TO THE STANDARD MODEL particles and interactions The Physics studies the  fundamental interactions  among the  elementary constituents  of the matter. Constituents:   bodies, fluids, particles Interactions:   forces, fields  Prof. Dr. Ion I. Cotaescu DISCRET PARTICLES  CONTINUOUS WAVES
The first fundamental interaction  Gravitation ideal point-wise particles  Isaac Newton (1643-1727) Classical Mechanics  INERTIA inertial frames Galileo Galilei (1564-1642) The Galilei transformations x’ = x –  V t,  t’ =  t absolute frame
Electricity and Magnetism Michael Faraday  (1791-1867) Magnetic induction Carl Friedrich Gauss (1777-1855) Electric  flux Andre-Marie Ampere (1775 -1836) Magnetic effects of electric  currents Hans Christian Ørsted  (1777-1851)
James Clerk Maxwell (1831 -1879)  predict the  E-M waves  discovered  by Hertz in Heinrich Hertz (1857-1894) Electrodynamics  The Maxwell  equations 1887 oscillator receiver
The second fundamental interaction Electromagnetism electron Electric charges and currents elementary particles: Electromagnetic field (proton)  Luminiferous  ETHER  ???? The EM radiation Electric field Magnetic field
Albert Michelson (1852 -1931) Edward Morley (1838-1923) The Michaelson and Morley experiment The ETHER does not exist Hendrik Lorentz (1853-1928) The  Lorentz transformations 1887
Albert Einstein (1879-1955) 1905 the theory of  special relativity  the theory of  general relativity photon In 1905 Einstein explains the  Photoelectric effect   Max Planck (1858-1947) the theory of quanta  c =  c’
The discovery of the atom structure  1909 nucleus Ernst Rutherford (1871-1937) Niels Bohr (1885-1962) Arno Sommerfeld (1868 -1951) Bohr’s model 1913 the fine structure  of atomic spectra
Quantum Mechanics 1926 -1934 Louis de Broglie (1892-1987) the Davisson and Germer experiment Erwin Schrodinger (1887-1961)  Werner Heisenberg (1901-1976) the fundamental equation  of the Quantum Machanics  uncertainty relations  wave-particle duality
Wolfgang   Pauli   (1900-1958) electronic spin the Stern-Gerlach  experiment Relativistic Quantum Mechanics positron Paul  A. M. Dirac (1902-1984) predicting the antimatter Spin 1/2 Exclusion principle Dirac’s equation
The neutron and the nuclear reactions and  fission 1932-1934 James Chadwick (1881-1974) Enrico Fermi (1901-1954) the role of the  neutrino in beta  decay - weak force proton neutron neutrino the first  nuclear  reactor Spin 1/2 Spin ½ (massless)  Hideki Yukawa  (1907-1981) strong nuclear  forces
Four fundamental interactions Gravitation  Electromagnetic interaction Weak nuclear forces (decay) Strong nuclear forces  … an argument for  unification…. Hadrons Leptons Elementary particles
Quantum interactions The consequences of the wave-particle duality:   the elementary particles are field quanta  matter fields gauge fields FERMIONS (spin ½) BOSONS (spin 1) DIRAC  equation MAXWELL  equation (electron/positron) (foton) GAUGE  SYMMETRY Coupled through the U(1) Each type of conserved charge is given by a different symmetry em
Chen  Ning  Yang (1922) Tsung-Dao  Lee (1926)  New gauge symmetries Non-Abelian gauge fields Yang-Mills 1954 Parity non-conservation  Robert Mills (1927-1999) U(1)  SU(n)  1 charge  n charges
The Quantum Theory of Fields  1950 - 1970 1950-1960 The Quantum Electrodynamics  (QED)  quarks Richard  P. Feynman (1918-1988) Julian S. Schwinger  (1918-1994) The  (internal)  unitary symmetry of  hadrons:  SU(3) flavor Murray  Gell-Mann  (1929)   Spin 1/2 (leptons: electron/positron) 1962
Steven Weinberg (1933) Abdus Salam (1926-1996) Sheldom Glashow (1932) The Electro-Weak model  SU(2)  x U(1) 1970 - 1980 L
The Higgs mechanism of spontaneously breaking the gauge symmetry  SU(2)  x U(1) Peter Higgs (1929) L
leptons:   neutrino,  electron // positron Higgs field gauge bosons after the symmetry breaking the remaining symmetry is U(1) The theory of the  gauge model  SU(2)  x  U(1) L em
Quantum Chromodynamics  Makoto Kobayashi (1944) Toshihide Maskawa (1940) Yoichiro Nambu  (1921) The hadrons are constituted by quarks  (antiquarks) : u, d, s, c, b, t The gauge particles are gluons  SU(3) COLOR
The particles of the  SU(3)  QCD C quarks // antiquarks gluons  Matter fields color   //   anticolor color - anticolor Gauge fields (strong forces) Fermions:  Spin 1/2 Bosons:  Spin 1 q =  -1/3, 2/3  //  1/3, -2/3 massless and neutral  massive with electric charges The color charges of the strong interaction (8 combinations) 2/3 -1/3 q = 0 etc…
Hadrons: baryons & mesons Baryons: Fermions  Spin 1/2 Mesons: Bosons  Spin 0
Standard  Model  SU(3)  x SU(2)  x U(1) Strong :  gluon Weak  :   W, Z E-M  :  photon leptons  interact   E-M, W quarks  interact   E-M, W, S C L 3 generations  L L
The masses of elementary particles Masa protonului ----- --- proton mass
Interactions – Feynman diagrams
THE STANDARD MODEL  explains all the experimental data we know Unsolved problems 1. Where are the Higgs bosons?  2. Why the generations are independent ? 3. New particles may appear ? e.g. exotic quarks (with charges -4/3 and 5/3) or doubly charged bosons ?
Where we are…? New experimental data NON-RELATIVISTIC  RELATIVISTIC  SP.  RELATIVISTIC G. CLASSICAL  QUANTUM… Non-relativistic Classical Physics (mechaniacs E-M, etc....)  Relativistic Classical Physics (relativistic classical fields) General relativity Cosmology Non-relativistic Quantum Mechanics Relativistic Quantum Fields Standard Model quantum gravity ? new sub -quantum level ? very high  energies ? STRINGS ? M THEORY ?
The hope: The Large Hadron Collider (2010) principal ring - 27 km CERN
 
The detector  ATLAS
We are waiting for new data Simulating the Hawking radiation  (jets produced by the black-holes  evaporation) ? Simulating a Higgs event ? ?

To the standard model - Ion Cotaescu

  • 1.
    TO THE STANDARDMODEL particles and interactions The Physics studies the fundamental interactions among the elementary constituents of the matter. Constituents: bodies, fluids, particles Interactions: forces, fields Prof. Dr. Ion I. Cotaescu DISCRET PARTICLES CONTINUOUS WAVES
  • 2.
    The first fundamentalinteraction Gravitation ideal point-wise particles Isaac Newton (1643-1727) Classical Mechanics INERTIA inertial frames Galileo Galilei (1564-1642) The Galilei transformations x’ = x – V t, t’ = t absolute frame
  • 3.
    Electricity and MagnetismMichael Faraday (1791-1867) Magnetic induction Carl Friedrich Gauss (1777-1855) Electric flux Andre-Marie Ampere (1775 -1836) Magnetic effects of electric currents Hans Christian Ørsted (1777-1851)
  • 4.
    James Clerk Maxwell(1831 -1879) predict the E-M waves discovered by Hertz in Heinrich Hertz (1857-1894) Electrodynamics The Maxwell equations 1887 oscillator receiver
  • 5.
    The second fundamentalinteraction Electromagnetism electron Electric charges and currents elementary particles: Electromagnetic field (proton) Luminiferous ETHER ???? The EM radiation Electric field Magnetic field
  • 6.
    Albert Michelson (1852-1931) Edward Morley (1838-1923) The Michaelson and Morley experiment The ETHER does not exist Hendrik Lorentz (1853-1928) The Lorentz transformations 1887
  • 7.
    Albert Einstein (1879-1955)1905 the theory of special relativity the theory of general relativity photon In 1905 Einstein explains the Photoelectric effect Max Planck (1858-1947) the theory of quanta c = c’
  • 8.
    The discovery ofthe atom structure 1909 nucleus Ernst Rutherford (1871-1937) Niels Bohr (1885-1962) Arno Sommerfeld (1868 -1951) Bohr’s model 1913 the fine structure of atomic spectra
  • 9.
    Quantum Mechanics 1926-1934 Louis de Broglie (1892-1987) the Davisson and Germer experiment Erwin Schrodinger (1887-1961) Werner Heisenberg (1901-1976) the fundamental equation of the Quantum Machanics uncertainty relations wave-particle duality
  • 10.
    Wolfgang Pauli (1900-1958) electronic spin the Stern-Gerlach experiment Relativistic Quantum Mechanics positron Paul A. M. Dirac (1902-1984) predicting the antimatter Spin 1/2 Exclusion principle Dirac’s equation
  • 11.
    The neutron andthe nuclear reactions and fission 1932-1934 James Chadwick (1881-1974) Enrico Fermi (1901-1954) the role of the neutrino in beta decay - weak force proton neutron neutrino the first nuclear reactor Spin 1/2 Spin ½ (massless) Hideki Yukawa (1907-1981) strong nuclear forces
  • 12.
    Four fundamental interactionsGravitation Electromagnetic interaction Weak nuclear forces (decay) Strong nuclear forces … an argument for unification…. Hadrons Leptons Elementary particles
  • 13.
    Quantum interactions Theconsequences of the wave-particle duality: the elementary particles are field quanta matter fields gauge fields FERMIONS (spin ½) BOSONS (spin 1) DIRAC equation MAXWELL equation (electron/positron) (foton) GAUGE SYMMETRY Coupled through the U(1) Each type of conserved charge is given by a different symmetry em
  • 14.
    Chen Ning Yang (1922) Tsung-Dao Lee (1926) New gauge symmetries Non-Abelian gauge fields Yang-Mills 1954 Parity non-conservation Robert Mills (1927-1999) U(1) SU(n) 1 charge n charges
  • 15.
    The Quantum Theoryof Fields 1950 - 1970 1950-1960 The Quantum Electrodynamics (QED) quarks Richard P. Feynman (1918-1988) Julian S. Schwinger (1918-1994) The (internal) unitary symmetry of hadrons: SU(3) flavor Murray Gell-Mann (1929) Spin 1/2 (leptons: electron/positron) 1962
  • 16.
    Steven Weinberg (1933)Abdus Salam (1926-1996) Sheldom Glashow (1932) The Electro-Weak model SU(2) x U(1) 1970 - 1980 L
  • 17.
    The Higgs mechanismof spontaneously breaking the gauge symmetry SU(2) x U(1) Peter Higgs (1929) L
  • 18.
    leptons: neutrino, electron // positron Higgs field gauge bosons after the symmetry breaking the remaining symmetry is U(1) The theory of the gauge model SU(2) x U(1) L em
  • 19.
    Quantum Chromodynamics Makoto Kobayashi (1944) Toshihide Maskawa (1940) Yoichiro Nambu (1921) The hadrons are constituted by quarks (antiquarks) : u, d, s, c, b, t The gauge particles are gluons SU(3) COLOR
  • 20.
    The particles ofthe SU(3) QCD C quarks // antiquarks gluons Matter fields color // anticolor color - anticolor Gauge fields (strong forces) Fermions: Spin 1/2 Bosons: Spin 1 q = -1/3, 2/3 // 1/3, -2/3 massless and neutral massive with electric charges The color charges of the strong interaction (8 combinations) 2/3 -1/3 q = 0 etc…
  • 21.
    Hadrons: baryons &mesons Baryons: Fermions Spin 1/2 Mesons: Bosons Spin 0
  • 22.
    Standard Model SU(3) x SU(2) x U(1) Strong : gluon Weak : W, Z E-M : photon leptons interact E-M, W quarks interact E-M, W, S C L 3 generations L L
  • 23.
    The masses ofelementary particles Masa protonului ----- --- proton mass
  • 24.
  • 25.
    THE STANDARD MODEL explains all the experimental data we know Unsolved problems 1. Where are the Higgs bosons? 2. Why the generations are independent ? 3. New particles may appear ? e.g. exotic quarks (with charges -4/3 and 5/3) or doubly charged bosons ?
  • 26.
    Where we are…?New experimental data NON-RELATIVISTIC RELATIVISTIC SP. RELATIVISTIC G. CLASSICAL QUANTUM… Non-relativistic Classical Physics (mechaniacs E-M, etc....) Relativistic Classical Physics (relativistic classical fields) General relativity Cosmology Non-relativistic Quantum Mechanics Relativistic Quantum Fields Standard Model quantum gravity ? new sub -quantum level ? very high energies ? STRINGS ? M THEORY ?
  • 27.
    The hope: TheLarge Hadron Collider (2010) principal ring - 27 km CERN
  • 28.
  • 29.
  • 30.
    We are waitingfor new data Simulating the Hawking radiation (jets produced by the black-holes evaporation) ? Simulating a Higgs event ? ?

Editor's Notes