SlideShare a Scribd company logo
Chapter 3
PROPERTIES OF PURE
SUBSTANCES
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermodynamics: An Engineering Approach
Seventh Edition in SI Units
Yunus A. Cengel, Michael A. Boles
McGraw-Hill, 2011
2
PURE SUBSTANCE
• Pure substance: A substance that has a fixed chemical
composition throughout.
• Air is a mixture of several gases, but it is considered to be a
pure substance.
3
PHASES OF A PURE SUBSTANCE
The molecules
in a solid are
kept at their
positions by the
large springlike
inter-molecular
forces.
In a solid, the
attractive and
repulsive forces
between the
molecules tend
to maintain them
at relatively
constant
distances from
each other.
4
PHASE-CHANGE PROCESSES OF PURE
SUBSTANCES
• Compressed liquid (subcooled liquid): A substance that it is not
about to vaporize.
• Saturated liquid: A liquid that is about to vaporize.
At 1 atm and
20°C, water exists in
the liquid phase
(compressed liquid).
At 1 atm pressure
and 100°C, water
exists as a liquid
that is ready to
vaporize
(saturated liquid).
5
• Saturated vapor: A vapor that is about to condense.
• Saturated liquid–vapor mixture: The state at which the liquid and
vapor phases coexist in equilibrium.
• Superheated vapor: A vapor that is not about to condense (i.e., not a
saturated vapor).
As more heat is
transferred, part of the
saturated liquid vaporizes
(saturated liquid–vapor
mixture).
At 1 atm pressure, the
temperature remains
constant at 100°C until the
last drop of liquid is vaporized
(saturated vapor).
As more heat is
transferred, the
temperature of the
vapor starts to rise
(superheated vapor).
6
T-v diagram for the
heating process of
water at constant
pressure.
If the entire process between state 1 and 5 described in the figure is
reversed by cooling the water while maintaining the pressure at the
same value, the water will go back to state 1, retracing the same path,
and in so doing, the amount of heat released will exactly match the
amount of heat added during the heating process.
7
Saturation Temperature and Saturation Pressure
• The temperature at which water starts boiling depends on the pressure;
therefore, if the pressure is fixed, so is the boiling temperature.
• Water boils at 100 C at 1 atm pressure.
• Saturation temperature Tsat: The temperature at which a pure substance
changes phase at a given pressure.
• Saturation pressure Psat: The pressure at which a pure substance changes
phase at a given temperature.
The liquid–vapor
saturation curve
of a pure
substance
(numerical
values are for
water).
8
• Latent heat: The amount of energy
absorbed or released during a phase-
change process.
• Latent heat of fusion: The amount of
energy absorbed during melting. It is
equivalent to the amount of energy
released during freezing.
• Latent heat of vaporization: The amount
of energy absorbed during vaporization
and it is equivalent to the energy released
during condensation.
• The magnitudes of the latent heats
depend on the temperature or pressure at
which the phase change occurs.
• At 1 atm pressure, the latent heat of
fusion of water is 333.7 kJ/kg and the
latent heat of vaporization is 2256.5 kJ/kg.
• The atmospheric pressure, and thus the
boiling temperature of water, decreases
with elevation.
9
Some Consequences of
Tsat and Psat Dependence
The variation of
the temperature
of fruits and
vegetables with
pressure during
vacuum cooling
from 25°C to 0°C.
In 1775, ice was made
by evacuating the air
space in a water tank.
10
PROPERTY DIAGRAMS FOR PHASE-CHANGE
PROCESSES
The variations of properties during phase-change processes are best studied
and understood with the help of property diagrams such as the T-v, P-v, and P-T
diagrams for pure substances.
T-v diagram of
constant-pressure
phase-change
processes of a pure
substance at various
pressures
(numerical values
are for water).
11
• saturated liquid line
• saturated vapor line
• compressed liquid region
• superheated vapor region
• saturated liquid–vapor
mixture region (wet region)
At supercritical
pressures (P >
Pcr), there is no
distinct phase-change
(boiling) process.
Critical point: The point
at which the saturated
liquid and saturated vapor
states are identical.
12
13
Extending the
Diagrams to Include
the Solid Phase
At triple-point pressure
and temperature, a
substance exists in three
phases in equilibrium.
For water,
Ttp = 0.01°C
Ptp = 0.6117 kPa
14
15
Sublimation:
Passing from the
solid phase directly
into the vapor phase.
At low pressures
(below the triple-point
value), solids
evaporate without
melting first
(sublimation).
P-T diagram of pure substances.
Phase Diagram
16
The P-v-T surfaces present a great deal of information at once, but in a
thermodynamic analysis it is more convenient to work with two-dimensional
diagrams, such as the P-v and T-v diagrams.
17
PROPERTY TABLES
• For most substances, the relationships among thermodynamic properties are too
complex to be expressed by simple equations.
• Therefore, properties are frequently presented in the form of tables.
• Some thermodynamic properties can be measured easily, but others cannot and
are calculated by using the relations between them and measurable properties.
• The results of these measurements and calculations are presented in tables in a
convenient format.
Enthalpy—A Combination Property
The
combination
u + Pv is
frequently
encountered
in the analysis
of control
volumes.
The product pressure
volume has energy units.
18
Saturated Liquid and Saturated Vapor States
• Table A–4: Saturation properties of water under temperature.
• Table A–5: Saturation properties of water under pressure.
A partial list of Table A–4.
Enthalpy of vaporization, hfg (Latent
heat of vaporization): The amount of
energy needed to vaporize a unit mass
of saturated liquid at a given
temperature or pressure.
19
20
21
Examples:
Saturated liquid
and saturated
vapor states of
water on T-v and
P-v diagrams.
22
23
Saturated Liquid–Vapor Mixture
Quality, x : The ratio of the mass of vapor to the total mass of the mixture.
Quality is between 0 and 1 0: sat. liquid, 1: sat. vapor.
The properties of the saturated liquid are the same whether it exists alone or in
a mixture with saturated vapor.
The relative
amounts of
liquid and
vapor phases
in a saturated
mixture are
specified by
the quality x.
A two-phase system can be
treated as a homogeneous
mixture for convenience.
Temperature and
pressure are dependent
properties for a mixture.
24
y v, u, or h.
25
26
27
Superheated VaporIn the region to the right of the
saturated vapor line and at
temperatures above the critical
point temperature, a substance
exists as superheated vapor.
In this region, temperature and
pressure are independent
properties.
A partial
listing of
Table A–6.
At a specified
P, superheated
vapor exists at
a higher h than
the saturated
vapor.
Compared to saturated
vapor, superheated vapor is
characterized by
28
29
Compressed Liquid
Compressed liquid is characterized by
y v, u, or h
A more accurate relation for h
A compressed liquid
may be approximated
as a saturated liquid at
the given temperature.
The compressed liquid properties
depend on temperature much more
strongly than they do on pressure.
30
31
Reference State and Reference Values
• The values of u, h, and s cannot be measured directly, and they are calculated from
measurable properties using the relations between properties.
• However, those relations give the changes in properties, not the values of properties at
specified states.
• Therefore, we need to choose a convenient reference state and assign a value of zero for
a convenient property or properties at that state.
• The reference state for water is 0.01°C and for R-134a is -40°C in tables.
• Some properties may have negative values as a result of the reference state chosen.
• Sometimes different tables list different values for some properties at the same state as a
result of using a different reference state.
• However, In thermodynamics we are concerned with the changes in properties, and the
reference state chosen is of no consequence in calculations.
32
33
34
THE IDEAL-GAS EQUATION OF STATE
• Equation of state: Any equation that relates the
pressure, temperature, and specific volume of a substance.
• The simplest and best-known equation of state for substances in the gas
phase is the ideal-gas equation of state. This equation predicts the P-v-T
behavior of a gas quite accurately within some properly selected region.
R: gas constant
M: molar mass (kg/kmol)
Ru: universal gas constant
Ideal gas equation
of state
Different substances have different
gas constants.
35
Properties per unit mole are
denoted with a bar on the top.
Mass = Molar mass Mole number
Various expressions
of ideal gas equation
Ideal gas equation at two
states for a fixed mass
Real gases behave as an ideal gas at low
densities (i.e., low pressure, high temperature).
36
37
Is Water Vapor an Ideal Gas?
• At pressures below 10 kPa, water
vapor can be treated as an ideal
gas, regardless of its
temperature, with negligible error
(less than 0.1 percent).
• At higher pressures, however, the
ideal gas assumption yields
unacceptable errors, particularly in
the vicinity of the critical point and
the saturated vapor line.
• In air-conditioning applications, the
water vapor in the air can be
treated as an ideal gas. Why?
• In steam power plant
applications, however, the
pressures involved are usually very
high; therefore, ideal-gas relations
should not be used.
Percentage of error ([|vtable - videal|/vtable] 100) involved in
assuming steam to be an ideal gas, and the region where steam
can be treated as an ideal gas with less than 1 percent error.
38
39
Assignment No. 2
40

More Related Content

What's hot

Fluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volumeFluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volume
Addisu Dagne Zegeye
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
Ashish Khudaiwala
 
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTIONAbdul Moiz Dota
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
Mohsin Siddique
 
Chapter 2 HEAT CONDUCTION EQUATION
Chapter 2HEAT CONDUCTION EQUATIONChapter 2HEAT CONDUCTION EQUATION
Chapter 2 HEAT CONDUCTION EQUATION
Abdul Moiz Dota
 
Fluid Mechanics - 203PHYS
Fluid Mechanics - 203PHYSFluid Mechanics - 203PHYS
Fluid Mechanics - 203PHYS
Sabar D Hutagalung
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
guest7b51c7
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
gunabalan sellan
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
Malla Reddy University
 
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
Chapter 1INTRODUCTION AND BASIC CONCEPTSChapter 1INTRODUCTION AND BASIC CONCEPTS
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
Abdul Moiz Dota
 
Compressible flows
Compressible flowsCompressible flows
Compressible flows
Chinthana Ruwanpathirana
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
naphis ahamad
 
Fluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptFluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer Concept
Addisu Dagne Zegeye
 
HT seminar m1.ppt
HT seminar m1.pptHT seminar m1.ppt
HT seminar m1.ppt
DeveshPardhi1
 
Phase diagrams For Binary Mixtures
Phase diagrams For Binary MixturesPhase diagrams For Binary Mixtures
Phase diagrams For Binary Mixtures
Jaydeep Vakil
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
sravanthi chandanala
 
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motionFluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
Addisu Dagne Zegeye
 
Activity coefficient models
Activity coefficient modelsActivity coefficient models
Activity coefficient models
masudvalavi
 
Dalton’S Law Of Partial Pressure
Dalton’S Law Of Partial PressureDalton’S Law Of Partial Pressure
Dalton’S Law Of Partial Pressurewraithxjmin
 

What's hot (20)

Fluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volumeFluid Mechanics Chapter 3. Integral relations for a control volume
Fluid Mechanics Chapter 3. Integral relations for a control volume
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
 
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTION
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
 
Chapter 2 HEAT CONDUCTION EQUATION
Chapter 2HEAT CONDUCTION EQUATIONChapter 2HEAT CONDUCTION EQUATION
Chapter 2 HEAT CONDUCTION EQUATION
 
Fluid Mechanics - 203PHYS
Fluid Mechanics - 203PHYSFluid Mechanics - 203PHYS
Fluid Mechanics - 203PHYS
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
 
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
Chapter 1INTRODUCTION AND BASIC CONCEPTSChapter 1INTRODUCTION AND BASIC CONCEPTS
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Compressible flows
Compressible flowsCompressible flows
Compressible flows
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
 
Fluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer ConceptFluid Mechanics Chapter 6. Boundary Layer Concept
Fluid Mechanics Chapter 6. Boundary Layer Concept
 
HT seminar m1.ppt
HT seminar m1.pptHT seminar m1.ppt
HT seminar m1.ppt
 
Phase diagrams For Binary Mixtures
Phase diagrams For Binary MixturesPhase diagrams For Binary Mixtures
Phase diagrams For Binary Mixtures
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motionFluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
Fluid Mechanics Chapter 2 Part II. Fluids in rigid-body motion
 
Activity coefficient models
Activity coefficient modelsActivity coefficient models
Activity coefficient models
 
Dalton’S Law Of Partial Pressure
Dalton’S Law Of Partial PressureDalton’S Law Of Partial Pressure
Dalton’S Law Of Partial Pressure
 

Viewers also liked

Thermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesThermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesMuhammad Surahman
 
Evaluating Properties For mechanical and Industrial Engineering
 Evaluating Properties For mechanical and Industrial Engineering Evaluating Properties For mechanical and Industrial Engineering
Evaluating Properties For mechanical and Industrial Engineering
Kum Visal
 
Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Larry Howard
 
Rayegan thermo i-cengel-chapter 3-p2
Rayegan thermo i-cengel-chapter 3-p2Rayegan thermo i-cengel-chapter 3-p2
Rayegan thermo i-cengel-chapter 3-p2Larry Howard
 
Bab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering ApproachBab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering Approach
Ibnu Hasan
 
Chap3a jan13
Chap3a jan13Chap3a jan13
Chap3a jan13
Kennie Raj
 
Thermodynamics lecture 4
Thermodynamics lecture 4Thermodynamics lecture 4
Thermodynamics lecture 4Archit Gadhok
 
Em208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solutionEm208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solution
Sporsho
 
Chapter two powerpoint
Chapter two powerpointChapter two powerpoint
Chapter two powerpointNinaBGraland
 
Thermodynamic, part 7
Thermodynamic, part 7Thermodynamic, part 7
Pure substances
Pure substances Pure substances
SSL2 Basic Concepts
SSL2 Basic ConceptsSSL2 Basic Concepts
SSL2 Basic Concepts
Keith Vaugh
 
Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substance
PASRINIVASAN_79
 
Thermodynamics Hw#3
Thermodynamics Hw#3Thermodynamics Hw#3
Thermodynamics Hw#3
littlepine13
 
01 part5 properties pure substance
01 part5 properties pure substance01 part5 properties pure substance
01 part5 properties pure substance
gunabalan sellan
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsMuhammad Surahman
 
Thermodynamic Chapter 1 Fundamental Concepts
Thermodynamic Chapter 1 Fundamental ConceptsThermodynamic Chapter 1 Fundamental Concepts
Thermodynamic Chapter 1 Fundamental ConceptsMuhammad Surahman
 

Viewers also liked (20)

Thermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure SubstancesThermodynamic Chapter 2 Properties Of Pure Substances
Thermodynamic Chapter 2 Properties Of Pure Substances
 
Evaluating Properties For mechanical and Industrial Engineering
 Evaluating Properties For mechanical and Industrial Engineering Evaluating Properties For mechanical and Industrial Engineering
Evaluating Properties For mechanical and Industrial Engineering
 
Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1Rayegan thermo i-cengel-chapter 3-p1
Rayegan thermo i-cengel-chapter 3-p1
 
Rayegan thermo i-cengel-chapter 3-p2
Rayegan thermo i-cengel-chapter 3-p2Rayegan thermo i-cengel-chapter 3-p2
Rayegan thermo i-cengel-chapter 3-p2
 
Bab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering ApproachBab 3 Thermodynamic of Engineering Approach
Bab 3 Thermodynamic of Engineering Approach
 
Ch3
Ch3Ch3
Ch3
 
Chap3a jan13
Chap3a jan13Chap3a jan13
Chap3a jan13
 
Thermodynamics lecture 4
Thermodynamics lecture 4Thermodynamics lecture 4
Thermodynamics lecture 4
 
Em208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solutionEm208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solution
 
Chapter two powerpoint
Chapter two powerpointChapter two powerpoint
Chapter two powerpoint
 
Thermodynamic, part 7
Thermodynamic, part 7Thermodynamic, part 7
Thermodynamic, part 7
 
Ch3 homework
Ch3 homeworkCh3 homework
Ch3 homework
 
Pure substances
Pure substances Pure substances
Pure substances
 
SSL2 Basic Concepts
SSL2 Basic ConceptsSSL2 Basic Concepts
SSL2 Basic Concepts
 
Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substance
 
Thermodynamics Hw#3
Thermodynamics Hw#3Thermodynamics Hw#3
Thermodynamics Hw#3
 
01 part5 properties pure substance
01 part5 properties pure substance01 part5 properties pure substance
01 part5 properties pure substance
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of Thermodynamics
 
Thermodynamic Chapter 1 Fundamental Concepts
Thermodynamic Chapter 1 Fundamental ConceptsThermodynamic Chapter 1 Fundamental Concepts
Thermodynamic Chapter 1 Fundamental Concepts
 

Similar to Thermodynamics by Bilal Mughal

1649011617114008.hhgggggggggfffffffffffffff
1649011617114008.hhgggggggggfffffffffffffff1649011617114008.hhgggggggggfffffffffffffff
1649011617114008.hhgggggggggfffffffffffffff
AbdlaDoski
 
chapter two ppt.pptx
chapter two ppt.pptxchapter two ppt.pptx
chapter two ppt.pptx
mihretu7
 
8 PCh lecture.ppt
8 PCh lecture.ppt8 PCh lecture.ppt
8 PCh lecture.ppt
Narenova
 
Propiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias purasPropiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias puras
Norman Rivera
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
phani deepthi
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
phani deepthi
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptx
JibrilJundi
 
Thermodynamic property relations IP University Thermal science
Thermodynamic property relations IP University Thermal scienceThermodynamic property relations IP University Thermal science
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).ppt
ethiouniverse
 
States of Matter SB
States of Matter SBStates of Matter SB
States of Matter SB
Mirza Salman Baig
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substances
Yasir Hashmi
 
Pure substances
Pure substancesPure substances
Pure substances
Gaya Prasad Kurmi
 
Pure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docxPure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docx
amrit47
 
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
ujiburrahman2
 
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh anSlideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
Nguyen Thanh Tu Collection
 
Chapter13: Fluid Mechanics
Chapter13: Fluid MechanicsChapter13: Fluid Mechanics
Chapter13: Fluid Mechanics
Said Azar
 
States of matter 2 changes of phases ppt
States of matter 2 changes of phases pptStates of matter 2 changes of phases ppt
States of matter 2 changes of phases ppt
Nabeela Moosakutty
 
Steam properties and phase diagram
Steam properties and phase diagram Steam properties and phase diagram
Steam properties and phase diagram
Ankit Singhal
 
Liquid State SB
Liquid State SBLiquid State SB
Liquid State SB
Mirza Salman Baig
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for students
shahzad5098115
 

Similar to Thermodynamics by Bilal Mughal (20)

1649011617114008.hhgggggggggfffffffffffffff
1649011617114008.hhgggggggggfffffffffffffff1649011617114008.hhgggggggggfffffffffffffff
1649011617114008.hhgggggggggfffffffffffffff
 
chapter two ppt.pptx
chapter two ppt.pptxchapter two ppt.pptx
chapter two ppt.pptx
 
8 PCh lecture.ppt
8 PCh lecture.ppt8 PCh lecture.ppt
8 PCh lecture.ppt
 
Propiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias purasPropiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias puras
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptx
 
Thermodynamic property relations IP University Thermal science
Thermodynamic property relations IP University Thermal scienceThermodynamic property relations IP University Thermal science
Thermodynamic property relations IP University Thermal science
 
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).ppt
 
States of Matter SB
States of Matter SBStates of Matter SB
States of Matter SB
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substances
 
Pure substances
Pure substancesPure substances
Pure substances
 
Pure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docxPure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docx
 
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
 
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh anSlideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
Slideshow chapter 1 3 physical chemistry 1 dr ngo thanh an
 
Chapter13: Fluid Mechanics
Chapter13: Fluid MechanicsChapter13: Fluid Mechanics
Chapter13: Fluid Mechanics
 
States of matter 2 changes of phases ppt
States of matter 2 changes of phases pptStates of matter 2 changes of phases ppt
States of matter 2 changes of phases ppt
 
Steam properties and phase diagram
Steam properties and phase diagram Steam properties and phase diagram
Steam properties and phase diagram
 
Liquid State SB
Liquid State SBLiquid State SB
Liquid State SB
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for students
 

Recently uploaded

Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 

Recently uploaded (20)

Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 

Thermodynamics by Bilal Mughal

  • 1. Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011
  • 2. 2 PURE SUBSTANCE • Pure substance: A substance that has a fixed chemical composition throughout. • Air is a mixture of several gases, but it is considered to be a pure substance.
  • 3. 3 PHASES OF A PURE SUBSTANCE The molecules in a solid are kept at their positions by the large springlike inter-molecular forces. In a solid, the attractive and repulsive forces between the molecules tend to maintain them at relatively constant distances from each other.
  • 4. 4 PHASE-CHANGE PROCESSES OF PURE SUBSTANCES • Compressed liquid (subcooled liquid): A substance that it is not about to vaporize. • Saturated liquid: A liquid that is about to vaporize. At 1 atm and 20°C, water exists in the liquid phase (compressed liquid). At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (saturated liquid).
  • 5. 5 • Saturated vapor: A vapor that is about to condense. • Saturated liquid–vapor mixture: The state at which the liquid and vapor phases coexist in equilibrium. • Superheated vapor: A vapor that is not about to condense (i.e., not a saturated vapor). As more heat is transferred, part of the saturated liquid vaporizes (saturated liquid–vapor mixture). At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (saturated vapor). As more heat is transferred, the temperature of the vapor starts to rise (superheated vapor).
  • 6. 6 T-v diagram for the heating process of water at constant pressure. If the entire process between state 1 and 5 described in the figure is reversed by cooling the water while maintaining the pressure at the same value, the water will go back to state 1, retracing the same path, and in so doing, the amount of heat released will exactly match the amount of heat added during the heating process.
  • 7. 7 Saturation Temperature and Saturation Pressure • The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature. • Water boils at 100 C at 1 atm pressure. • Saturation temperature Tsat: The temperature at which a pure substance changes phase at a given pressure. • Saturation pressure Psat: The pressure at which a pure substance changes phase at a given temperature. The liquid–vapor saturation curve of a pure substance (numerical values are for water).
  • 8. 8 • Latent heat: The amount of energy absorbed or released during a phase- change process. • Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing. • Latent heat of vaporization: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation. • The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs. • At 1 atm pressure, the latent heat of fusion of water is 333.7 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg. • The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.
  • 9. 9 Some Consequences of Tsat and Psat Dependence The variation of the temperature of fruits and vegetables with pressure during vacuum cooling from 25°C to 0°C. In 1775, ice was made by evacuating the air space in a water tank.
  • 10. 10 PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES The variations of properties during phase-change processes are best studied and understood with the help of property diagrams such as the T-v, P-v, and P-T diagrams for pure substances. T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures (numerical values are for water).
  • 11. 11 • saturated liquid line • saturated vapor line • compressed liquid region • superheated vapor region • saturated liquid–vapor mixture region (wet region) At supercritical pressures (P > Pcr), there is no distinct phase-change (boiling) process. Critical point: The point at which the saturated liquid and saturated vapor states are identical.
  • 12. 12
  • 13. 13 Extending the Diagrams to Include the Solid Phase At triple-point pressure and temperature, a substance exists in three phases in equilibrium. For water, Ttp = 0.01°C Ptp = 0.6117 kPa
  • 14. 14
  • 15. 15 Sublimation: Passing from the solid phase directly into the vapor phase. At low pressures (below the triple-point value), solids evaporate without melting first (sublimation). P-T diagram of pure substances. Phase Diagram
  • 16. 16 The P-v-T surfaces present a great deal of information at once, but in a thermodynamic analysis it is more convenient to work with two-dimensional diagrams, such as the P-v and T-v diagrams.
  • 17. 17 PROPERTY TABLES • For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations. • Therefore, properties are frequently presented in the form of tables. • Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties. • The results of these measurements and calculations are presented in tables in a convenient format. Enthalpy—A Combination Property The combination u + Pv is frequently encountered in the analysis of control volumes. The product pressure volume has energy units.
  • 18. 18 Saturated Liquid and Saturated Vapor States • Table A–4: Saturation properties of water under temperature. • Table A–5: Saturation properties of water under pressure. A partial list of Table A–4. Enthalpy of vaporization, hfg (Latent heat of vaporization): The amount of energy needed to vaporize a unit mass of saturated liquid at a given temperature or pressure.
  • 19. 19
  • 20. 20
  • 21. 21 Examples: Saturated liquid and saturated vapor states of water on T-v and P-v diagrams.
  • 22. 22
  • 23. 23 Saturated Liquid–Vapor Mixture Quality, x : The ratio of the mass of vapor to the total mass of the mixture. Quality is between 0 and 1 0: sat. liquid, 1: sat. vapor. The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. The relative amounts of liquid and vapor phases in a saturated mixture are specified by the quality x. A two-phase system can be treated as a homogeneous mixture for convenience. Temperature and pressure are dependent properties for a mixture.
  • 24. 24 y v, u, or h.
  • 25. 25
  • 26. 26
  • 27. 27 Superheated VaporIn the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor. In this region, temperature and pressure are independent properties. A partial listing of Table A–6. At a specified P, superheated vapor exists at a higher h than the saturated vapor. Compared to saturated vapor, superheated vapor is characterized by
  • 28. 28
  • 29. 29 Compressed Liquid Compressed liquid is characterized by y v, u, or h A more accurate relation for h A compressed liquid may be approximated as a saturated liquid at the given temperature. The compressed liquid properties depend on temperature much more strongly than they do on pressure.
  • 30. 30
  • 31. 31 Reference State and Reference Values • The values of u, h, and s cannot be measured directly, and they are calculated from measurable properties using the relations between properties. • However, those relations give the changes in properties, not the values of properties at specified states. • Therefore, we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state. • The reference state for water is 0.01°C and for R-134a is -40°C in tables. • Some properties may have negative values as a result of the reference state chosen. • Sometimes different tables list different values for some properties at the same state as a result of using a different reference state. • However, In thermodynamics we are concerned with the changes in properties, and the reference state chosen is of no consequence in calculations.
  • 32. 32
  • 33. 33
  • 34. 34 THE IDEAL-GAS EQUATION OF STATE • Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance. • The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the P-v-T behavior of a gas quite accurately within some properly selected region. R: gas constant M: molar mass (kg/kmol) Ru: universal gas constant Ideal gas equation of state Different substances have different gas constants.
  • 35. 35 Properties per unit mole are denoted with a bar on the top. Mass = Molar mass Mole number Various expressions of ideal gas equation Ideal gas equation at two states for a fixed mass Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).
  • 36. 36
  • 37. 37 Is Water Vapor an Ideal Gas? • At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent). • At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line. • In air-conditioning applications, the water vapor in the air can be treated as an ideal gas. Why? • In steam power plant applications, however, the pressures involved are usually very high; therefore, ideal-gas relations should not be used. Percentage of error ([|vtable - videal|/vtable] 100) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.
  • 38. 38
  • 39. 39