TRU'ONC DIISP I'iA NQI
TRU'cr.,rc THPTcrquv0ru - flHsi)
Dtr TFII.rrNti DAI F{ec r-AN trtI zuenq zorz
M6rr thi : TOAN
Thdi gian titru biri ; lB0 plnit, khong ke thc)'i gicrn phil cli
tri nAo c&a m, dLLo'ng thang )'= - x * n't
CAtr l. (2,0 di?ut )
2x-1 t
Cho hAm so y: ;1
L l(hao sdt str bi6n thi€n vd v0 dd th! (C) cfra hdm s6.
2. Coi 1ld giao didm hai clLro'ng ti$rn c6n cira (C). Vd'i gid
cit (C) tai hai di6rl pli6n biet A,B vh tanr gi6c IAB d€u.
C6u 2. (2,0 dient)
l. Ciai phLlong trinh
;h - ( cosx + sinx.tan j ) =
./rr.fi
srnlx-;/+ cos (;- *.1
2. Tim citc grhtri cira thanr s6 o d6 phLrong trinh sau c6 dilng hai nghi6m phdn bi6t :
.. a f:-'--;
log3x" -n.l togzxu+a+ l:0.
C6u 3. {},0 dietn }
-n 2sin2 rI - x)
j'inhticir ohdn t: fo --+ 4"
' ; t.) coszx
Cdu .1, (1,0 iliitn )
Tf'cliQn ABCDc6c4nh AB:6,canhCD:Svdc6ccanhconlai bing..174.HsytinlrdiOntich
nrdt cAu ngo4i titip tri'diQn ABCD.
C6u 5. (t,0 diAnt )
Clioc6cs6cluro'ng a,b,c,m,n,p thdamdn ctf nr:b+ n:c+ P:k
Clrirng nrinh ring : an-r htrt * cm < k2.
Cdu 6. (2,0 diAm)
I . Cho cli6m.M(0; 2) vd hyperbol @ , + -+ :1. Lap phuro'rrg trinh duLong thing (r/) cli qua
5-
di€n A4 cht (m tai hai cli6m phAn biQt A, B sao cho MA:;Mtr.
2. Trorrgkh6ng gianOxyz,chorn{tcAu (.}, x'+ y2 +22 +6x-2y-22- l4:0.
- ', !
Vi6t phu'o'ng trinh m{t phdng (P) chfi'a truc Oz vdr cht nrdt cdu theo mdt dLrirng tron co bdn
l<inh r : 4.
Cf,u 7. (t,0 diim )
Ciai he b6t phLlo'ng trinh
COSX
't '
@/a-:"r
( tog{z - xz) < 0
1
lx6 + 4(t - *213 ;' 1
r
H6t..
Thi thử Đại học www.toanpt.net
rlAp Ax - TFIAI{G B}BM
nur tnU BH LAN tll - nAtvq zorz
. N6ua+ l=0 <+ u=- r+ttrltrothdnh tt -2t=0* [l= ! troail
. N6u a+- I,khi d6r=0kh6ngldnghigmcia(l).DCpt(l)cirdtngniQtnghiQmcluongthi
*)Trrdng hfp L Pt(l) c62 nghi$mtr6i diu <+ a+ I <0 e a< - l'
t) )q
il )i
l. (1,0 aliini. Hoc sinh ttr
2. (1,0 dilm) .7int m ...
I
Q ttidni
t-tJ,O aiim), Giai Phuottgtrinh ...
Didu ki0n : cosx 10, cc,s j # 0 .
r sinx.sinl.
l)hrxrnc trinh dd cho e --; ( cosx +
--#
) =
.. cos.x LU5;
1 ^ ?X.
<+ -----;- - ( co:i)i + Islll ;./ -
aoszx
* l- r^.L-(l-2sin2I+ 2sin?l) =Vs.,un* <+ tan2x - J3.tanx = 0
I tanx=0
I tanx = VJ
lx=kn
lx=i+t<,t
(kez).
So siinh vdi diiu kiQn. nghiQm cira phr'rongtrinh ld : x--2h, * =I+ lm'keZ'
-/ft-[
sinlx-;J+ srn (; + xJ
-;;;-zsi n x.cosl
c osx
0,50
0.50
II
(2 ttiim)
S khi phuo'ng trinh sau co hai nghiQm phdn
2x-1- ( x+1
bi0t x1.x2 : l_f:-x*tn
<+
[xr+ (f-nr)x*m-1=0
lzi trLrng di0nr ctia
'lIJ'
r(hi c1(r ;;, = - -r, + nt ( i = t' 2; vit H(T, #l.m
:
t #' l-l' 7E (*' - x1 i xr - xz)
(lA=tB (lA2=lBz
/.-r8diu *
trn =E-AB
(=
tu, =1rc, (**)
Tacd 141 :lN e (x1 -x2)[x1 +x2-(m-l)] :0'
l)o.r, + 2: tl: - I r,On ding tl.rirc ndy clirng vdi moi rrr thoa min (t)
Tac6 (+*) * gY:t.t*r-xr)2 e (nt -3)2:3;(xr+ xz)2-4xrx:l:3[(nr - l)'?-4(n - l)l
a t,r' - 6n+ 3 = Q e nt:3 trG. Citc gi|tri ndy cLran ddu thoamln (*)'
Dip sii : m =3 !,,18.
Z- W iiiml. Tim gia tt"! eia tham sd a "'"
Grtign : log3x8:0 <+ lxl> l.
pT<+ log3 xr+Za,flQlp +a+ l=0.DAtt=Jtg,y" Z0.Ptdacho,trothdnh t2+2at+a+l=0 (l)
Nhanx6t:V6i m6i t>0, pt v4f,-g.F=t <+log3x2=t2e x2=3t' (* xr.z=+JAAthoaminxr lxz.
Suyra ptcldchoc6d0nghai nghifmphdnbi€tkhi vdchi khi pt( l)c6dfingmdtnghiEmkhongdm'
1 2
orrr..itrsttoTtzpt(,1.,,,'ri***n*-;-*[f:==.i,=9out'=0o{n,_i,__tr=s€,r=r:'(
' t
-'fi
l)apso:it.-l.a='t'.
III
(t itidn)
L (1,0 di2ntl . 'finh tich phdn
"I r- cosl|- zx; . "I r- si.zx ,l (cosx - sirrx)2
l-aco l--l-u ,''- tlx= le '',"'""ilr=l-6-rlr- r0 cos2x J0 cos2x
- ' J0 (cosx - sinx)(cosx + sinx)
'' 0,5u
. r:cosx-sinx r:d(cosx+sinx)r , t--... rsinxllf :',.,G*tt=Jo'.*-*.i,*ut=Jouffi= lnlcosx ,lo z
0.50
IV
(t tliim)
(1,0 diAm). Tinh diQn tich mdt cdu
Tlreo giti thidt DA : DB = CA = CB = ,[74, tarn gi6c ACB cdn n€rr tdm I cua
dLrorg tldn ngoqi ti6p AACB thuQc cludng cao CE. Ta c6 ACAB = ADAB do
d6 EC
= ED + ACED cdn + ctuirng cao EF cria ACED lA du6ng vudng g6c
chuug ctia AB vd CD d6ng thdi ld trung t4rc crha AB, CD. Vdy tdm O hinh
cALr ngo4i titip t['diQn ABCD nim tr0n EF.
0,5u
Tac6 EF"= ED,_ DF" mir ED' = 74 _() = 65 =r E.F,=65 _ l6:49 =+ EF =
Mat l<hic tlF: OE + OF: .l pt - 9 +
^/
n2 - te .
7
Ciiii phurrn-e trinh ./Rt : 9 +,'l R' =G
: 7 ra dugc R : 5.
Do db clien tich m4t cAu la S = 4nR2 = l00n (dvdt).
0,50
V
(t itidnl
t
(1,0 diim). Chting minh riing ....
l'a c6 : k' =(a+ mxb+ n)(c+ p)= abc 1 mnp+ abp+ can + anp + bcnr + brnp r cmn.
M4tkhdc k(an + bp + crn): an(c+ p)+ bp(a+ m)+cm(b+ n): abp+ can + anp + bcm + bmp+ 0n1n.
Vril l<r= abc4 mnp+ k(an+ bp+cm)> k(an+bplS;r1)
<+ l<2 > an + bp + cnr (clpcm).
t,0{)
VI
Q rlidm)
l. (1,0 diAm). Vidt phuons trinh dud'ng thdns .
Nh{nxdt:DuongthangdiquaM(0:2)songsongv6'itr,ucCrykh6ngcii(fl.-
Khi d6 (d) : y : /.x + 2. Toa dd giao di6rn cria (d) voi (f0 ld nghi€m c(ra h6 phrcrng rrinh :
ti =H.;4 + 14k2- l)x2+ l6kx+20:o (l).
De((iln(ff) =A,.Bl<e(t)c6hainghiemphinbiet ,' (4lcz
- 1+ 0 ( t' + +!
" t A,> o *+
iro _ ,u,.rt, o*
.l
k++--''o
(2)
tkt<l:2
0,50
l(hi d6 ( I) c6 hai nghiQm phdn biQt x1 . x2 lir hodnh dd cria zl
5.- s
Titdi0uliicrn ly'l=rMB *X' =-x2,khi cldtac6:
{1",*x,=-#u^f",--ah _ 36 t2
J g"-t- 20 o1
-t- Lz-+Gkr-r)r:---tc+l(=+L(thoanrinl2))
I, s^z:4krfl 1xz-n[z-l
Vdy c6 hai dudng thing thoa mdn bdi to6n : (dy) : y = x + 2, (dz) y = -x + 2.
(ra
lx. *x.
vaiB,thoamin
J ::'^'
I tr.t, = 4kr_1
0,sa
2
r,
12/3/2012
TII|aiil,,llii! l'lttrotz trinlt ntd! pltattg "
vlr|6r', (5);r5 t6'-r-r l,i G 3l lr l) vd bin l<inh R : 5'
(iQi //(.r : b: o) lir hinlr chi0Lr cria / ldri mat plrfng (P). Mat phang (/') chila truc o-- n€rr o6 vcct0 phiip tr-ry0rr
..:.- ,,r,ra ii=(-b;n;Q) voi a:r br+0.
rt--lfr,OHl.trong d6 i< (O: O: l) vd oH (a: b; c)' SL'' -
Suy ra phucrng trinh m[t phdng (P) co ci4ng : - bx + a)' '= 0'
VI
(2 rtiim)
ffin c6 b6n kinh r: 4 * tH: f R2 - 12 : i'
l3b + al_
= 3 <+ 9b2 + 6ab + .f = 91,t2 + 9a2
Nlrtr vdy khoang c6cli tir i den (P) bang J €
ffi,
la=0
c+ 8a2-6ab=oel-=11
Lu- q"
V{r} c6 hai m4t plrdng(P) lin luotcir phuongtrinh ld: x=0 ' 4x-3y:0'
(1,0 tliznt). G,"L!19
sl.
l.
+ 411
e [0;
':l<+lxl
voi lsls
dnh g(t) = tl
).
z +l=-
;3
0<+2-x'
411 - xrlt
f1x) tro th
tt_
-2 e l,_
[r-
:l<
xt'+
I rhi
-0
Ta cir log' (2 - x
,,
Xdt htur s6 tlx) =
Dat t=xt,0<t<
o'(tt=0 et?:4(
VII
Q,0 didnt)
ra co g(f) =f . *tol = a, g(r) : I'
Su1,rarzing(l) =!+ ntinf(xf =f 'Suyrabdtphuongtrinh x
T6nr l4i : 1'4p nghiQm cua hQ b6t phucrng trinlr ld S : [- l; l]'
6
+ 4( I - *'l'> i nghiQm dirng vx€ [-l; l]'

Toan pt.de064.2012

  • 1.
    TRU'ONC DIISP I'iANQI TRU'cr.,rc THPTcrquv0ru - flHsi) Dtr TFII.rrNti DAI F{ec r-AN trtI zuenq zorz M6rr thi : TOAN Thdi gian titru biri ; lB0 plnit, khong ke thc)'i gicrn phil cli tri nAo c&a m, dLLo'ng thang )'= - x * n't CAtr l. (2,0 di?ut ) 2x-1 t Cho hAm so y: ;1 L l(hao sdt str bi6n thi€n vd v0 dd th! (C) cfra hdm s6. 2. Coi 1ld giao didm hai clLro'ng ti$rn c6n cira (C). Vd'i gid cit (C) tai hai di6rl pli6n biet A,B vh tanr gi6c IAB d€u. C6u 2. (2,0 dient) l. Ciai phLlong trinh ;h - ( cosx + sinx.tan j ) = ./rr.fi srnlx-;/+ cos (;- *.1 2. Tim citc grhtri cira thanr s6 o d6 phLrong trinh sau c6 dilng hai nghi6m phdn bi6t : .. a f:-'--; log3x" -n.l togzxu+a+ l:0. C6u 3. {},0 dietn } -n 2sin2 rI - x) j'inhticir ohdn t: fo --+ 4" ' ; t.) coszx Cdu .1, (1,0 iliitn ) Tf'cliQn ABCDc6c4nh AB:6,canhCD:Svdc6ccanhconlai bing..174.HsytinlrdiOntich nrdt cAu ngo4i titip tri'diQn ABCD. C6u 5. (t,0 diAnt ) Clioc6cs6cluro'ng a,b,c,m,n,p thdamdn ctf nr:b+ n:c+ P:k Clrirng nrinh ring : an-r htrt * cm < k2. Cdu 6. (2,0 diAm) I . Cho cli6m.M(0; 2) vd hyperbol @ , + -+ :1. Lap phuro'rrg trinh duLong thing (r/) cli qua 5- di€n A4 cht (m tai hai cli6m phAn biQt A, B sao cho MA:;Mtr. 2. Trorrgkh6ng gianOxyz,chorn{tcAu (.}, x'+ y2 +22 +6x-2y-22- l4:0. - ', ! Vi6t phu'o'ng trinh m{t phdng (P) chfi'a truc Oz vdr cht nrdt cdu theo mdt dLrirng tron co bdn l<inh r : 4. Cf,u 7. (t,0 diim ) Ciai he b6t phLlo'ng trinh COSX 't ' @/a-:"r ( tog{z - xz) < 0 1 lx6 + 4(t - *213 ;' 1 r H6t.. Thi thử Đại học www.toanpt.net
  • 2.
    rlAp Ax -TFIAI{G B}BM nur tnU BH LAN tll - nAtvq zorz . N6ua+ l=0 <+ u=- r+ttrltrothdnh tt -2t=0* [l= ! troail . N6u a+- I,khi d6r=0kh6ngldnghigmcia(l).DCpt(l)cirdtngniQtnghiQmcluongthi *)Trrdng hfp L Pt(l) c62 nghi$mtr6i diu <+ a+ I <0 e a< - l' t) )q il )i l. (1,0 aliini. Hoc sinh ttr 2. (1,0 dilm) .7int m ... I Q ttidni t-tJ,O aiim), Giai Phuottgtrinh ... Didu ki0n : cosx 10, cc,s j # 0 . r sinx.sinl. l)hrxrnc trinh dd cho e --; ( cosx + --# ) = .. cos.x LU5; 1 ^ ?X. <+ -----;- - ( co:i)i + Islll ;./ - aoszx * l- r^.L-(l-2sin2I+ 2sin?l) =Vs.,un* <+ tan2x - J3.tanx = 0 I tanx=0 I tanx = VJ lx=kn lx=i+t<,t (kez). So siinh vdi diiu kiQn. nghiQm cira phr'rongtrinh ld : x--2h, * =I+ lm'keZ' -/ft-[ sinlx-;J+ srn (; + xJ -;;;-zsi n x.cosl c osx 0,50 0.50 II (2 ttiim) S khi phuo'ng trinh sau co hai nghiQm phdn 2x-1- ( x+1 bi0t x1.x2 : l_f:-x*tn <+ [xr+ (f-nr)x*m-1=0 lzi trLrng di0nr ctia 'lIJ' r(hi c1(r ;;, = - -r, + nt ( i = t' 2; vit H(T, #l.m : t #' l-l' 7E (*' - x1 i xr - xz) (lA=tB (lA2=lBz /.-r8diu * trn =E-AB (= tu, =1rc, (**) Tacd 141 :lN e (x1 -x2)[x1 +x2-(m-l)] :0' l)o.r, + 2: tl: - I r,On ding tl.rirc ndy clirng vdi moi rrr thoa min (t) Tac6 (+*) * gY:t.t*r-xr)2 e (nt -3)2:3;(xr+ xz)2-4xrx:l:3[(nr - l)'?-4(n - l)l a t,r' - 6n+ 3 = Q e nt:3 trG. Citc gi|tri ndy cLran ddu thoamln (*)' Dip sii : m =3 !,,18. Z- W iiiml. Tim gia tt"! eia tham sd a "'" Grtign : log3x8:0 <+ lxl> l. pT<+ log3 xr+Za,flQlp +a+ l=0.DAtt=Jtg,y" Z0.Ptdacho,trothdnh t2+2at+a+l=0 (l) Nhanx6t:V6i m6i t>0, pt v4f,-g.F=t <+log3x2=t2e x2=3t' (* xr.z=+JAAthoaminxr lxz. Suyra ptcldchoc6d0nghai nghifmphdnbi€tkhi vdchi khi pt( l)c6dfingmdtnghiEmkhongdm'
  • 3.
    1 2 orrr..itrsttoTtzpt(,1.,,,'ri***n*-;-*[f:==.i,=9out'=0o{n,_i,__tr=s€,r=r:'( ' t -'fi l)apso:it.-l.a='t'. III (titidn) L (1,0 di2ntl . 'finh tich phdn "I r- cosl|- zx; . "I r- si.zx ,l (cosx - sirrx)2 l-aco l--l-u ,''- tlx= le '',"'""ilr=l-6-rlr- r0 cos2x J0 cos2x - ' J0 (cosx - sinx)(cosx + sinx) '' 0,5u . r:cosx-sinx r:d(cosx+sinx)r , t--... rsinxllf :',.,G*tt=Jo'.*-*.i,*ut=Jouffi= lnlcosx ,lo z 0.50 IV (t tliim) (1,0 diAm). Tinh diQn tich mdt cdu Tlreo giti thidt DA : DB = CA = CB = ,[74, tarn gi6c ACB cdn n€rr tdm I cua dLrorg tldn ngoqi ti6p AACB thuQc cludng cao CE. Ta c6 ACAB = ADAB do d6 EC = ED + ACED cdn + ctuirng cao EF cria ACED lA du6ng vudng g6c chuug ctia AB vd CD d6ng thdi ld trung t4rc crha AB, CD. Vdy tdm O hinh cALr ngo4i titip t['diQn ABCD nim tr0n EF. 0,5u Tac6 EF"= ED,_ DF" mir ED' = 74 _() = 65 =r E.F,=65 _ l6:49 =+ EF = Mat l<hic tlF: OE + OF: .l pt - 9 + ^/ n2 - te . 7 Ciiii phurrn-e trinh ./Rt : 9 +,'l R' =G : 7 ra dugc R : 5. Do db clien tich m4t cAu la S = 4nR2 = l00n (dvdt). 0,50 V (t itidnl t (1,0 diim). Chting minh riing .... l'a c6 : k' =(a+ mxb+ n)(c+ p)= abc 1 mnp+ abp+ can + anp + bcnr + brnp r cmn. M4tkhdc k(an + bp + crn): an(c+ p)+ bp(a+ m)+cm(b+ n): abp+ can + anp + bcm + bmp+ 0n1n. Vril l<r= abc4 mnp+ k(an+ bp+cm)> k(an+bplS;r1) <+ l<2 > an + bp + cnr (clpcm). t,0{) VI Q rlidm) l. (1,0 diAm). Vidt phuons trinh dud'ng thdns . Nh{nxdt:DuongthangdiquaM(0:2)songsongv6'itr,ucCrykh6ngcii(fl.- Khi d6 (d) : y : /.x + 2. Toa dd giao di6rn cria (d) voi (f0 ld nghi€m c(ra h6 phrcrng rrinh : ti =H.;4 + 14k2- l)x2+ l6kx+20:o (l). De((iln(ff) =A,.Bl<e(t)c6hainghiemphinbiet ,' (4lcz - 1+ 0 ( t' + +! " t A,> o *+ iro _ ,u,.rt, o* .l k++--''o (2) tkt<l:2 0,50 l(hi d6 ( I) c6 hai nghiQm phdn biQt x1 . x2 lir hodnh dd cria zl 5.- s Titdi0uliicrn ly'l=rMB *X' =-x2,khi cldtac6: {1",*x,=-#u^f",--ah _ 36 t2 J g"-t- 20 o1 -t- Lz-+Gkr-r)r:---tc+l(=+L(thoanrinl2)) I, s^z:4krfl 1xz-n[z-l Vdy c6 hai dudng thing thoa mdn bdi to6n : (dy) : y = x + 2, (dz) y = -x + 2. (ra lx. *x. vaiB,thoamin J ::'^' I tr.t, = 4kr_1 0,sa 2 r,
  • 4.
    12/3/2012 TII|aiil,,llii! l'lttrotz trinltntd! pltattg " vlr|6r', (5);r5 t6'-r-r l,i G 3l lr l) vd bin l<inh R : 5' (iQi //(.r : b: o) lir hinlr chi0Lr cria / ldri mat plrfng (P). Mat phang (/') chila truc o-- n€rr o6 vcct0 phiip tr-ry0rr ..:.- ,,r,ra ii=(-b;n;Q) voi a:r br+0. rt--lfr,OHl.trong d6 i< (O: O: l) vd oH (a: b; c)' SL'' - Suy ra phucrng trinh m[t phdng (P) co ci4ng : - bx + a)' '= 0' VI (2 rtiim) ffin c6 b6n kinh r: 4 * tH: f R2 - 12 : i' l3b + al_ = 3 <+ 9b2 + 6ab + .f = 91,t2 + 9a2 Nlrtr vdy khoang c6cli tir i den (P) bang J € ffi, la=0 c+ 8a2-6ab=oel-=11 Lu- q" V{r} c6 hai m4t plrdng(P) lin luotcir phuongtrinh ld: x=0 ' 4x-3y:0' (1,0 tliznt). G,"L!19 sl. l. + 411 e [0; ':l<+lxl voi lsls dnh g(t) = tl ). z +l=- ;3 0<+2-x' 411 - xrlt f1x) tro th tt_ -2 e l,_ [r- :l< xt'+ I rhi -0 Ta cir log' (2 - x ,, Xdt htur s6 tlx) = Dat t=xt,0<t< o'(tt=0 et?:4( VII Q,0 didnt) ra co g(f) =f . *tol = a, g(r) : I' Su1,rarzing(l) =!+ ntinf(xf =f 'Suyrabdtphuongtrinh x T6nr l4i : 1'4p nghiQm cua hQ b6t phucrng trinlr ld S : [- l; l]' 6 + 4( I - *'l'> i nghiQm dirng vx€ [-l; l]'