SlideShare a Scribd company logo
1 of 35
Download to read offline
LSS with Lagrangian perturbation theory:
including the stream crossing
Zvonimir Vlah
CERN
with:
Patrick McDonald (LBNL),
Structure Formation and Evolution
CMB: ∆ρ/ρ ∼ 10−6
LSS: ∆ρ/ρ ∼ 100
Galaxies: ∆ρ/ρ ∼ 106
z=1100
z=2
z=0
[Planck,2013]
[2dF, 2002]
[Parsons, 1845]
LSS using PT Introduction 2 / 28
LSS: motivations and observations
Theoretical motivations:
▶ Inflation - origin of structures
▶ Expansion history
▶ Composition of the universe
▶ Nature of dark energy and dark
matter
▶ Neutrino mass and number of
species
▶ Test of GR and modifications of
gravity
Current and future observations:
▶ SDSS and SDSS3/4: Sloan
Digital Sky Survey
▶ BOSS: the Baryon Oscillation
Spectroscopic Survey
▶ DES: the Dark Energy Survey
▶ LSST: the large synoptic survey
telescope.
▶ Euclid: the ESA mission to map
the geometry of the dark Universe
▶ DESI: Dark Energy
Spectroscopic Instrument
▶ SPHEREx: An All-Sky Spectral
Survey (?)
LSS using PT Introduction 3 / 28
Galaxy clustering
[SDSS]
▶ Measured 3D distribution ⇒ much more modes than projected quantities
(shear from weak lensing, etc.)
▶ Redshift surveys measure: θ, ϕ, redshift z
overdensity: δ = (n − ¯n)/¯n,
power spectrum: P(k) ∼ ⟨δ(k)|δ(k)⟩
LSS using PT Introduction 4 / 28
Galaxy clustering
[SDSS]
▶ Measured 3D distribution ⇒ much more modes than projected quantities
(shear from weak lensing, etc.)
▶ Redshift surveys measure: θ, ϕ, redshift z
Generalization is the multi-spectra:
⟨δ(k1) . . . δ(kN)⟩c ∼ PN(k1, . . . , kN)
LSS using PT Introduction 4 / 28
Galaxy clustering scheme
1.0 0.5 0.0 0.5 1.0
1.0
0.5
0.0
0.5
1.0
galaxy clustering
dark matter
dynamics
redshift space
distortions
biasing,
stochasticity &
exclusion
effects
satellites
+ others: baryons, assembly bias, neutrinos, (clustering) dark energy,
GR effects, multiple d.m. species ...
LSS using PT Introduction 5 / 28
Galaxies and biasing of dark matter halos
Galaxies form at high density peaks of
initial matter density:
- rare peaks exhibit higher clustering!
0 2 4 6 8 10
3
2
1
0
1
2
3
Λ 1 k
overdensity
▶ Tracer detriments the amplitude:
Pg(k) = b2Pm(k) + . . .
▶ Understanding bias is crucial for
understanding the galaxy
clustering
[Tegmark et al, 2006]
LSS using PT Galaxies and dark matter halo bias 6 / 28
Redshift space distortions (RSD)
Real space:
Kaiser Finger of God
Redshift space:
Object position in redshift-space:
s = x − fuz(x)ˆz, uz ≡ −vz/(fH)
Density in redshift-space:
δs(s) =
∫
r δ(r)δD(s − x − fuz(x)ˆz).
LSS using PT Redshift space distortions (RSD) 7 / 28
Weak gravitational lensing
▶ sensitivity on lensing potential; both in CMB and galaxy lensing
▶ e.g. convergence power spectrum
Cκ(l) =
∫ χs
0
dχ w2
(χ)/χ2
Pδ(l/χ)
where χ is comoving angular-diameter distance, and w is weight function.
LSS using PT Redshift space distortions (RSD) 8 / 28
Nonlinear dynamics of dark matter
LSS using PT Dark matter evolution 9 / 28
Key messages:
▶ Nonlinear effects of dark matter clustering allow analytic investigation
(UV complete) - including shell crossing.
▶ In a regime of largest possible scales (BAO) further simplifications can
be achieved in the EFT framework – natural extensions to galaxies.
LSS using PT Dark matter evolution 10 / 28
Why perturbative approach?
▶ Goal is the high precision at large scales (in scope of next gen. surveys),
as well as to push to small scales.
▶ This problem is also amenable to direct simulation.
▶ Though the combination of volume, mass and force resolution and
numerical accuracy is very demanding - in scope of next gen. surveys.
▶ PT is a viable alternative as well as a guide what range of k, Mh, scales are
necessary and what statistics are needed.
▶ N-body can be used to test PT for ‘fiducial’ models.
▶ However PT can be used to search a large parameter space efficiently,
and find what kinds of effects are most important.
▶ Can be much more flexible/inclusive, especially for biasing schemes.
▶ It is much easier to add new physics, especially if the effects are small
(e.g. neutrinos, clustering dark energy, non-Gaussianity)
▶ Gaining insights!
▶ Complementarity reason; if we can, we should.
LSS using PT Dark matter evolution 11 / 28
Gravitational clustering of dark matter
Evolution of collisionless particles - Vlasov equation:
df
dτ
=
∂f
∂τ
+
1
m
p · ∇f − am∇ϕ · ∇pf = 0,
and ∇2ϕ = 3/2HΩmδ.
Integral moments of the distribution function:
mass density field & mean streaming velocity field
ρ(x) = ma−3
∫
d3
p f(x, p), vi(x) =
∫
d3p pi
am f(x, p)
∫
d3p f(x, p)
,
LSS using PT Gravitational clustering of dark matter 12 / 28
Gravitational clustering of dark matter
Evolution of collisionless particles - Vlasov equation:
df
dτ
=
∂f
∂τ
+
1
m
p · ∇f − am∇ϕ · ∇pf = 0,
and ∇2ϕ = 3/2HΩmδ.
Eulerian framework - fluid approximation:
∂δ
∂τ
+ ∇ · [(1 + δ)v] = 0
∂vi
∂τ
+ Hvi + v · ∇vi = −∇iϕ −
1
ρ
∇i(ρσij),
where σij is the velocity dispersion.
LSS using PT Gravitational clustering of dark matter 12 / 28
Gravitational clustering of dark matter
Evolution of collisionless particles - Vlasov equation:
df
dτ
=
∂f
∂τ
+
1
m
p · ∇f − am∇ϕ · ∇pf = 0,
and ∇2ϕ = 3/2HΩmδ.
Eulerian framework - pressureless perfect fluid approximation:
∂δ
∂τ
+ ∇ · [(1 + δ)v] = 0
∂vi
∂τ
+ Hvi + v · ∇vi = −∇iϕ.
Irrotational fluid: θ = ∇ · v.
LSS using PT Gravitational clustering of dark matter 12 / 28
Gravitational clustering of dark matter
Evolution of collisionless particles - Vlasov equation:
df
dτ
=
∂f
∂τ
+
1
m
p · ∇f − am∇ϕ · ∇pf = 0,
and ∇2ϕ = 3/2HΩmδ.
EFT approach introduces a tress tensor for the long-distance fluid:
∂δ
∂τ
+ ∇ · [(1 + δ)v] = 0
∂vi
∂τ
+ Hvi + v · ∇vi = −∇iϕ −
1
ρ
∇j(τij),
with given as τij = p0δij + c2
s δρδij + O(∂2δ, . . .)
-derived by smoothing the short scales in the fluid with
the smoothing filter W(Λ), where Λ ∝ 1/kNL.
[Baumann et al 2010, Carrasco et al 2012]
LSS using PT Gravitational clustering of dark matter 12 / 28
Gravitational clustering of dark matter
Evolution of collisionless particles - Vlasov equation:
df
dτ
=
∂f
∂τ
+
1
m
p · ∇f − am∇ϕ · ∇pf = 0,
and ∇2ϕ = 3/2HΩmδ.
EFT approach introduces a tress tensor for the long-distance fluid:
with given as τij = p0δij + c2
s δρδij + O(∂2δ, . . .)
-derived by smoothing the short scales in the fluid with
the smoothing filter W(Λ), where Λ ∝ 1/kNL.
[Baumann et al 2010, Carrasco et al 2012]
LSS using PT Gravitational clustering of dark matter 12 / 28
Power spectrum, correlation function & BAO
PEFT-1-loop = P11 + P1-loop − 2(2π)c2
s(1)
k2
k2
NL
P11
PEFT-2-loop = P11 + P1-loop + P2-loop − 2(2π)c2
s(1)
k2
k2
NL
(P11 + P1-loop) + c.t.
��� ��� ��� ��� ���
����
����
����
����
����
����
����
�[�/���]
�����/����
�=��� ������
������-��
�-����
�-����-��
�-����
�-����-��
[Carrasco et al, ’12/’13, Senatore et al ’14, Baldauf et al ’15, Foreman et al ’15, Vlah et al ’15]
▶ Well defined/convergent expansion in k/kNL (one parameter).
▶ Six c. t. for two-loop - approximate degeneracy! [Zaldarriaga et al, ’15]
LSS using PT Gravitational clustering of dark matter 13 / 28
Lagrangian vs Eulerian framework
Eulerian: Lagrangian:
Coordinate of a (t)racer particle at a given moment in time r
r(q, τ) = q + ψ(q, τ),
is given in terms of Lagrangian displacement.
Continuity equation:
(1 + δ(r)) d3
r = d3
q vs. 1 + δ(r) =
∫
q
δD
(r − q − ψ(q)) ,
Shell crossing
(1 + δ(r)) d3
r =
∑
shells
d3
q vs. 1 + δ(r) =
∫
q
δD
(r − q − ψ(q)) ,
LSS using PT Gravitational clustering of dark matter 14 / 28
Lagrangian vs Eulerian framework
Eulerian: Lagrangian:
Coordinate of a (t)racer particle at a given moment in time r
r(q, τ) = q + ψ(q, τ),
is given in terms of Lagrangian displacement.
Continuity equation:
(1 + δ(r)) d3
r = d3
q vs. 1 + δ(r) =
∫
q
δD
(r − q − ψ(q)) ,
Fourier space
(2π)3
δD
(k) + δ(k) =
∫
q
eik·q
exp (ik · ψ),
LSS using PT Gravitational clustering of dark matter 14 / 28
Lagrangian dynamics and EFT
Fluid element at position q at time t0, moves due to gravity:
The evolution of ψ is governed by
¨ψ + H ˙ψ = −∇Φ(q + ψ(q)).
Integrating out short modes (using filter WR(q, q′
)) system is splitting tnto L−long
and S−short wavelength modes, e.g.
ψL(q) =
∫
q
WR(q, q′
)ψ(q′
), ψS(q, q′
) = ψ(q′
) − ψL(q).
This defines δL as the long-scale component of the density perturbation
corresponding to ψL and also ΦL as the gravitational potential ∇2
ΦL ∼ δL.
E.o.m. for long displacement: [Vlah et al, ’15]
¨ψL + H ˙ψL = −∇ΦL(q + ψL(q)) + aS
(
q, ψL(q)
)
,
and aS(q) = −∇ΦS(q + ψL(q)) − 1
2 Qij
L(q)∇∇i∇jΦL(q + ψL(q)) + . . .,
Similar formalism was also derived in [Porto et al, ’14].
LSS using PT Gravitational clustering of dark matter 15 / 28
Lagrangian dynamics and EFT
The correlation function and power spectrum can now be defined through the
cumulants of the displacement, e.g.
P(k) =
∫
q eiq·k
[⟨
eik·∆(q)
⟩
− 1
]
.
For one loop power spectrum results, keeping linear modes resumed:
P(k) =
∫
q
eik·q
exp
[
−
1
2
kikj
⟨
∆i∆j
⟩
c
+
i
6
kikjkk
⟨
∆i∆j∆k
⟩
c
+ · · ·
]
Final results equivalent to the Eulerian scheme. [Sugiyama ’14, Vlah et al, ’14 & ’15]
Allows for the insight in the counter term structure and IR resummation
schemes (in particular one leads to the scheme in [Senatore&Zaldarriaga, ’14]).
Simple IR scheme was suggested also in [Baldauf et al, ’15].
LSS using PT Gravitational clustering of dark matter 16 / 28
Linear power spectrum, correlation function & BAO
PEFT-1-loop = P11 + P1-loop − 2(2π)c2
s(1)
k2
k2
NL
P11
PEFT-2-loop = P11 + P1-loop + P2-loop − 2(2π)c2
s(1)
k2
k2
NL
(P11 + P1-loop) + c.t.
��� ��� ��� ��� ���
����
����
����
����
����
����
����
�[�/���]
�����/����
�=��� ������
������-��
�-����
�-����-��
�-����
�-����-��
[Carrasco et al, ’12/’13, Senatore et al ’14, Baldauf et al ’15, Foreman et al ’15, Vlah et al ’15]
▶ Well defined/convergent expansion in k/kNL (one parameter).
▶ IR resummation (Lagrangian approach) - BAO peak! [Vlah et al ’15]
▶ Six c. t. for two-loop - approximate degeneracy! [Zaldarriaga et al, ’15]
LSS using PT Gravitational clustering of dark matter 17 / 28
Clustering in 1D - collapsing shells
1D case studied recently in: [McQuinn&White, ’15, Vlah et al, ’15]
���� ���� ���� ���� ����
-����
-����
-����
����
����
����
����
� [�/���]
(�-���)/���
�-� ����� ��������
�=��� �(�)=�
�(�)=�+��
�(�)=�+(α�+α���
)��
�(�)=�+(α�+α���
+��
)��
����
�(�)����
�(�)�� ����
�(�)�� ����
�(�)�� ����
LSS using PT Gravitational clustering of dark matter 18 / 28
Clustering in 1D - collapsing shells
1D case studied recently in: [McQuinn&White, ’15, Vlah et al, ’15]
���� ���� ���� ���� ����
-����
-����
-����
����
����
����
����
� [�/���]
(�-���)/���
�-� ����� ��������
�=��� �(�)=�
�(�)=�+��
�(�)=�+(α�+α���
)��
�(�)=�+(α�+α���
+��
)��
����
�(�)����
�(�)�� ����
�(�)�� ����
�(�)�� ����
LSS using PT Gravitational clustering of dark matter 18 / 28
Path integrals and going beyond shell crossing
- as we saw the Lagrangian framework includes shell crossing
- Lagrangian dynamics can be compactly written using
L0ϕ + ∆0(ϕ) = ϵ,
where:
ϕ ≡ (ψ, υ) , [L0]i2i1
=
(
∂
∂η2
−1
−3
2
∂
∂η2
+ 1
2
)
, ∆0(ϕ) = 3
2
(
0, ∂x∂−2
x δ + ψ
)
.
Statistics of interest given by generating function
Z(j) ≡
∫
dϵ e−1
2
ϵN−1ϵ+jϕ[ϵ]
and ⟨ϕi1 ϕi2 ⟩ =
∂2
∂ji1 ∂ji2
Z(j)
j=0
,
which after the variable change becomes
Z(j) ≡
∫
dϕ e−S(ϕ)+jϕ
,
with S(ϕ) = 1/2 [L0ϕ + ∆0(ϕ)] N−1
[L0ϕ + ∆0(ϕ)] . [McDonald&Vlah, ’17]
LSS using PT Gravitational clustering of dark matter 19 / 28
Path integrals and going beyond shell crossing
We can organize our perturbation theory as:
S = Sg + Sp, where then we do exp(−S) = exp(−Sg)(1 − Sp + S2
p/2 + ...)
where we can choose what the ”Gaussian part” will be, i.e.
Sg ≡ 1/2χNχ + iχ[W−1
L0]ϕ ≡ 1/2χNχ + iχLϕ
and
Sp ≡ iχ∆0(ϕ) + iχ[(1 − W−1
)L0]ϕ ≡ iχ∆(ϕ),
where χ is the auxiliary field from the Hubbard-Stratonovich transformation.
Perturbation theory result : Z0(j) = Z0(j) + Z1(j) + . . .
Leading order result: truncate Zel’dovich dynamics!!!
Z0 = e
1
2
j.C.j
and P(k) =
∫
d3
q eiq·k
e−1
2
kikjAW
ij
higher orders more complicated, build in renormalization! [McDonald&Vlah, ’17]
LSS using PT Gravitational clustering of dark matter 20 / 28
Path integral approach; going beyond shell crossing
10 1 100
k [kNL]
0.0
0.2
0.4
0.6
0.8
1.0
P/P0
pure linear
1-loop, c=0.74
W2(c=0.74)
1-loop, c=0.1
W2(c=0.1)
Significance and connection EFT formalism:
▶ no need of EFT free parameters, i.e. counter terms are predicted
▶ CMB lensing: direct information on baryonic and neutrinos physics
▶ reduction of degeneracy in galaxy bias coefficients
▶ possible connection to the EFT formalism by matching the k → 0 limit
LSS using PT Gravitational clustering of dark matter 21 / 28
Path integrals and going beyond shell crossing
10 1 100
k [kNL]
0.0
0.2
0.4
0.6
0.8
1.0
P/P0
pure linear
1-loop, c=0.74
Zel, c=0.74
1-loop, c=0.1
Zel, c=0.1
N-body
Significance and connection EFT formalism: - goal is 3D!
▶ no need of EFT free parameters, i.e. counter terms are predicted
▶ CMB lensing: direct information on baryonic and neutrinos physics
▶ reduction of degeneracy in galaxy bias coefficients
▶ possible connection to the EFT formalism by matching the k → 0 limit
LSS using PT Gravitational clustering of dark matter 22 / 28
Summary
Key points:
▶ Shell crossing can be consistently added to the perturbative Lagrangian
scheme.
▶ Perturbative Lagrangian approach is a viable and UV-complete approach
in the study of structure formation.
▶ Applications in LSS statistics, amongst which the most direct is weak
lensing.
▶ EFT framework offers further simplifications on largest scales &
Lagrangian setting is a natural for the study of BAO effects in LSS
statistics..
LSS using PT Gravitational clustering of dark matter 23 / 28
Baryon acoustic oscillation
LSS using PT BAO 24 / 28
Linear power spectrum, correlation function & BAO
Linear power spectrum PL: obtained form Boltzmann codes (CAMB, Class).
Formally we can divide it into smooth part PL,nw and wiggle part PL,w so
that: PL = PL,nw + PL,w
����� ����� ����� � ��
�
�
��
��
���
���
����
� [�/���]
�⨯�(�)[���/�]�
�=���
��
�����
� �� ��� ��� ���
-��
-��
�
��
��
��
��
��
� [���/�]
��⨯ξ(�)[���/�]�
�=���ξ�
���
Wiggle power spectrum: PL,w → σn =
∫
q q−nPL,w(q) = 0 for n = {0, 2}.
����� ����� ����� � ��
����
����
����
����
����
� [�/���]
��(�)/�����
�=���
[Z.V. et al, ’14 & ’15]
LSS using PT BAO 25 / 28
Redshift space distortions (RSD)
Power spectrum in RSD
Ps(k) =
∫
d3
r eik·r
M
(
k∥ˆz, r
)
=
∫
d3
r eik·r
M
(
J = k.R, r
)
,
where r = x2 − x1 and
1 + M
(
J, r
)
=
⟨(
1 + δ(x)
)(
1 + δ(x′
)
)
eiJ·∆u
⟩
,
is the generating funciton for the moments of pairwise velocity, where
∆u = u(x2) − u(x1). RSD families :
▶ Streaming approach: cumulant expansion theorem, M to Z. [Peebles, White, ...]
▶ Distribution function approach: M is expanded moments that can be
individually evaluated. [SPT, Seljak&McDonald, ...]
▶ Scoccimarro approach: Cumulant expansion theorem on individual
contributions. [Scoccimarro, TNS ...]
▶ Direct Lagrangian approach: M is transformed into Lagrangian coordinates
[Matsubara, White ...]
LSS using PT BAO 26 / 28
Resummation of IR modes: simple scheme
Separating the wiggle and non-wiggle part A
ij
L(q) = A
ij
L,nw(q) + A
ij
L,w(q);
P = Pnw +
∫
q
eik·q−(1/2)kikjAij
L,nw
[
−
kikj
2
Aij
L,w + · · ·
]
≃ Pnw + e−k2
Σ2
PL,w + . . .
��� � �� ��� ���� ���
�
��
��
��
��
� [���/�]
���[���/�]�
�=��� �����
�����
� �� ��� ���� ���
-���
-���
���
���
���
� [���/�]
���[���/�]�
�=��� ����
��� �
IR-SPT resummation model with Σ2 =
∫ dp
3π2 (1 − j0(qmaxk))PL(p):
Pdm(k) = Pnw,L(k) + Pnw,SPT,1−loop(k) + αSPT,1−loop,IR(k)k2
Pnw,L(k)
+ e−k2
Σ2
(
∆Pw,SPT,1−loop(k) +
(
1 + (αSPT,1−loop,IR + Σ2
)k2
)
∆Pw,L(k)
)
.
Alternative derivation in: [Baldauf et al, 2015]
LSS using PT BAO 27 / 28
Wiggle residuals in our schemes: BAO
���� ���� ���� ���� � �
����
����
����
����
����
�[�/���]
�����/�������
�=��������_������
����
�� ��� (���)
�-���� ����
���� ���� ���� ���� ���� ���� ����
-��
-��
-��
�
��
��
��
�����
�
-����
�
[���/�]�
�=��������� ���
���� ���� ���� ���� ���� ���� ����
-��
-��
-��
�
��
��
��
�����
�
-�����
�
[���/�]�
�=��������� ���� - � ����
���� ���� ���� ���� ���� ���� ����
-��
-��
-��
�
��
��
��
�[�/���]
�����
�
-����
�
[���/�]�
�=��������� ���_��-�����
���� ���� ���� ���� ���� ���� ����
-��
-��
-��
�
��
��
��
�[�/���]
�����
�
-����
�
[���/�]�
�=��������� ��� - � ����
LSS using PT BAO 28 / 28

More Related Content

What's hot

SVRS submission archive
SVRS submission archiveSVRS submission archive
SVRS submission archive
Timothy Chan
 
Mann. .black.holes.of.negative.mass.(1997)
Mann. .black.holes.of.negative.mass.(1997)Mann. .black.holes.of.negative.mass.(1997)
Mann. .black.holes.of.negative.mass.(1997)
Ispas Elena
 
Faltenbacher - Simulating the Universe
Faltenbacher - Simulating the UniverseFaltenbacher - Simulating the Universe
Faltenbacher - Simulating the Universe
CosmoAIMS Bassett
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
Rene Kotze
 

What's hot (20)

Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
F Giordano Proton transversity distributions
F Giordano Proton transversity distributionsF Giordano Proton transversity distributions
F Giordano Proton transversity distributions
 
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithmno U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
 
Tension in the Void AIMS
Tension in the Void AIMSTension in the Void AIMS
Tension in the Void AIMS
 
SVRS submission archive
SVRS submission archiveSVRS submission archive
SVRS submission archive
 
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
 
Fractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravityFractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravity
 
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
 
Mann. .black.holes.of.negative.mass.(1997)
Mann. .black.holes.of.negative.mass.(1997)Mann. .black.holes.of.negative.mass.(1997)
Mann. .black.holes.of.negative.mass.(1997)
 
1416336962.pdf
1416336962.pdf1416336962.pdf
1416336962.pdf
 
Anomaly And Parity Odd Transport
Anomaly And Parity Odd Transport Anomaly And Parity Odd Transport
Anomaly And Parity Odd Transport
 
Faltenbacher - Simulating the Universe
Faltenbacher - Simulating the UniverseFaltenbacher - Simulating the Universe
Faltenbacher - Simulating the Universe
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
Kalman_Filter_Report
Kalman_Filter_ReportKalman_Filter_Report
Kalman_Filter_Report
 
A Vanilla Rao-Blackwellisation
A Vanilla Rao-BlackwellisationA Vanilla Rao-Blackwellisation
A Vanilla Rao-Blackwellisation
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
On Approach of Estimation Time Scales of Relaxation of Concentration of Charg...
On Approach of Estimation Time Scales of Relaxation of Concentration of Charg...On Approach of Estimation Time Scales of Relaxation of Concentration of Charg...
On Approach of Estimation Time Scales of Relaxation of Concentration of Charg...
 
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO SystemsPilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
 

Similar to Zvonimir Vlah "Lagrangian perturbation theory for large scale structure formation"

Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
SOCIEDAD JULIO GARAVITO
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
Orchidea Maria Lecian
 

Similar to Zvonimir Vlah "Lagrangian perturbation theory for large scale structure formation" (20)

VitevPaper
VitevPaperVitevPaper
VitevPaper
 
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
Nled and formation_of_astrophysical_charged_b_hs_03_june_2014
 
Large-scale structure non-Gaussianities with modal methods (Ascona)
Large-scale structure non-Gaussianities with modal methods (Ascona)Large-scale structure non-Gaussianities with modal methods (Ascona)
Large-scale structure non-Gaussianities with modal methods (Ascona)
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsWave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptx
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
 
Global gravitational anomalies and transport
Global gravitational anomalies and transportGlobal gravitational anomalies and transport
Global gravitational anomalies and transport
 
CMB Likelihood Part 2
CMB Likelihood Part 2CMB Likelihood Part 2
CMB Likelihood Part 2
 
CMB Likelihood Part 1
CMB Likelihood Part 1CMB Likelihood Part 1
CMB Likelihood Part 1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
 
Seminar yefak 2019
Seminar yefak 2019Seminar yefak 2019
Seminar yefak 2019
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Final_presentation
Final_presentationFinal_presentation
Final_presentation
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdG
 
PhotonModel
PhotonModelPhotonModel
PhotonModel
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 

More from SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

More from SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 
Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"
 
Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Cherry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
ANSARKHAN96
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 

Recently uploaded (20)

CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 

Zvonimir Vlah "Lagrangian perturbation theory for large scale structure formation"

  • 1. LSS with Lagrangian perturbation theory: including the stream crossing Zvonimir Vlah CERN with: Patrick McDonald (LBNL),
  • 2. Structure Formation and Evolution CMB: ∆ρ/ρ ∼ 10−6 LSS: ∆ρ/ρ ∼ 100 Galaxies: ∆ρ/ρ ∼ 106 z=1100 z=2 z=0 [Planck,2013] [2dF, 2002] [Parsons, 1845] LSS using PT Introduction 2 / 28
  • 3. LSS: motivations and observations Theoretical motivations: ▶ Inflation - origin of structures ▶ Expansion history ▶ Composition of the universe ▶ Nature of dark energy and dark matter ▶ Neutrino mass and number of species ▶ Test of GR and modifications of gravity Current and future observations: ▶ SDSS and SDSS3/4: Sloan Digital Sky Survey ▶ BOSS: the Baryon Oscillation Spectroscopic Survey ▶ DES: the Dark Energy Survey ▶ LSST: the large synoptic survey telescope. ▶ Euclid: the ESA mission to map the geometry of the dark Universe ▶ DESI: Dark Energy Spectroscopic Instrument ▶ SPHEREx: An All-Sky Spectral Survey (?) LSS using PT Introduction 3 / 28
  • 4. Galaxy clustering [SDSS] ▶ Measured 3D distribution ⇒ much more modes than projected quantities (shear from weak lensing, etc.) ▶ Redshift surveys measure: θ, ϕ, redshift z overdensity: δ = (n − ¯n)/¯n, power spectrum: P(k) ∼ ⟨δ(k)|δ(k)⟩ LSS using PT Introduction 4 / 28
  • 5. Galaxy clustering [SDSS] ▶ Measured 3D distribution ⇒ much more modes than projected quantities (shear from weak lensing, etc.) ▶ Redshift surveys measure: θ, ϕ, redshift z Generalization is the multi-spectra: ⟨δ(k1) . . . δ(kN)⟩c ∼ PN(k1, . . . , kN) LSS using PT Introduction 4 / 28
  • 6. Galaxy clustering scheme 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 galaxy clustering dark matter dynamics redshift space distortions biasing, stochasticity & exclusion effects satellites + others: baryons, assembly bias, neutrinos, (clustering) dark energy, GR effects, multiple d.m. species ... LSS using PT Introduction 5 / 28
  • 7. Galaxies and biasing of dark matter halos Galaxies form at high density peaks of initial matter density: - rare peaks exhibit higher clustering! 0 2 4 6 8 10 3 2 1 0 1 2 3 Λ 1 k overdensity ▶ Tracer detriments the amplitude: Pg(k) = b2Pm(k) + . . . ▶ Understanding bias is crucial for understanding the galaxy clustering [Tegmark et al, 2006] LSS using PT Galaxies and dark matter halo bias 6 / 28
  • 8. Redshift space distortions (RSD) Real space: Kaiser Finger of God Redshift space: Object position in redshift-space: s = x − fuz(x)ˆz, uz ≡ −vz/(fH) Density in redshift-space: δs(s) = ∫ r δ(r)δD(s − x − fuz(x)ˆz). LSS using PT Redshift space distortions (RSD) 7 / 28
  • 9. Weak gravitational lensing ▶ sensitivity on lensing potential; both in CMB and galaxy lensing ▶ e.g. convergence power spectrum Cκ(l) = ∫ χs 0 dχ w2 (χ)/χ2 Pδ(l/χ) where χ is comoving angular-diameter distance, and w is weight function. LSS using PT Redshift space distortions (RSD) 8 / 28
  • 10. Nonlinear dynamics of dark matter LSS using PT Dark matter evolution 9 / 28
  • 11. Key messages: ▶ Nonlinear effects of dark matter clustering allow analytic investigation (UV complete) - including shell crossing. ▶ In a regime of largest possible scales (BAO) further simplifications can be achieved in the EFT framework – natural extensions to galaxies. LSS using PT Dark matter evolution 10 / 28
  • 12. Why perturbative approach? ▶ Goal is the high precision at large scales (in scope of next gen. surveys), as well as to push to small scales. ▶ This problem is also amenable to direct simulation. ▶ Though the combination of volume, mass and force resolution and numerical accuracy is very demanding - in scope of next gen. surveys. ▶ PT is a viable alternative as well as a guide what range of k, Mh, scales are necessary and what statistics are needed. ▶ N-body can be used to test PT for ‘fiducial’ models. ▶ However PT can be used to search a large parameter space efficiently, and find what kinds of effects are most important. ▶ Can be much more flexible/inclusive, especially for biasing schemes. ▶ It is much easier to add new physics, especially if the effects are small (e.g. neutrinos, clustering dark energy, non-Gaussianity) ▶ Gaining insights! ▶ Complementarity reason; if we can, we should. LSS using PT Dark matter evolution 11 / 28
  • 13. Gravitational clustering of dark matter Evolution of collisionless particles - Vlasov equation: df dτ = ∂f ∂τ + 1 m p · ∇f − am∇ϕ · ∇pf = 0, and ∇2ϕ = 3/2HΩmδ. Integral moments of the distribution function: mass density field & mean streaming velocity field ρ(x) = ma−3 ∫ d3 p f(x, p), vi(x) = ∫ d3p pi am f(x, p) ∫ d3p f(x, p) , LSS using PT Gravitational clustering of dark matter 12 / 28
  • 14. Gravitational clustering of dark matter Evolution of collisionless particles - Vlasov equation: df dτ = ∂f ∂τ + 1 m p · ∇f − am∇ϕ · ∇pf = 0, and ∇2ϕ = 3/2HΩmδ. Eulerian framework - fluid approximation: ∂δ ∂τ + ∇ · [(1 + δ)v] = 0 ∂vi ∂τ + Hvi + v · ∇vi = −∇iϕ − 1 ρ ∇i(ρσij), where σij is the velocity dispersion. LSS using PT Gravitational clustering of dark matter 12 / 28
  • 15. Gravitational clustering of dark matter Evolution of collisionless particles - Vlasov equation: df dτ = ∂f ∂τ + 1 m p · ∇f − am∇ϕ · ∇pf = 0, and ∇2ϕ = 3/2HΩmδ. Eulerian framework - pressureless perfect fluid approximation: ∂δ ∂τ + ∇ · [(1 + δ)v] = 0 ∂vi ∂τ + Hvi + v · ∇vi = −∇iϕ. Irrotational fluid: θ = ∇ · v. LSS using PT Gravitational clustering of dark matter 12 / 28
  • 16. Gravitational clustering of dark matter Evolution of collisionless particles - Vlasov equation: df dτ = ∂f ∂τ + 1 m p · ∇f − am∇ϕ · ∇pf = 0, and ∇2ϕ = 3/2HΩmδ. EFT approach introduces a tress tensor for the long-distance fluid: ∂δ ∂τ + ∇ · [(1 + δ)v] = 0 ∂vi ∂τ + Hvi + v · ∇vi = −∇iϕ − 1 ρ ∇j(τij), with given as τij = p0δij + c2 s δρδij + O(∂2δ, . . .) -derived by smoothing the short scales in the fluid with the smoothing filter W(Λ), where Λ ∝ 1/kNL. [Baumann et al 2010, Carrasco et al 2012] LSS using PT Gravitational clustering of dark matter 12 / 28
  • 17. Gravitational clustering of dark matter Evolution of collisionless particles - Vlasov equation: df dτ = ∂f ∂τ + 1 m p · ∇f − am∇ϕ · ∇pf = 0, and ∇2ϕ = 3/2HΩmδ. EFT approach introduces a tress tensor for the long-distance fluid: with given as τij = p0δij + c2 s δρδij + O(∂2δ, . . .) -derived by smoothing the short scales in the fluid with the smoothing filter W(Λ), where Λ ∝ 1/kNL. [Baumann et al 2010, Carrasco et al 2012] LSS using PT Gravitational clustering of dark matter 12 / 28
  • 18. Power spectrum, correlation function & BAO PEFT-1-loop = P11 + P1-loop − 2(2π)c2 s(1) k2 k2 NL P11 PEFT-2-loop = P11 + P1-loop + P2-loop − 2(2π)c2 s(1) k2 k2 NL (P11 + P1-loop) + c.t. ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� �[�/���] �����/���� �=��� ������ ������-�� �-���� �-����-�� �-���� �-����-�� [Carrasco et al, ’12/’13, Senatore et al ’14, Baldauf et al ’15, Foreman et al ’15, Vlah et al ’15] ▶ Well defined/convergent expansion in k/kNL (one parameter). ▶ Six c. t. for two-loop - approximate degeneracy! [Zaldarriaga et al, ’15] LSS using PT Gravitational clustering of dark matter 13 / 28
  • 19. Lagrangian vs Eulerian framework Eulerian: Lagrangian: Coordinate of a (t)racer particle at a given moment in time r r(q, τ) = q + ψ(q, τ), is given in terms of Lagrangian displacement. Continuity equation: (1 + δ(r)) d3 r = d3 q vs. 1 + δ(r) = ∫ q δD (r − q − ψ(q)) , Shell crossing (1 + δ(r)) d3 r = ∑ shells d3 q vs. 1 + δ(r) = ∫ q δD (r − q − ψ(q)) , LSS using PT Gravitational clustering of dark matter 14 / 28
  • 20. Lagrangian vs Eulerian framework Eulerian: Lagrangian: Coordinate of a (t)racer particle at a given moment in time r r(q, τ) = q + ψ(q, τ), is given in terms of Lagrangian displacement. Continuity equation: (1 + δ(r)) d3 r = d3 q vs. 1 + δ(r) = ∫ q δD (r − q − ψ(q)) , Fourier space (2π)3 δD (k) + δ(k) = ∫ q eik·q exp (ik · ψ), LSS using PT Gravitational clustering of dark matter 14 / 28
  • 21. Lagrangian dynamics and EFT Fluid element at position q at time t0, moves due to gravity: The evolution of ψ is governed by ¨ψ + H ˙ψ = −∇Φ(q + ψ(q)). Integrating out short modes (using filter WR(q, q′ )) system is splitting tnto L−long and S−short wavelength modes, e.g. ψL(q) = ∫ q WR(q, q′ )ψ(q′ ), ψS(q, q′ ) = ψ(q′ ) − ψL(q). This defines δL as the long-scale component of the density perturbation corresponding to ψL and also ΦL as the gravitational potential ∇2 ΦL ∼ δL. E.o.m. for long displacement: [Vlah et al, ’15] ¨ψL + H ˙ψL = −∇ΦL(q + ψL(q)) + aS ( q, ψL(q) ) , and aS(q) = −∇ΦS(q + ψL(q)) − 1 2 Qij L(q)∇∇i∇jΦL(q + ψL(q)) + . . ., Similar formalism was also derived in [Porto et al, ’14]. LSS using PT Gravitational clustering of dark matter 15 / 28
  • 22. Lagrangian dynamics and EFT The correlation function and power spectrum can now be defined through the cumulants of the displacement, e.g. P(k) = ∫ q eiq·k [⟨ eik·∆(q) ⟩ − 1 ] . For one loop power spectrum results, keeping linear modes resumed: P(k) = ∫ q eik·q exp [ − 1 2 kikj ⟨ ∆i∆j ⟩ c + i 6 kikjkk ⟨ ∆i∆j∆k ⟩ c + · · · ] Final results equivalent to the Eulerian scheme. [Sugiyama ’14, Vlah et al, ’14 & ’15] Allows for the insight in the counter term structure and IR resummation schemes (in particular one leads to the scheme in [Senatore&Zaldarriaga, ’14]). Simple IR scheme was suggested also in [Baldauf et al, ’15]. LSS using PT Gravitational clustering of dark matter 16 / 28
  • 23. Linear power spectrum, correlation function & BAO PEFT-1-loop = P11 + P1-loop − 2(2π)c2 s(1) k2 k2 NL P11 PEFT-2-loop = P11 + P1-loop + P2-loop − 2(2π)c2 s(1) k2 k2 NL (P11 + P1-loop) + c.t. ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� �[�/���] �����/���� �=��� ������ ������-�� �-���� �-����-�� �-���� �-����-�� [Carrasco et al, ’12/’13, Senatore et al ’14, Baldauf et al ’15, Foreman et al ’15, Vlah et al ’15] ▶ Well defined/convergent expansion in k/kNL (one parameter). ▶ IR resummation (Lagrangian approach) - BAO peak! [Vlah et al ’15] ▶ Six c. t. for two-loop - approximate degeneracy! [Zaldarriaga et al, ’15] LSS using PT Gravitational clustering of dark matter 17 / 28
  • 24. Clustering in 1D - collapsing shells 1D case studied recently in: [McQuinn&White, ’15, Vlah et al, ’15] ���� ���� ���� ���� ���� -���� -���� -���� ���� ���� ���� ���� � [�/���] (�-���)/��� �-� ����� �������� �=��� �(�)=� �(�)=�+α��� �(�)=�+(α�+α��� )�� �(�)=�+(α�+α��� +α��� )�� ���� �(�)���� �(�)�� ���� �(�)�� ���� �(�)�� ���� LSS using PT Gravitational clustering of dark matter 18 / 28
  • 25. Clustering in 1D - collapsing shells 1D case studied recently in: [McQuinn&White, ’15, Vlah et al, ’15] ���� ���� ���� ���� ���� -���� -���� -���� ���� ���� ���� ���� � [�/���] (�-���)/��� �-� ����� �������� �=��� �(�)=� �(�)=�+α��� �(�)=�+(α�+α��� )�� �(�)=�+(α�+α��� +α��� )�� ���� �(�)���� �(�)�� ���� �(�)�� ���� �(�)�� ���� LSS using PT Gravitational clustering of dark matter 18 / 28
  • 26. Path integrals and going beyond shell crossing - as we saw the Lagrangian framework includes shell crossing - Lagrangian dynamics can be compactly written using L0ϕ + ∆0(ϕ) = ϵ, where: ϕ ≡ (ψ, υ) , [L0]i2i1 = ( ∂ ∂η2 −1 −3 2 ∂ ∂η2 + 1 2 ) , ∆0(ϕ) = 3 2 ( 0, ∂x∂−2 x δ + ψ ) . Statistics of interest given by generating function Z(j) ≡ ∫ dϵ e−1 2 ϵN−1ϵ+jϕ[ϵ] and ⟨ϕi1 ϕi2 ⟩ = ∂2 ∂ji1 ∂ji2 Z(j) j=0 , which after the variable change becomes Z(j) ≡ ∫ dϕ e−S(ϕ)+jϕ , with S(ϕ) = 1/2 [L0ϕ + ∆0(ϕ)] N−1 [L0ϕ + ∆0(ϕ)] . [McDonald&Vlah, ’17] LSS using PT Gravitational clustering of dark matter 19 / 28
  • 27. Path integrals and going beyond shell crossing We can organize our perturbation theory as: S = Sg + Sp, where then we do exp(−S) = exp(−Sg)(1 − Sp + S2 p/2 + ...) where we can choose what the ”Gaussian part” will be, i.e. Sg ≡ 1/2χNχ + iχ[W−1 L0]ϕ ≡ 1/2χNχ + iχLϕ and Sp ≡ iχ∆0(ϕ) + iχ[(1 − W−1 )L0]ϕ ≡ iχ∆(ϕ), where χ is the auxiliary field from the Hubbard-Stratonovich transformation. Perturbation theory result : Z0(j) = Z0(j) + Z1(j) + . . . Leading order result: truncate Zel’dovich dynamics!!! Z0 = e 1 2 j.C.j and P(k) = ∫ d3 q eiq·k e−1 2 kikjAW ij higher orders more complicated, build in renormalization! [McDonald&Vlah, ’17] LSS using PT Gravitational clustering of dark matter 20 / 28
  • 28. Path integral approach; going beyond shell crossing 10 1 100 k [kNL] 0.0 0.2 0.4 0.6 0.8 1.0 P/P0 pure linear 1-loop, c=0.74 W2(c=0.74) 1-loop, c=0.1 W2(c=0.1) Significance and connection EFT formalism: ▶ no need of EFT free parameters, i.e. counter terms are predicted ▶ CMB lensing: direct information on baryonic and neutrinos physics ▶ reduction of degeneracy in galaxy bias coefficients ▶ possible connection to the EFT formalism by matching the k → 0 limit LSS using PT Gravitational clustering of dark matter 21 / 28
  • 29. Path integrals and going beyond shell crossing 10 1 100 k [kNL] 0.0 0.2 0.4 0.6 0.8 1.0 P/P0 pure linear 1-loop, c=0.74 Zel, c=0.74 1-loop, c=0.1 Zel, c=0.1 N-body Significance and connection EFT formalism: - goal is 3D! ▶ no need of EFT free parameters, i.e. counter terms are predicted ▶ CMB lensing: direct information on baryonic and neutrinos physics ▶ reduction of degeneracy in galaxy bias coefficients ▶ possible connection to the EFT formalism by matching the k → 0 limit LSS using PT Gravitational clustering of dark matter 22 / 28
  • 30. Summary Key points: ▶ Shell crossing can be consistently added to the perturbative Lagrangian scheme. ▶ Perturbative Lagrangian approach is a viable and UV-complete approach in the study of structure formation. ▶ Applications in LSS statistics, amongst which the most direct is weak lensing. ▶ EFT framework offers further simplifications on largest scales & Lagrangian setting is a natural for the study of BAO effects in LSS statistics.. LSS using PT Gravitational clustering of dark matter 23 / 28
  • 31. Baryon acoustic oscillation LSS using PT BAO 24 / 28
  • 32. Linear power spectrum, correlation function & BAO Linear power spectrum PL: obtained form Boltzmann codes (CAMB, Class). Formally we can divide it into smooth part PL,nw and wiggle part PL,w so that: PL = PL,nw + PL,w ����� ����� ����� � �� � � �� �� ��� ��� ���� � [�/���] �⨯�(�)[���/�]� �=��� �� ����� � �� ��� ��� ��� -�� -�� � �� �� �� �� �� � [���/�] ��⨯ξ(�)[���/�]� �=���ξ� ξ���� Wiggle power spectrum: PL,w → σn = ∫ q q−nPL,w(q) = 0 for n = {0, 2}. ����� ����� ����� � �� ���� ���� ���� ���� ���� � [�/���] ��(�)/����� �=��� [Z.V. et al, ’14 & ’15] LSS using PT BAO 25 / 28
  • 33. Redshift space distortions (RSD) Power spectrum in RSD Ps(k) = ∫ d3 r eik·r M ( k∥ˆz, r ) = ∫ d3 r eik·r M ( J = k.R, r ) , where r = x2 − x1 and 1 + M ( J, r ) = ⟨( 1 + δ(x) )( 1 + δ(x′ ) ) eiJ·∆u ⟩ , is the generating funciton for the moments of pairwise velocity, where ∆u = u(x2) − u(x1). RSD families : ▶ Streaming approach: cumulant expansion theorem, M to Z. [Peebles, White, ...] ▶ Distribution function approach: M is expanded moments that can be individually evaluated. [SPT, Seljak&McDonald, ...] ▶ Scoccimarro approach: Cumulant expansion theorem on individual contributions. [Scoccimarro, TNS ...] ▶ Direct Lagrangian approach: M is transformed into Lagrangian coordinates [Matsubara, White ...] LSS using PT BAO 26 / 28
  • 34. Resummation of IR modes: simple scheme Separating the wiggle and non-wiggle part A ij L(q) = A ij L,nw(q) + A ij L,w(q); P = Pnw + ∫ q eik·q−(1/2)kikjAij L,nw [ − kikj 2 Aij L,w + · · · ] ≃ Pnw + e−k2 Σ2 PL,w + . . . ��� � �� ��� ���� ��� � �� �� �� �� � [���/�] ���[���/�]� �=��� ����� ����� � �� ��� ���� ��� -��� -��� ��� ��� ��� � [���/�] ���[���/�]� �=��� ���� ��� � IR-SPT resummation model with Σ2 = ∫ dp 3π2 (1 − j0(qmaxk))PL(p): Pdm(k) = Pnw,L(k) + Pnw,SPT,1−loop(k) + αSPT,1−loop,IR(k)k2 Pnw,L(k) + e−k2 Σ2 ( ∆Pw,SPT,1−loop(k) + ( 1 + (αSPT,1−loop,IR + Σ2 )k2 ) ∆Pw,L(k) ) . Alternative derivation in: [Baldauf et al, 2015] LSS using PT BAO 27 / 28
  • 35. Wiggle residuals in our schemes: BAO ���� ���� ���� ���� � � ���� ���� ���� ���� ���� �[�/���] �����/������� �=��������_������ ���� �� ��� (���) �-���� ���� ���� ���� ���� ���� ���� ���� ���� -�� -�� -�� � �� �� �� ����� � -���� � [���/�]� �=��������� ��� ���� ���� ���� ���� ���� ���� ���� -�� -�� -�� � �� �� �� ����� � -����� � [���/�]� �=��������� ���� - � ���� ���� ���� ���� ���� ���� ���� ���� -�� -�� -�� � �� �� �� �[�/���] ����� � -���� � [���/�]� �=��������� ���_��-����� ���� ���� ���� ���� ���� ���� ���� -�� -�� -�� � �� �� �� �[�/���] ����� � -���� � [���/�]� �=��������� ��� - � ���� LSS using PT BAO 28 / 28