (2 )(1 2 ) ( 2 )(2 ) 2(2 )(1 2 )iz i z i i i i z− − − + + = + − 0,25 (2 4 ) (2 ) (4 3 )i i z i z⇔ − − + = − (1) 0,25 Giả sử ,( , )z x yi x y= + ∈ ℝ Khi đó phương trình (1) tương đương với (2 4 ) (2 )( ) (4 3 )( )i i x yi i x yi− − + + = − − (2 2 ) (4 2 ) (4 3 ) (3 4 )x y x y i x y x y i⇔ − + − + + = − − + 0,25 VII.a. (1 điểm) 2 2 4 3 3 2 1 1 4 2 3 4 2 1 x y x y x y x x y x y x y y     − + = − − = =    ⇔ ⇔ ⇔     + + = + + = =       Vậy số phức 1z i= + . 0,25 Giả sử A(t ;t-4) ∈d. Do tam giác AMN cân tại A nên AM =AN 2 2 2 2 ( 4) ( 4) ( 6) 1t t t t t⇔ − + − = + − ⇔ = − . Ta có A( - 1 ; -5 ) 0,25 VI.b.1 (1 điểm) Giả sử phương trình đường thẳng BC đi qua M(4;0) có dạng: 4 0ax by a+ − = ( 2 2 0a b+ ≠ ) Do CD⊥BC và đường thẳng CD đi qua điểm N(0 ;2) ⇒ phương trình đường thẳng CD là 2 0bx ay a− + = 0,25
  • 6. Giáo viên ra đề: Trần Đình Hiền – Trường THPT Đặng Thúc Hứa – Thanh Chương – Nghệ An 6 Do ABCD là hình vuông nên khoảng cách 2 2 2 2 | 5 5 | | 7 | ( , ) ( , ) a b a b d A BC d A CD a b a b − − − = ⇔ = + + 3 v 3a b a b⇔ = − = 0,25 * Với 3a = - b chọn a= 1, b = - 3. Phương trình các cạnh AB: 3x + y + 8= 0 BC: x-3y-4=0 CD: 3x + y – 2= 0 DA: x-3y-14=0 Ta có A(-1;-5), B(-2; -2), C(1;-1), D(2;-4). *Với a = 3b chọn a = 3, b = 1. Phương trình các cạnh AB: x -3y-14=0 BC: 3x+y-12=0 CD: x -3y + 6 = 0 DA: 3x+y + 8 = 0 Ta có A(-1; - 5), B(5;-3), C(3;3), D(-3;1). 0,25 Giả sử A(a;0;0), B(0;b;0), C(0;0;c), ( , , 0a b c > ) Phương trình mặt phẳng (P): 1 x y z a b c + + = . 0,25 Một vectơ pháp tuyến của mặt phẳng (P) là 1 1 1 ( ; ; )n a b c = . Một vectơ chỉ phương của đường thẳng d là (1;2; 2)u = − 0,25 Từ giả thiết ta có hệ phương trình . 1 2 1 1 ( ) 1 2 2 . 0 0 9 9 6 O ABC M P a b c n u a b c V abc  + + =  ∈    = ⇔ + − =    =    = 0,25 VI.b.2 (1 điểm) 1 2 2 1 1 3 3 1 2 1 1 1 . 9 6 1 1 1 1 3 3 a b a a b b c c    + = =      ⇔ = ⇔ =       = =     . Phương trình mặt phẳng (P) là: 2 2 6 0x y z+ + − = 0,25 Giả sử ,( , )z x yi x y= + ∈ ℝ . Ta có 2 2 | |z x y= + Áp dụng Bất đẳng thức Cauchy ta có 2 2 2 2 2 2 | | 2x y x y xy xy+ ≥ = ≥ hay 2 2 | |xy z≤ (1) 0,25 Ta có 2 2 2 ( ) 2z x y xyi= − + . Từ giả thiết 2 2 2 2 2 | | 1 ( ) (2 1) 1z i x y xy− = ⇔ − + − = 2 2 2 ( ) 4x y xy⇔ + = (2) 0,25 Từ (1) và (2) ta có 4 2 | | | | | | 2z z z≤ ⇒ ≤ 0,25 VII.b. (1 điểm) Vậy max | | 2z = , đạt được khi 2 2 | | 2 x y xy xy x y  = =  + = 1 1 v 1 1 x x y y   = = −  ⇔    = = −    hay 1z i= + hoặc 1z i= − − 0,25 Chú ý: Những thí sinh có lời giải khác với đáp án, Giám khảo tự điều chỉnh thang điểm cho phù hợp. Xin chân thành cảm ơn các thầy giáo, cô giáo: Phạm Kim Chung, Nguyễn Thị Thoả (THPT Đặng Thúc Hứa) đã giải và phản biện đề thi! CHÚC CÁC THÍ SINH ĐẠT ĐƯỢC KẾT QUẢ CAO TRONG KỲ THI TUYỂN SINH VÀO ĐẠI HỌC!