SlideShare a Scribd company logo
1 of 30
Download to read offline
Chapter 3
PROPERTIES OF PURE
SUBSTANCES
Dr. Hatem Hasan Ismaeel
Duhok Polytechnic University
Fundamentals of Thermodynamics Course
Thermodynamics: An Engineering Approach
YunusA. Çengel, Michael A. Boles
2
Objectives
• Introduce the concept of a pure substance.
• Discuss the physics of phase-change processes.
• Illustrate the P-v, T-v, and P-T property diagrams and P-v-T
surfaces of pure substances.
• Demonstrate the procedures for determining thermodynamic
properties of pure substances from tables of property data.
• Describe the hypothetical substance “ideal gas” and the
ideal-gas equation of state.
• Apply the ideal-gas equation of state in the solution of typical
problems.
• Introduce the compressibility factor, which accounts for the
deviation of real gases from ideal-gas behavior.
• Present some of the best-known equations of state.
3
PURE SUBSTANCE
• Pure substance: A substance that has a fixed chemical
composition throughout.
• Air is a mixture of several gases, but it is considered to be a
pure substance.
4
PHASES OF A PURE SUBSTANCE
The molecules
in a solid are
kept at their
positions by the
large springlike
inter-molecular
forces.
In a solid, the
attractive and
repulsive forces
between the
molecules tend
to maintain them
at relatively
constant
distances from
each other.
5
PHASE-CHANGE PROCESSES OF PURE
SUBSTANCES
• Compressed liquid (subcooled liquid): A substance that it is not
about to vaporize.
• Saturated liquid: A liquid that is about to vaporize.
At 1 atm and 20°C,
water exists in the
liquid phase
(compressed liquid).
At 1 atm pressure
and 100°C, water
exists as a liquid
that is ready to
vaporize
(saturated liquid).
6
• Saturated vapor: A vapor that is about to condense.
• Saturated liquid–vapor mixture: The state at which the liquid and
vapor phases coexist in equilibrium.
• Superheated vapor: A vapor that is not about to condense (i.e., not a
saturated vapor).
As more heat is transferred,
part of the saturated liquid
vaporizes (saturated liquid–
vapor mixture).
At 1 atm pressure, the
temperature remains
constant at 100°C until the
last drop of liquid is vaporized
(saturated vapor).
As more heat is
transferred, the
temperature of the
vapor starts to rise
(superheated vapor).
7
T-v diagram for the
heating process of
water at constant
pressure.
If the entire process between state 1 and 5 described in the figure is
reversed by cooling the water while maintaining the pressure at the
same value, the water will go back to state 1, retracing the same path,
and in so doing, the amount of heat released will exactly match the
amount of heat added during the heating process.
8
Saturation Temperature and Saturation Pressure
• The temperature at which water starts boiling depends on the pressure;
therefore, if the pressure is fixed, so is the boiling temperature.
• Water boils at 100C at 1 atm pressure.
• Saturation temperature Tsat: The temperature at which a pure substance
changes phase at a given pressure.
• Saturation pressure Psat: The pressure at which a pure substance changes
phase at a given temperature.
The liquid–vapor
saturation curve
of a pure
substance
(numerical
values are for
water).
9
• Latent heat: The amount of energy
absorbed or released during a phase-
change process.
• Latent heat of fusion: The amount of
energy absorbed during melting. It is
equivalent to the amount of energy
released during freezing.
• Latent heat of vaporization: The amount
of energy absorbed during vaporization
and it is equivalent to the energy released
during condensation.
• The magnitudes of the latent heats
depend on the temperature or pressure at
which the phase change occurs.
• At 1 atm pressure, the latent heat of
fusion of water is 333.7 kJ/kg and the
latent heat of vaporization is 2256.5 kJ/kg.
• The atmospheric pressure, and thus the
boiling temperature of water, decreases
with elevation.
10
PROPERTY DIAGRAMS FOR PHASE-CHANGE
PROCESSES
The variations of properties during phase-change processes are best studied
and understood with the help of property diagrams such as the T-v, P-v, and P-T
diagrams for pure substances.
T-v diagram of
constant-pressure
phase-change
processes of a pure
substance at various
pressures
(numerical values
are for water).
11
• saturated liquid line
• saturated vapor line
• compressed liquid region
• superheated vapor region
• saturated liquid–vapor
mixture region (wet region)
At supercritical
pressures (P > Pcr),
there is no distinct
phase-change
(boiling) process.
Critical point: The point
at which the saturated
liquid and saturated vapor
states are identical.
12
13
Extending the
Diagrams to Include
the Solid Phase
At triple-point pressure
and temperature, a
substance exists in three
phases in equilibrium.
For water,
Ttp = 0.01°C
Ptp = 0.6117 kPa
We are all familiar with two phases being
in equilibrium, but under some conditions
all three phases of a pure substance coexist
in equilibrium. On P-v or T-v diagrams,
these triple-phase states form a line called
the triple line.
14
Sublimation:
Passing from the
solid phase directly
into the vapor phase.
At low pressures
(below the triple-point
value), solids
evaporate without
melting first
(sublimation).
P-T diagram of pure substances.
Phase Diagram
15
The P-v-T surfaces present a great deal of information at once, but in a
thermodynamic analysis it is more convenient to work with two-dimensional
diagrams, such as the P-v and T-v diagrams.
16
PROPERTY TABLES
• For most substances, the relationships among thermodynamic properties are too
complex to be expressed by simple equations.
• Therefore, properties are frequently presented in the form of tables.
• Some thermodynamic properties can be measured easily, but others cannot and
are calculated by using the relations between them and measurable properties.
• The results of these measurements and calculations are presented in tables in a
convenient format.
Enthalpy—A Combination Property
The
combination
u + Pv is
frequently
encountered
in the analysis
of control
volumes.
The product pressure 
volume has energy units.
17
Saturated Liquid and Saturated Vapor States
• Table A–4: Saturation properties of water under temperature.
• Table A–5: Saturation properties of water under pressure.
A partial list of Table A–4.
Enthalpy of vaporization, hfg (Latent
heat of vaporization): The amount of
energy needed to vaporize a unit mass
of saturated liquid at a given
temperature or pressure.
18
19
Examples:
Saturated liquid
and saturated
vapor states of
water on T-v and
P-v diagrams.
20
Saturated Liquid–Vapor Mixture
Quality, x : The ratio of the mass of vapor to the total mass of the mixture.
Quality is between 0 and 1 0: sat. liquid, 1: sat. vapor.
The properties of the saturated liquid are the same whether it exists alone or in
a mixture with saturated vapor.
The relative
amounts of
liquid and
vapor phases
in a saturated
mixture are
specified by
the quality x.
A two-phase system can be
treated as a homogeneous
mixture for convenience.
Temperature and
pressure are dependent
properties for a mixture.
21
y v, u, or h.
22
Examples: Saturated liquid-vapor
mixture states on T-v and P-v diagrams.
For water For R-134a
23
Superheated Vapor
In the region to the right of the
saturated vapor line and at
temperatures above the critical
point temperature, a substance
exists as superheated vapor.
In this region, temperature and
pressure are independent
properties.
A partial
listing of
Table A–6.
At a specified
P, superheated
vapor exists at
a higher h than
the saturated
vapor.
Compared to saturated vapor,
superheated vapor is characterized by
24
25
Compressed Liquid
Compressed liquid is characterized by
y  v, u, or h
A more accurate relation for h
A compressed liquid
may be approximated
as a saturated liquid at
the given temperature.
The compressed liquid properties
depend on temperature much more
strongly than they do on pressure.
26
Reference State and Reference Values
• The values of u, h, and s cannot be measured directly, and they are calculated from
measurable properties using the relations between properties.
• However, those relations give the changes in properties, not the values of properties at
specified states.
• Therefore, we need to choose a convenient reference state and assign a value of zero for
a convenient property or properties at that state.
• The reference state for water is 0.01°C and for R-134a is -40°C in tables.
• Some properties may have negative values as a result of the reference state chosen.
• Sometimes different tables list different values for some properties at the same state as a
result of using a different reference state.
• However, In thermodynamics we are concerned with the changes in properties, and the
reference state chosen is of no consequence in calculations.
27
THE IDEAL-GAS EQUATION OF STATE
• Equation of state: Any equation that relates the pressure, temperature,
and specific volume of a substance.
• The simplest and best-known equation of state for substances in the gas
phase is the ideal-gas equation of state. This equation predicts the P-v-T
behavior of a gas quite accurately within some properly selected region.
R: gas constant
M: molar mass (kg/kmol)
Ru: universal gas constant
Ideal gas equation
of state
Different substances have different
gas constants.
28
Properties per unit mole are
denoted with a bar on the top.
Mass = Molar mass  Mole number
Various expressions
of ideal gas equation
Ideal gas equation at two
states for a fixed mass
Real gases behave as an ideal gas at low
densities (i.e., low pressure, high temperature).
29
Is Water Vapor an Ideal Gas?
• At pressures below 10 kPa, water
vapor can be treated as an ideal
gas, regardless of its temperature,
with negligible error (less than 0.1
percent).
• At higher pressures, however, the
ideal gas assumption yields
unacceptable errors, particularly in
the vicinity of the critical point and
the saturated vapor line.
• In air-conditioning applications, the
water vapor in the air can be
treated as an ideal gas. Why?
• In steam power plant applications,
however, the pressures involved
are usually very high; therefore,
ideal-gas relations should not be
used.
Percentage of error ([|vtable - videal|/vtable] 100) involved in
assuming steam to be an ideal gas, and the region where steam
can be treated as an ideal gas with less than 1 percent error.
30
COMPRESSIBILITY FACTOR—A MEASURE
OF DEVIATION FROM IDEAL-GAS BEHAVIOR
Compressibility factor Z
A factor that accounts for
the deviation of real gases
from ideal-gas behavior at
a given temperature and
pressure.
The farther away Z is from unity, the more the
gas deviates from ideal-gas behavior.
Gases behave as an ideal gas at low densities
(i.e., low pressure, high temperature).
Question: What is the criteria for low pressure
and high temperature?
Answer: The pressure or temperature of a gas
is high or low relative to its critical temperature
or pressure.

More Related Content

Similar to 1649011617114008.hhgggggggggfffffffffffffff

Propiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias purasPropiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias purasNorman Rivera
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substancesHarishDAV
 
Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substancePASRINIVASAN_79
 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxKeith Vaugh
 
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggse
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggsechapter03_7sdsdsdfsaerssssssssa.pptfgggggggggse
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggsektmbych2016
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptxJibrilJundi
 
Pure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docxPure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docxamrit47
 
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptethiouniverse
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substancesfaslmulat
 
Review of Fundamentals - II.ppt :):):):)
Review of Fundamentals - II.ppt :):):):)Review of Fundamentals - II.ppt :):):):)
Review of Fundamentals - II.ppt :):):):)AbdulelahAlhamayani2
 
Gibbs phase rule and lever rule
Gibbs phase rule and lever ruleGibbs phase rule and lever rule
Gibbs phase rule and lever rulevaibhav tailor
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsshahzad5098115
 
Lecture 11_FT-123 & DT-125.pptx
Lecture 11_FT-123 & DT-125.pptxLecture 11_FT-123 & DT-125.pptx
Lecture 11_FT-123 & DT-125.pptxSectionA6
 
Chapter 7 pure substance
Chapter 7 pure substanceChapter 7 pure substance
Chapter 7 pure substanceAaba Tambe
 
8 PCh lecture.ppt
8 PCh lecture.ppt8 PCh lecture.ppt
8 PCh lecture.pptNarenova
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matterphani deepthi
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matterphani deepthi
 
The phase rule
The phase ruleThe phase rule
The phase ruleJatin Garg
 

Similar to 1649011617114008.hhgggggggggfffffffffffffff (20)

Propiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias purasPropiedades termodinámicas de las sustancias puras
Propiedades termodinámicas de las sustancias puras
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substances
 
Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substance
 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptx
 
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggse
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggsechapter03_7sdsdsdfsaerssssssssa.pptfgggggggggse
chapter03_7sdsdsdfsaerssssssssa.pptfgggggggggse
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptx
 
Pure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docxPure Substance Pure substance is a chemically homogenous s.docx
Pure Substance Pure substance is a chemically homogenous s.docx
 
Thermodynamic property relations IP University Thermal science
Thermodynamic property relations IP University Thermal scienceThermodynamic property relations IP University Thermal science
Thermodynamic property relations IP University Thermal science
 
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).ppt
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substances
 
Review of Fundamentals - II.ppt :):):):)
Review of Fundamentals - II.ppt :):):):)Review of Fundamentals - II.ppt :):):):)
Review of Fundamentals - II.ppt :):):):)
 
Gibbs phase rule and lever rule
Gibbs phase rule and lever ruleGibbs phase rule and lever rule
Gibbs phase rule and lever rule
 
Rac lecture 5
Rac lecture 5Rac lecture 5
Rac lecture 5
 
Lecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for studentsLecture No.3.pptx A good slide for students
Lecture No.3.pptx A good slide for students
 
Lecture 11_FT-123 & DT-125.pptx
Lecture 11_FT-123 & DT-125.pptxLecture 11_FT-123 & DT-125.pptx
Lecture 11_FT-123 & DT-125.pptx
 
Chapter 7 pure substance
Chapter 7 pure substanceChapter 7 pure substance
Chapter 7 pure substance
 
8 PCh lecture.ppt
8 PCh lecture.ppt8 PCh lecture.ppt
8 PCh lecture.ppt
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
 
Unit 2 states of matter
Unit 2 states of matterUnit 2 states of matter
Unit 2 states of matter
 
The phase rule
The phase ruleThe phase rule
The phase rule
 

More from AbdlaDoski

1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf
1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf
1646936922457555bdhdhdhdhdhdhdsjhhhj.pdfAbdlaDoski
 
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...AbdlaDoski
 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...AbdlaDoski
 
solarthermalsystem-fffff210330080358.pdf
solarthermalsystem-fffff210330080358.pdfsolarthermalsystem-fffff210330080358.pdf
solarthermalsystem-fffff210330080358.pdfAbdlaDoski
 
Engine11@hehjehejehejejejejejehehehehehi
Engine11@hehjehejehejejejejejehehehehehiEngine11@hehjehejehejejejejejehehehehehi
Engine11@hehjehejehejejejejejehehehehehiAbdlaDoski
 
Dynamic1233;(())54444555555566667777777777
Dynamic1233;(())54444555555566667777777777Dynamic1233;(())54444555555566667777777777
Dynamic1233;(())54444555555566667777777777AbdlaDoski
 

More from AbdlaDoski (6)

1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf
1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf
1646936922457555bdhdhdhdhdhdhdsjhhhj.pdf
 
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...
M A Laughton,Watt Committee on Energy. Working Group on Renewab - Renewable e...
 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
 
solarthermalsystem-fffff210330080358.pdf
solarthermalsystem-fffff210330080358.pdfsolarthermalsystem-fffff210330080358.pdf
solarthermalsystem-fffff210330080358.pdf
 
Engine11@hehjehejehejejejejejehehehehehi
Engine11@hehjehejehejejejejejehehehehehiEngine11@hehjehejehejejejejejehehehehehi
Engine11@hehjehejehejejejejejehehehehehi
 
Dynamic1233;(())54444555555566667777777777
Dynamic1233;(())54444555555566667777777777Dynamic1233;(())54444555555566667777777777
Dynamic1233;(())54444555555566667777777777
 

Recently uploaded

Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
rishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfrishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfmuskan1121w
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiMalviyaNagarCallGirl
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...lizamodels9
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCRsoniya singh
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxBanana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxgeorgebrinton95
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
 
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckHajeJanKamps
 

Recently uploaded (20)

Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
rishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfrishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdf
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
 
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxBanana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
 
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
 

1649011617114008.hhgggggggggfffffffffffffff

  • 1. Chapter 3 PROPERTIES OF PURE SUBSTANCES Dr. Hatem Hasan Ismaeel Duhok Polytechnic University Fundamentals of Thermodynamics Course Thermodynamics: An Engineering Approach YunusA. Çengel, Michael A. Boles
  • 2. 2 Objectives • Introduce the concept of a pure substance. • Discuss the physics of phase-change processes. • Illustrate the P-v, T-v, and P-T property diagrams and P-v-T surfaces of pure substances. • Demonstrate the procedures for determining thermodynamic properties of pure substances from tables of property data. • Describe the hypothetical substance “ideal gas” and the ideal-gas equation of state. • Apply the ideal-gas equation of state in the solution of typical problems. • Introduce the compressibility factor, which accounts for the deviation of real gases from ideal-gas behavior. • Present some of the best-known equations of state.
  • 3. 3 PURE SUBSTANCE • Pure substance: A substance that has a fixed chemical composition throughout. • Air is a mixture of several gases, but it is considered to be a pure substance.
  • 4. 4 PHASES OF A PURE SUBSTANCE The molecules in a solid are kept at their positions by the large springlike inter-molecular forces. In a solid, the attractive and repulsive forces between the molecules tend to maintain them at relatively constant distances from each other.
  • 5. 5 PHASE-CHANGE PROCESSES OF PURE SUBSTANCES • Compressed liquid (subcooled liquid): A substance that it is not about to vaporize. • Saturated liquid: A liquid that is about to vaporize. At 1 atm and 20°C, water exists in the liquid phase (compressed liquid). At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (saturated liquid).
  • 6. 6 • Saturated vapor: A vapor that is about to condense. • Saturated liquid–vapor mixture: The state at which the liquid and vapor phases coexist in equilibrium. • Superheated vapor: A vapor that is not about to condense (i.e., not a saturated vapor). As more heat is transferred, part of the saturated liquid vaporizes (saturated liquid– vapor mixture). At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (saturated vapor). As more heat is transferred, the temperature of the vapor starts to rise (superheated vapor).
  • 7. 7 T-v diagram for the heating process of water at constant pressure. If the entire process between state 1 and 5 described in the figure is reversed by cooling the water while maintaining the pressure at the same value, the water will go back to state 1, retracing the same path, and in so doing, the amount of heat released will exactly match the amount of heat added during the heating process.
  • 8. 8 Saturation Temperature and Saturation Pressure • The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature. • Water boils at 100C at 1 atm pressure. • Saturation temperature Tsat: The temperature at which a pure substance changes phase at a given pressure. • Saturation pressure Psat: The pressure at which a pure substance changes phase at a given temperature. The liquid–vapor saturation curve of a pure substance (numerical values are for water).
  • 9. 9 • Latent heat: The amount of energy absorbed or released during a phase- change process. • Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing. • Latent heat of vaporization: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation. • The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs. • At 1 atm pressure, the latent heat of fusion of water is 333.7 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg. • The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.
  • 10. 10 PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES The variations of properties during phase-change processes are best studied and understood with the help of property diagrams such as the T-v, P-v, and P-T diagrams for pure substances. T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures (numerical values are for water).
  • 11. 11 • saturated liquid line • saturated vapor line • compressed liquid region • superheated vapor region • saturated liquid–vapor mixture region (wet region) At supercritical pressures (P > Pcr), there is no distinct phase-change (boiling) process. Critical point: The point at which the saturated liquid and saturated vapor states are identical.
  • 12. 12
  • 13. 13 Extending the Diagrams to Include the Solid Phase At triple-point pressure and temperature, a substance exists in three phases in equilibrium. For water, Ttp = 0.01°C Ptp = 0.6117 kPa We are all familiar with two phases being in equilibrium, but under some conditions all three phases of a pure substance coexist in equilibrium. On P-v or T-v diagrams, these triple-phase states form a line called the triple line.
  • 14. 14 Sublimation: Passing from the solid phase directly into the vapor phase. At low pressures (below the triple-point value), solids evaporate without melting first (sublimation). P-T diagram of pure substances. Phase Diagram
  • 15. 15 The P-v-T surfaces present a great deal of information at once, but in a thermodynamic analysis it is more convenient to work with two-dimensional diagrams, such as the P-v and T-v diagrams.
  • 16. 16 PROPERTY TABLES • For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations. • Therefore, properties are frequently presented in the form of tables. • Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties. • The results of these measurements and calculations are presented in tables in a convenient format. Enthalpy—A Combination Property The combination u + Pv is frequently encountered in the analysis of control volumes. The product pressure  volume has energy units.
  • 17. 17 Saturated Liquid and Saturated Vapor States • Table A–4: Saturation properties of water under temperature. • Table A–5: Saturation properties of water under pressure. A partial list of Table A–4. Enthalpy of vaporization, hfg (Latent heat of vaporization): The amount of energy needed to vaporize a unit mass of saturated liquid at a given temperature or pressure.
  • 18. 18
  • 19. 19 Examples: Saturated liquid and saturated vapor states of water on T-v and P-v diagrams.
  • 20. 20 Saturated Liquid–Vapor Mixture Quality, x : The ratio of the mass of vapor to the total mass of the mixture. Quality is between 0 and 1 0: sat. liquid, 1: sat. vapor. The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. The relative amounts of liquid and vapor phases in a saturated mixture are specified by the quality x. A two-phase system can be treated as a homogeneous mixture for convenience. Temperature and pressure are dependent properties for a mixture.
  • 21. 21 y v, u, or h.
  • 22. 22 Examples: Saturated liquid-vapor mixture states on T-v and P-v diagrams. For water For R-134a
  • 23. 23 Superheated Vapor In the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor. In this region, temperature and pressure are independent properties. A partial listing of Table A–6. At a specified P, superheated vapor exists at a higher h than the saturated vapor. Compared to saturated vapor, superheated vapor is characterized by
  • 24. 24
  • 25. 25 Compressed Liquid Compressed liquid is characterized by y  v, u, or h A more accurate relation for h A compressed liquid may be approximated as a saturated liquid at the given temperature. The compressed liquid properties depend on temperature much more strongly than they do on pressure.
  • 26. 26 Reference State and Reference Values • The values of u, h, and s cannot be measured directly, and they are calculated from measurable properties using the relations between properties. • However, those relations give the changes in properties, not the values of properties at specified states. • Therefore, we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state. • The reference state for water is 0.01°C and for R-134a is -40°C in tables. • Some properties may have negative values as a result of the reference state chosen. • Sometimes different tables list different values for some properties at the same state as a result of using a different reference state. • However, In thermodynamics we are concerned with the changes in properties, and the reference state chosen is of no consequence in calculations.
  • 27. 27 THE IDEAL-GAS EQUATION OF STATE • Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance. • The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the P-v-T behavior of a gas quite accurately within some properly selected region. R: gas constant M: molar mass (kg/kmol) Ru: universal gas constant Ideal gas equation of state Different substances have different gas constants.
  • 28. 28 Properties per unit mole are denoted with a bar on the top. Mass = Molar mass  Mole number Various expressions of ideal gas equation Ideal gas equation at two states for a fixed mass Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).
  • 29. 29 Is Water Vapor an Ideal Gas? • At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent). • At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line. • In air-conditioning applications, the water vapor in the air can be treated as an ideal gas. Why? • In steam power plant applications, however, the pressures involved are usually very high; therefore, ideal-gas relations should not be used. Percentage of error ([|vtable - videal|/vtable] 100) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.
  • 30. 30 COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR Compressibility factor Z A factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure. The farther away Z is from unity, the more the gas deviates from ideal-gas behavior. Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature). Question: What is the criteria for low pressure and high temperature? Answer: The pressure or temperature of a gas is high or low relative to its critical temperature or pressure.