SlideShare a Scribd company logo
The Normal Distribution

Slide 1

Shakeel Nouman
M.Phil Statistics

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4











Slide 2

The Normal Distribution

Using Statistics
The Normal Probability Distribution
The Standard Normal Distribution
The Transformation of Normal Random
Variables
The Inverse Transformation
The Normal Distribution as an
Approximation to Other Probability
Distributions
Summary and Review of Terms

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-1 Introduction

Slide 3

As n increases, the binomial distribution approaches a ...
n=6

n = 10

Bino mial Dis trib utio n: n=6, p =.5

n = 14

Bino mial Distrib utio n: n=1 0 , p =.5

Bino mial Dis trib utio n: n=1 4 , p =.5
0.3

0.2

0.2

0.2

0.1

P(x)

0.3

P(x)

P(x)

0.3

0.1

0.0

0.1

0.0
0

1

2

3

4

5

6

0.0
0

1

x

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

x

Normal Probability Density Function:
f ( x) 

1






 x
2
2p
where e  2.7182818... and p  314159265...
.

0.4
0.3

f(x)

x  2

e 2 2 for






Normal Distribution:  = 0,= 1

0.2
0.1
0.0
-5

0

x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

5
The Normal Probability
Distribution

Slide 4

The normal probability density function:
1

e

0.4

x  2





2 2

0.3

for

 x

2p 2
where e  2.7182818... and p  314159265...
.

f(x)

f ( x) 









Normal Dis tribution:  = 0,= 1

0.2
0.1
0.0
-5

0

x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

5
Properties of the Normal
Probability Distribution
•

Slide 5

The normal is a family of
Bell-shaped and symmetric distributions. because the
distribution is symmetric, one-half (.50 or 50%) lies
on either side of the mean.
Each is characterized by a different pair of mean, ,


and variance,  . That is: [X~N( )].
Each is asymptotic to the horizontal axis.
The area under any normal probability density
function within kof is the same for any normal
distribution, regardless of the mean and variance.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution (continued)
•
•
•

Slide 6

If several independent random variables are normally
distributed then their sum will also be normally
distributed.
The mean of the sum will be the sum of all the
individual means.
The variance of the sum will be the sum of all the
individual variances (by virtue of the independence).

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution
(continued)
•
•
•
•

Slide 7

If X1, X2, …, Xn are independent normal random
variable, then their sum S will also be normally
distributed with
E(S) = E(X1) + E(X2) + … + E(Xn)
V(S) = V(X1) + V(X2) + … + V(Xn)
Note: It is the variances that can be added above and
not the standard deviations.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution – Example
4-1

Slide 8

Example 4.1: Let X1, X2, and X3 be independent random
variables that are normally distributed with means and
variances as shown.
Mean

Variance

X1

10

1

X2

20

2

X3

30

3

Let S = X1 + X2 + X3. Then E(S) = 10 + 20 + 30 = 60 and
V(S) = 1 + 2 + 3 = 6. The standard deviation of S 6
is
= 2.45.
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties
of
the
Normal
Probability Distribution (continued)
•

•
•
•

Slide 9

If X1, X2, …, Xn are independent normal random
variable, then the random variable Q defined as Q =
a1X1 + a2X2 + … + anXn + b will also be normally
distributed with
E(Q) = a1E(X1) + a2E(X2) + … + anE(Xn) + b
V(Q) = a12 V(X1) + a22 V(X2) + … + an2 V(Xn)
Note: It is the variances that can be added above and
not the standard deviations.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution – Example
4-3

Slide 10

Example 4.3: Let X1 , X2 , X3 and X4 be independent random variables
that are normally distributed with means and variances as shown.
Find the mean and variance of Q = X1 - 2X2 + 3X2 - 4X4 + 5
Mean

Variance

X1

12

4

X2

-5

2

X3

8

5

X4

10

1

E(Q) = 12 – 2(-5) + 3(8) – 4(10) + 5 = 11

V(Q) = 4 + (-2)2(2) + 32(5) + (-4)2(1) = 73
SD(Q) =

73  8.544

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Computing the Mean, VarianceSlide 11
and Standard Deviation for the
Sum of Independent Random
Variables Using the Template

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Normal Probability Distributions

Slide 12

All of these are normal probability density functions, though each has a different mean and variance.
Normal Distribution: =40, 
=1

Normal Distribution: =30, 
=5

0.4

Normal Distribution: =50, 
=3

0.2

0.2

0.2

f(y)

f(x)

f(w)

0.3
0.1

0.1

0.1
0.0

0.0
35

40

45

0.0
0

w

10

20

30

40

50

x

W~N(40,1)

X~N(30,25)

60

35

45

50

55

y

Y~N(50,9)

Normal Distribution:  
=0, =1

Consider:

0.4

f(z)

0.3
0.2
0.1
0.0
-5

0

5

P(39 W 41)
P(25 X 35)
P(47 Y 53)
P(-1 Z 1)

The probability in each
case is an area under a
normal probability density
function.

z

Z~N(0,1)
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

65
Computing Normal Probabilities
Using the Template

Slide 13

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-3 The Standard Normal
Distribution

Slide 14

The standard normal random variable, Z, is the normal random
variable with mean = 0 and standard deviation = 1:
Z~N(0,12).
Standard Normal Distribution
0 .4


=1

{

f( z)

0 .3

0 .2

0 .1

0 .0
-5

-4

-3

-2

-1

0

1

2

3

4

5


=0
Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Probabilities of the
Standard Normal Distribution: P(0
< Z < 1.56)

Slide 15

Standard Normal Probabilities
Standard Normal Distribution
0.4

f(z)

0.3
0.2
0.1

{

1.56

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

Look in row labeled 1.5
and column labeled .06 to
find P(0 z 1.56) =
.4406

z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

.00
0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713
0.4772
0.4821
0.4861
0.4893
0.4918
0.4938
0.4953
0.4965
0.4974
0.4981
0.4987

.01
0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719
0.4778
0.4826
0.4864
0.4896
0.4920
0.4940
0.4955
0.4966
0.4975
0.4982
0.4987

.02
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726
0.4783
0.4830
0.4868
0.4898
0.4922
0.4941
0.4956
0.4967
0.4976
0.4982
0.4987

.03
0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.3708
0.3907
0.4082
0.4236
0.4370
0.4484
0.4582
0.4664
0.4732
0.4788
0.4834
0.4871
0.4901
0.4925
0.4943
0.4957
0.4968
0.4977
0.4983
0.4988

.04
0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.3729
0.3925
0.4099
0.4251
0.4382
0.4495
0.4591
0.4671
0.4738
0.4793
0.4838
0.4875
0.4904
0.4927
0.4945
0.4959
0.4969
0.4977
0.4984
0.4988

.05
0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.3749
0.3944
0.4115
0.4265
0.4394
0.4505
0.4599
0.4678
0.4744
0.4798
0.4842
0.4878
0.4906
0.4929
0.4946
0.4960
0.4970
0.4978
0.4984
0.4989

.06
0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.3770
0.3962
0.4131
0.4279
0.4406
0.4515
0.4608
0.4686
0.4750
0.4803
0.4846
0.4881
0.4909
0.4931
0.4948
0.4961
0.4971
0.4979
0.4985
0.4989

.07
0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.3790
0.3980
0.4147
0.4292
0.4418
0.4525
0.4616
0.4693
0.4756
0.4808
0.4850
0.4884
0.4911
0.4932
0.4949
0.4962
0.4972
0.4979
0.4985
0.4989

.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.3810
0.3997
0.4162
0.4306
0.4429
0.4535
0.4625
0.4699
0.4761
0.4812
0.4854
0.4887
0.4913
0.4934
0.4951
0.4963
0.4973
0.4980
0.4986
0.4990

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
0.3830
0.4015
0.4177
0.4319
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4990
Finding Probabilities of the
Standard Normal Distribution: P(Z
< -2.47)
To find P(Z<-2.47):
Find table area for 2.47
P(0 < Z < 2.47) = .4932

P(Z < -2.47) = .5 - P(0 < Z < 2.47)

z ...
.
.
.
2.3 ...
2.4 ...
2.5 ...

Slide 16

.06
.07
.08
.
.
.
.
.
.
.
.
.
0.4909 0.4911 0.4913
0.4931 0.4932 0.4934
0.4948 0.4949 0.4951
.
.
.

= .5 - .4932 = 0.0068

Standard Normal Distribution

Area to the left of -2.47
P(Z < -2.47) = .5 - 0.4932
= 0.0068

0.4

Table area for 2.47
P(0 < Z < 2.47) = 0.4932

f(z)

0.3

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Probabilities of the
Standard Normal Distribution:
P(1< Z < 2)
To find P(1  Z  2):
1. Find table area for 2.00
F(2)  P(Z  2.00)  .5 + .4772 .9772
2. Find table area for 1.00
F(1)  P(Z  1.00)  .5 + .3413  .8413
3. P(1  Z  2.00)  P(Z  2.00)  P(Z  1.00)

z

.00
.
.
.

0.9
1.0
1.1
.
.
.
1.9
2.0
2.1

 .9772  .8413  .1359

.
.
.

.
.
.
0.3159
0.3413
0.3643
.
.
.
0.4713
0.4772
0.4821
.
.
.

Slide 17

...

...
...
...

...
...
...

Standard Normal Distribution
0.4

Area between 1 and 2
P(1  Z  2)  .9772  .8413  0.1359

f(z)

0.3

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of the Standard
Normal Random Variable: P(0 < Z
< z) = 0.40
To find z such that
P(0 Z z) = .40:
1. Find a probability as close as
possible to .40 in the table of
standard normal probabilities.

z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
.
.
.

.00
0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
.
.
.

.01
0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
.
.
.

.02
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.3686
0.3888
0.4066
.
.
.

2. Then determine the value of z
from the corresponding row
and column.

.03
0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.3708
0.3907
0.4082
.
.
.

.04
0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.3729
0.3925
0.4099
.
.
.

.05
0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.3749
0.3944
0.4115
.
.
.

.06
0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.3770
0.3962
0.4131
.
.
.

Slide 18

.07
0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.3790
0.3980
0.4147
.
.
.

.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.3810
0.3997
0.4162
.
.
.

Standard Normal Distribution
0.4

Area to the left of 0 = .50

P(0 Z 1.28)  .40P(z 0) = .50

f(z)

Also, since P(Z 0) = .50

Area = .40 (.3997)

0.3

0.2

0.1

P(Z 1.28)  .90
0.0

-5

-4

-3

-2

-1

0

Z

1

2

3

4

5

Z = 1.28

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
0.3830
0.4015
0.4177
.
.
.
99% Interval around the Mean
To have .99 in the center of the distribution, there
should be (1/2)(1-.99) = (1/2)(.01) = .005 in each
tail of the distribution, and (1/2)(.99) = .495 in
each half of the .99 interval. That is:

P(0 Z z.005) = .495

z

.04

.

.
.
.
2.4 ...
2.5 ...
2.6 ...
.
.
.

.05

.08

.
.
.
0.4931
0.4948
0.4961
.
.
.

.09

.
.
.
0.4932
0.4949
0.4962
.
.
.

.
.
.
0.4934
0.4951
0.4963
.
.
.

.
.
0.4936
0.4952
0.4964
.
.
.

Total area in center = .99

Area in center left = .495
0.4

Area in center right = .495
0.3

f(z)

P(-.2575   .99
Z
)=

.07

.
.
.
0.4929
0.4946
0.4960
.
.
.

Look to the table of standard normal probabilities
to find that:

  
z.005
z.005 

.06

.
.
.
0.4927
0.4945
0.4959
.
.
.

Slide 19

0.2

Area in right tail = .005
Area in left tail = .005

0.1

0.0
-5

-4

-3

-2

-z.005
-2.575

-1

0

Z

1

2

3

4

5

z.005
2.575

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-4 The Transformation of
Normal Random Variables

Slide 20

The area within k of the mean is the same for all normal random variables. So an area
under any normal distribution is equivalent to an area under the standard normal. In this
example: P(40 X 
P(-1 Z  
since m = 50 and s = 10.
The transformation of X to Z:
X x
Z
x

Normal Distribution:=50,
=10
0.07
0.06

Transformation
f(x)

(1) Subtraction: (X -  )
x

0.05
0.04
0.03
 10
=

{

0.02

Standard Normal Distribution

0.01
0.00

0.4

0

20

30

40

50

60

70

80

90 100

X

0.3

0.2

(2) Division by  )
x

{

f(z)

10

1.0

0.1

0.0
-5

-4

-3

-2

-1

0

Z

1

2

3

4

5

The inverse transformation of Z to X:

X  x + Z x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Normal
Transformation

Example 4-9
X~N(160,302)

Slide 21

Example 4-10
X~N(127,222)

P (100  X  180)
 100    X    180   
 P


P ( X  150)
 X    150   
 P






 

 
 100  160  Z  180  160
P

 30
30 

(

)

 P 2  Z  .6667
 0.4772 + 0.2475  0.7247

 
 
 150  127 
P Z 


22 

(

)

 P Z  1.045
 0.5 + 0.3520  0.8520

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Normal
Transformation - Example 4-11

Normal Dis tribution:  = 383, = 12

Example 4-11
X~N(383,122)

0.05
0.04

(

 
399  383

)

12

 P 0.9166  Z  1.333
 0.4088  0.3203  0.0885




0.03
0.02
0.01

Standard Normal Distribution
0.00
340

0.4

390

X
0.3

f(z)



f( )
X

P ( 394  X  399)
 394   X   399   
 P




 

 394  383
P
Z 
 12

Slide 22

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

Template solution

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

440
The Transformation of Normal
Random Variables
The transformation of X to Z:
Z 

X  x

x

Slide 23

The inverse transformation of Z to X:
X  

+ Z
x

x

The transformation of X to Z, where a and b are numbers::

a  

P( X  a)  P Z 


 
b  

P( X  b)  P Z 


 
b  
a 
P(a  X  b)  P
Z

 
 

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Normal
Rule)

Probabilities

(Empirical

S t a n d a rd N o rm a l D is trib u tio n

• The probability that a normal

•

•

0 .4

0 .3

f(z)

random variable will be within 1
standard deviation from its mean
(on either side) is 0.6826, or
approximately 0.68.
The probability that a normal
random variable will be within 2
standard deviations from its mean
is 0.9544, or approximately 0.95.
The probability that a normal
random variable will be within 3
standard deviation from its mean is
0.9974.

Slide 24

0 .2

0 .1

0 .0
-5

-4

-3

-2

-1

0

1

2

3

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

4

5
4-5 The Inverse Transformation

Slide 25

The area within k of the mean is the same for all normal random variables. To find a
probability associated with any interval of values for any normal random variable, all that
is needed is to express the interval in terms of numbers of standard deviations from the
mean. That is the purpose of the standard normal transformation. If X~N(50,102),
70  50 
 x   70   

P( X  70)  P

  P Z 
  P( Z  2)
 

 
10 

That is, P(X >70) can be found easily because 70 is 2 standard deviations above the mean
of X: 70 = + 2 P(X > 70) is equivalent to P(Z > 2), an area under the standard normal
.
distribution.
Normal Distribution:  = 124, = 12

Example 4-12
X~N(124,122)
P(X > x) = 0.10 and P(Z > 1.28) 
0.10
x = + z= 124 + (1.28)(12) =
139.36
.
.
.
1.1
1.2
1.3

.
.
.

.07
.
.
.
0.3790
0.3980
0.4147

.
.
.
...
...
...

.
.
.

.
.
.

.08
.
.
.
0.3810
0.3997
0.4162

.
.
.

.09
.
.
.
0.3830
0.4015
0.4177

.
.
.

0.03

f(x)

z

0.04

0.02

0.01

0.01

0.00
80

130

X

139.36

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

180
Template Solution for Example
4-12

Slide 26

Example 4-12
X~N(124,122)
P(X > x) = 0.10 and P(Z > 1.28) 
0.10
x = + z= 124 + (1.28)(12) =
139.36

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
The Inverse Transformation
(Continued)
Example 4-13
X~N(5.7,0.52)
P(X > x)=0.01 and P(Z > 2.33) 
0.01
x = + z= 5.7 + (2.33)(0.5) = 6.865
z
.
.
.
2.2
2.3
2.4
.
.
.

.02
.
.
.
0.4868
0.4898
0.4922

.
.
.
...
...
...
.
.
.

.03
.
.
.
0.4871
0.4901
0.4925

.
.
.

.
.
.

Example 4-14
X~N(2450,4002)
P(a<X<b)=0.95 and P(-1.96<Z<1.96)
0.95
x = z= 2450 (1.96)(400) = 2450
784=(1666,3234)
P(1666 < X < 3234) = 0.95

.04
.
.
.
0.4875
0.4904
0.4927

z
.
.
.
1.8
1.9
2.0
.

.
.
.

Normal Distribution: = 5.7  0.5
=

...
...
...
.
.

.06
.
.
.
0.4686
0.4750
0.4803
.

.

.

0.0015

Area = 0.49

.4750

.4750

0.0010

f(x)

0.5
0.4
X.01 = 
+z= 5.7 + (2.33)(0.5) = 6.865

0.3

0.0005

0.2

.0250

.0250

Area = 0.01

0.1
0.0

0.0000
3.2

4.2

5.2

6.2

7.2

8.2

1000

2000

X
-5

-4

-3

-2

-1

0

z

3000

4000

X
1

2

3

4

5

Z.01 = 2.33

-5

-4

-3

-2

-1.96

-1

0

Z

1

2

3

.07
.
.
.
0.4693
0.4756
0.4808
.
.

Normal Distribution:  = 2450 = 400

0.6

f(x)

.05
.
.
.
0.4678
0.4744
0.4798
.

.
.
.

.

0.8
0.7

Slide 27

4

5

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 40 0
0.0012
.
0.0010
.
0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 28

0.0006
.
0.0004
.
0.0002
.
0.0000
1000

2000

3000

4000

X

S ta nd a rd N o rm al D is trib utio n
0.4

f(z)

0.3
0.2
0.1
0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 400
0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the
normal
distribution
in
question and of the
standard normal
distribution.

Slide 29

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding to
the
desired
probability.

S ta nd a rd No rm al D is trib utio n
0.4

.4750

.4750

f(z)

0.3
0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 2450, = 400

3. From the table
of the standard
normal
distribution,
find the z value
or values.

0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 30

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding
to the desired
probability.

S ta nd a rd No rm al D is trib utio n
0.4

.4750

f(z)
z
.
.
.
1.8
1.9
2.0
.
.

.05
.
.
.
0.4678
0.4744
0.4798
.

.
.
.
...
...
...
.
.

.

.06
.
.
.
0.4686
0.4750
0.4803
.
.

.4750

0.3

.07
.
.
.
0.4693
0.4756
0.4808
.

0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

.

-1.96

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 400

3. From the table
of the standard
normal
distribution,
find the z value
or values.

0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 31

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding
to the desired
probability.

0.4

.4750

.
.
.
...
...
...
.
.

.05
.
.
.
0.4678
0.4744
0.4798
.
.

.06
.
.
.
0.4686
0.4750
0.4803
.
.

.4750

0.3

f(z)
z
.
.
.
1.8
1.9
2.0
.
.

4. Use the
transformation
from z to x to get
value(s) of the
original random
variable.

S ta nd a rd No rm al D is trib utio n

.07
.
.
.
0.4693
0.4756
0.4808
.
.

0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

Z

-1.96

3

4

5

x = z= 2450
(1.96)(400)
= 2450 784=(1666,3234)

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability

Slide 32

The normal distribution with = 3.5 and = 1.323 is a close
approximation to the binomial with n = 7 and p = 0.50.
P(x<4.5) = 0.7749

Normal Distribution:  = 3.5, = 1.323

Binomial Distribution: n = 7, p = 0.50

0.3

0.3

P( x  = 0.7734
4)
0.2

f(x)

P(x)

0.2

0.1

0.1

0.0

0.0
0

5

10

X

0

1

2

3

4

5

6

7

X

MTB > cdf 4.5;
SUBC> normal 3.5 1.323.
Cumulative Distribution Function

MTB > cdf 4;
SUBC> binomial 7,.5.
Cumulative Distribution Function

Normal with mean = 3.50000 and standard deviation = 1.32300

Binomial with n = 7 and p = 0.500000

x P( X <= x)
4.5000
0.7751

x P( X <= x)
4.00
0.7734

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-6 The Normal Approximation of
Binomial Distribution

Slide 33

The normal distribution with = 5.5 and = 1.6583 is a closer
approximation to the binomial with n = 11 and p = 0.50.
P(x < 4.5) = 0.2732
Normal Distribution: = 5.5, = 1.6583

Binomial Distribution: n = 11, p = 0.50

P(x 4) = 0.2744

0.3
0.2

f(x)

P(x)

0.2
0.1

0.1

0.0

0.0
0

5

10

X

MTB > cdf 4.5;
SUBC> normal 5.5 1.6583.
Cumulative Distribution Function
Normal with mean = 5.50000 and standard deviation = 1.65830
x P( X <= x)
4.5000
0.2732

0

1

2

3

4

5

6

7

8

9 10 11

X

MTB > cdf 4;
SUBC> binomial 11,.5.
Cumulative Distribution Function
Binomial with n = 11 and p = 0.500000
x P( X <= x)
4.00
0.2744

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Approximating a Binomial
Probability Using the Normal
Distribution

Slide 34

b  np 
 a  np
P ( a  X  b)  P 
Z


 np(1  p)
np(1  p) 
for n large (n  50) and p not too close to 0 or 1.00
or:

b + 0.5  np 
 a  0.5  np
P ( a  X  b)  P 
Z


np(1  p) 
 np(1  p)
for n moderately large (20  n < 50).

If p is either small (close to 0) or large (close to 1), use the Poisson
approximation.
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Template for Normal
Approximation of the Binomial
Distribution

Slide 35

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Slide 36

Name
Religion
Domicile
Contact #
E.Mail
M.Phil (Statistics)

Shakeel Nouman
Christian
Punjab (Lahore)
0332-4462527. 0321-9898767
sn_gcu@yahoo.com
sn_gcu@hotmail.com
GC University, .
(Degree awarded by GC University)

M.Sc (Statistics)
Statitical Officer
(BS-17)
(Economics & Marketing
Division)

GC University, .
(Degree awarded by GC University)

Livestock Production Research Institute
Bahadurnagar (Okara), Livestock & Dairy Development
Department, Govt. of Punjab

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

More Related Content

What's hot

Normal distribution
Normal distributionNormal distribution
Normal distribution
SonamWadhwa3
 
The Standard Normal Distribution
The Standard Normal Distribution  The Standard Normal Distribution
The Standard Normal Distribution
Long Beach City College
 
The Normal Probability Distribution
The Normal Probability DistributionThe Normal Probability Distribution
The Normal Probability Distributionmandalina landy
 
CABT SHS Statistics & Probability - The Standard Normal Distribution
CABT SHS Statistics & Probability - The Standard Normal DistributionCABT SHS Statistics & Probability - The Standard Normal Distribution
CABT SHS Statistics & Probability - The Standard Normal Distribution
Gilbert Joseph Abueg
 
4 2 continuous probability distributionn
4 2 continuous probability    distributionn4 2 continuous probability    distributionn
4 2 continuous probability distributionn
Lama K Banna
 
Normal distribution
Normal distributionNormal distribution
Normal distribution
manzara arshad
 
The Normal Distribution Curve
The Normal Distribution CurveThe Normal Distribution Curve
The Normal Distribution CurvePaul John Argarin
 
Normal distribution and sampling distribution
Normal distribution and sampling distributionNormal distribution and sampling distribution
Normal distribution and sampling distributionMridul Arora
 
Normal distribution
Normal distributionNormal distribution
Normal distribution
Marjorie Rice
 
Stats 3rd nine week chapter 5 review powerpoint
Stats 3rd nine week chapter 5 review powerpointStats 3rd nine week chapter 5 review powerpoint
Stats 3rd nine week chapter 5 review powerpoint
Debra Wallace
 
normal distribution
normal distributionnormal distribution
normal distribution
Mahaswari Jogia
 
The standard normal curve & its application in biomedical sciences
The standard normal curve & its application in biomedical sciencesThe standard normal curve & its application in biomedical sciences
The standard normal curve & its application in biomedical sciencesAbhi Manu
 
Chapter9 the normal curve distribution
Chapter9 the normal curve distributionChapter9 the normal curve distribution
Chapter9 the normal curve distribution
Nenevie Villando
 
Real Applications of Normal Distributions
Real Applications of Normal Distributions  Real Applications of Normal Distributions
Real Applications of Normal Distributions
Long Beach City College
 
Normal Probabilty Distribution and its Problems
Normal Probabilty Distribution and its ProblemsNormal Probabilty Distribution and its Problems
Normal Probabilty Distribution and its Problems
Ali Raza
 
Normal distribution slide share
Normal distribution slide shareNormal distribution slide share
Normal distribution slide share
Kate FLR
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
Babasab Patil
 

What's hot (20)

Normal distribution
Normal distributionNormal distribution
Normal distribution
 
The normal distribution
The normal distributionThe normal distribution
The normal distribution
 
The Standard Normal Distribution
The Standard Normal Distribution  The Standard Normal Distribution
The Standard Normal Distribution
 
Normal distribution stat
Normal distribution statNormal distribution stat
Normal distribution stat
 
The Normal Probability Distribution
The Normal Probability DistributionThe Normal Probability Distribution
The Normal Probability Distribution
 
CABT SHS Statistics & Probability - The Standard Normal Distribution
CABT SHS Statistics & Probability - The Standard Normal DistributionCABT SHS Statistics & Probability - The Standard Normal Distribution
CABT SHS Statistics & Probability - The Standard Normal Distribution
 
4 2 continuous probability distributionn
4 2 continuous probability    distributionn4 2 continuous probability    distributionn
4 2 continuous probability distributionn
 
Normal distribution
Normal distributionNormal distribution
Normal distribution
 
The Normal Distribution Curve
The Normal Distribution CurveThe Normal Distribution Curve
The Normal Distribution Curve
 
Normal distribution and sampling distribution
Normal distribution and sampling distributionNormal distribution and sampling distribution
Normal distribution and sampling distribution
 
Normal distribution
Normal distributionNormal distribution
Normal distribution
 
Stats 3rd nine week chapter 5 review powerpoint
Stats 3rd nine week chapter 5 review powerpointStats 3rd nine week chapter 5 review powerpoint
Stats 3rd nine week chapter 5 review powerpoint
 
normal distribution
normal distributionnormal distribution
normal distribution
 
The standard normal curve & its application in biomedical sciences
The standard normal curve & its application in biomedical sciencesThe standard normal curve & its application in biomedical sciences
The standard normal curve & its application in biomedical sciences
 
Chapter9 the normal curve distribution
Chapter9 the normal curve distributionChapter9 the normal curve distribution
Chapter9 the normal curve distribution
 
Real Applications of Normal Distributions
Real Applications of Normal Distributions  Real Applications of Normal Distributions
Real Applications of Normal Distributions
 
Sfs4e ppt 07
Sfs4e ppt 07Sfs4e ppt 07
Sfs4e ppt 07
 
Normal Probabilty Distribution and its Problems
Normal Probabilty Distribution and its ProblemsNormal Probabilty Distribution and its Problems
Normal Probabilty Distribution and its Problems
 
Normal distribution slide share
Normal distribution slide shareNormal distribution slide share
Normal distribution slide share
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
 

Viewers also liked

The comparison of two populations
The comparison of two populationsThe comparison of two populations
The comparison of two populations
Shakeel Nouman
 
Analysis of variance
Analysis of varianceAnalysis of variance
Analysis of variance
Shakeel Nouman
 
Using excel to convert raw score to z score
Using excel to convert raw score to z scoreUsing excel to convert raw score to z score
Using excel to convert raw score to z scoreSandra Nicks
 
Sqqs1013 ch5-a122
Sqqs1013 ch5-a122Sqqs1013 ch5-a122
Sqqs1013 ch5-a122
kim rae KI
 
An Introduction to Part of C++ STL
An Introduction to Part of C++ STLAn Introduction to Part of C++ STL
An Introduction to Part of C++ STL
乐群 陈
 
Time series, forecasting, and index numbers
Time series, forecasting, and index numbersTime series, forecasting, and index numbers
Time series, forecasting, and index numbers
Shakeel Nouman
 
OpenCV Introduction
OpenCV IntroductionOpenCV Introduction
OpenCV Introduction
Zachary Blair
 
STL in C++
STL in C++STL in C++
STL in C++
Surya Prakash Sahu
 

Viewers also liked (9)

The comparison of two populations
The comparison of two populationsThe comparison of two populations
The comparison of two populations
 
Analysis of variance
Analysis of varianceAnalysis of variance
Analysis of variance
 
Using excel to convert raw score to z score
Using excel to convert raw score to z scoreUsing excel to convert raw score to z score
Using excel to convert raw score to z score
 
Sqqs1013 ch5-a122
Sqqs1013 ch5-a122Sqqs1013 ch5-a122
Sqqs1013 ch5-a122
 
Boost C++ Libraries
Boost C++ LibrariesBoost C++ Libraries
Boost C++ Libraries
 
An Introduction to Part of C++ STL
An Introduction to Part of C++ STLAn Introduction to Part of C++ STL
An Introduction to Part of C++ STL
 
Time series, forecasting, and index numbers
Time series, forecasting, and index numbersTime series, forecasting, and index numbers
Time series, forecasting, and index numbers
 
OpenCV Introduction
OpenCV IntroductionOpenCV Introduction
OpenCV Introduction
 
STL in C++
STL in C++STL in C++
STL in C++
 

Similar to The normal distribution

Continous random variable.
Continous random variable.Continous random variable.
Continous random variable.
Shakeel Nouman
 
Probability distribution
Probability distributionProbability distribution
Probability distributionRanjan Kumar
 
Discrete probability distribution.pptx
Discrete probability distribution.pptxDiscrete probability distribution.pptx
Discrete probability distribution.pptx
DHARMENDRAKUMAR216662
 
Chapter 5 and Chapter 6
Chapter 5 and Chapter 6 Chapter 5 and Chapter 6
Chapter 5 and Chapter 6
Tara Kissel, M.Ed
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
TarikuArega1
 
Statistics-2 : Elements of Inference
Statistics-2 : Elements of InferenceStatistics-2 : Elements of Inference
Statistics-2 : Elements of Inference
Giridhar Chandrasekaran
 
Binomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distributionBinomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distribution
Bharath kumar Karanam
 
Econometrics 2.pptx
Econometrics 2.pptxEconometrics 2.pptx
Econometrics 2.pptx
fuad80
 
Sampling and sampling distributions
Sampling and sampling distributionsSampling and sampling distributions
Sampling and sampling distributions
Shakeel Nouman
 
Statistical computing2
Statistical computing2Statistical computing2
Statistical computing2
Padma Metta
 
Chapter 4 part2- Random Variables
Chapter 4 part2- Random VariablesChapter 4 part2- Random Variables
Chapter 4 part2- Random Variables
nszakir
 
Normal as Approximation to Binomial
Normal as Approximation to Binomial  Normal as Approximation to Binomial
Normal as Approximation to Binomial
Long Beach City College
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Binomial Distribution Part 5
Binomial Distribution Part 5Binomial Distribution Part 5
Binomial Distribution Part 5
Suchithra Edakunni
 
Lecture 01 probability distributions
Lecture 01 probability distributionsLecture 01 probability distributions
Lecture 01 probability distributions
mohamed ali
 
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptxBINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
letbestrong
 
Prob distros
Prob distrosProb distros
Prob distros
Carlos Rodriguez
 
7 Chi-square and F (1).ppt
7 Chi-square and F (1).ppt7 Chi-square and F (1).ppt
7 Chi-square and F (1).ppt
Abebe334138
 
Normal Distribution.pptx
Normal Distribution.pptxNormal Distribution.pptx
Normal Distribution.pptx
NeomyAngelaLeono1
 
Chapter 2 normal distribution grade 11 ppt
Chapter 2 normal distribution grade 11 pptChapter 2 normal distribution grade 11 ppt
Chapter 2 normal distribution grade 11 ppt
RandyNarvaez
 

Similar to The normal distribution (20)

Continous random variable.
Continous random variable.Continous random variable.
Continous random variable.
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
Discrete probability distribution.pptx
Discrete probability distribution.pptxDiscrete probability distribution.pptx
Discrete probability distribution.pptx
 
Chapter 5 and Chapter 6
Chapter 5 and Chapter 6 Chapter 5 and Chapter 6
Chapter 5 and Chapter 6
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
Statistics-2 : Elements of Inference
Statistics-2 : Elements of InferenceStatistics-2 : Elements of Inference
Statistics-2 : Elements of Inference
 
Binomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distributionBinomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distribution
 
Econometrics 2.pptx
Econometrics 2.pptxEconometrics 2.pptx
Econometrics 2.pptx
 
Sampling and sampling distributions
Sampling and sampling distributionsSampling and sampling distributions
Sampling and sampling distributions
 
Statistical computing2
Statistical computing2Statistical computing2
Statistical computing2
 
Chapter 4 part2- Random Variables
Chapter 4 part2- Random VariablesChapter 4 part2- Random Variables
Chapter 4 part2- Random Variables
 
Normal as Approximation to Binomial
Normal as Approximation to Binomial  Normal as Approximation to Binomial
Normal as Approximation to Binomial
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Binomial Distribution Part 5
Binomial Distribution Part 5Binomial Distribution Part 5
Binomial Distribution Part 5
 
Lecture 01 probability distributions
Lecture 01 probability distributionsLecture 01 probability distributions
Lecture 01 probability distributions
 
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptxBINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
BINOMIAL ,POISSON AND NORMAL DISTRIBUTION.pptx
 
Prob distros
Prob distrosProb distros
Prob distros
 
7 Chi-square and F (1).ppt
7 Chi-square and F (1).ppt7 Chi-square and F (1).ppt
7 Chi-square and F (1).ppt
 
Normal Distribution.pptx
Normal Distribution.pptxNormal Distribution.pptx
Normal Distribution.pptx
 
Chapter 2 normal distribution grade 11 ppt
Chapter 2 normal distribution grade 11 pptChapter 2 normal distribution grade 11 ppt
Chapter 2 normal distribution grade 11 ppt
 

More from Shakeel Nouman

Simple linear regression and correlation
Simple linear regression and correlationSimple linear regression and correlation
Simple linear regression and correlation
Shakeel Nouman
 
Sampling methods
Sampling methodsSampling methods
Sampling methods
Shakeel Nouman
 
Quality control
Quality controlQuality control
Quality control
Shakeel Nouman
 
Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)
Shakeel Nouman
 
Multiple regression (1)
Multiple regression (1)Multiple regression (1)
Multiple regression (1)
Shakeel Nouman
 
The comparison of two populations
The comparison of two populationsThe comparison of two populations
The comparison of two populationsShakeel Nouman
 
Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)Shakeel Nouman
 
Multiple regression (1)
Multiple regression (1)Multiple regression (1)
Multiple regression (1)Shakeel Nouman
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
Shakeel Nouman
 
Probability
ProbabilityProbability
Probability
Shakeel Nouman
 
Hypothsis testing
Hypothsis testingHypothsis testing
Hypothsis testing
Shakeel Nouman
 
Discrete random variable.
Discrete random variable.Discrete random variable.
Discrete random variable.
Shakeel Nouman
 
Confidence interval
Confidence intervalConfidence interval
Confidence interval
Shakeel Nouman
 

More from Shakeel Nouman (14)

Simple linear regression and correlation
Simple linear regression and correlationSimple linear regression and correlation
Simple linear regression and correlation
 
Sampling methods
Sampling methodsSampling methods
Sampling methods
 
Quality control
Quality controlQuality control
Quality control
 
Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)
 
Multiple regression (1)
Multiple regression (1)Multiple regression (1)
Multiple regression (1)
 
The comparison of two populations
The comparison of two populationsThe comparison of two populations
The comparison of two populations
 
Quality control
Quality controlQuality control
Quality control
 
Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)Nonparametric methods and chi square tests (1)
Nonparametric methods and chi square tests (1)
 
Multiple regression (1)
Multiple regression (1)Multiple regression (1)
Multiple regression (1)
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
 
Probability
ProbabilityProbability
Probability
 
Hypothsis testing
Hypothsis testingHypothsis testing
Hypothsis testing
 
Discrete random variable.
Discrete random variable.Discrete random variable.
Discrete random variable.
 
Confidence interval
Confidence intervalConfidence interval
Confidence interval
 

Recently uploaded

Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 

Recently uploaded (20)

Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 

The normal distribution

  • 1. The Normal Distribution Slide 1 Shakeel Nouman M.Phil Statistics The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 2. 4        Slide 2 The Normal Distribution Using Statistics The Normal Probability Distribution The Standard Normal Distribution The Transformation of Normal Random Variables The Inverse Transformation The Normal Distribution as an Approximation to Other Probability Distributions Summary and Review of Terms The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 3. 4-1 Introduction Slide 3 As n increases, the binomial distribution approaches a ... n=6 n = 10 Bino mial Dis trib utio n: n=6, p =.5 n = 14 Bino mial Distrib utio n: n=1 0 , p =.5 Bino mial Dis trib utio n: n=1 4 , p =.5 0.3 0.2 0.2 0.2 0.1 P(x) 0.3 P(x) P(x) 0.3 0.1 0.0 0.1 0.0 0 1 2 3 4 5 6 0.0 0 1 x 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x x Normal Probability Density Function: f ( x)  1      x 2 2p where e  2.7182818... and p  314159265... . 0.4 0.3 f(x) x  2  e 2 2 for      Normal Distribution:  = 0,= 1 0.2 0.1 0.0 -5 0 x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 5
  • 4. The Normal Probability Distribution Slide 4 The normal probability density function: 1 e 0.4 x  2     2 2 0.3 for  x 2p 2 where e  2.7182818... and p  314159265... . f(x) f ( x)        Normal Dis tribution:  = 0,= 1 0.2 0.1 0.0 -5 0 x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 5
  • 5. Properties of the Normal Probability Distribution • Slide 5 The normal is a family of Bell-shaped and symmetric distributions. because the distribution is symmetric, one-half (.50 or 50%) lies on either side of the mean. Each is characterized by a different pair of mean, ,   and variance,  . That is: [X~N( )]. Each is asymptotic to the horizontal axis. The area under any normal probability density function within kof is the same for any normal distribution, regardless of the mean and variance. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 6. Properties of the Normal Probability Distribution (continued) • • • Slide 6 If several independent random variables are normally distributed then their sum will also be normally distributed. The mean of the sum will be the sum of all the individual means. The variance of the sum will be the sum of all the individual variances (by virtue of the independence). The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 7. Properties of the Normal Probability Distribution (continued) • • • • Slide 7 If X1, X2, …, Xn are independent normal random variable, then their sum S will also be normally distributed with E(S) = E(X1) + E(X2) + … + E(Xn) V(S) = V(X1) + V(X2) + … + V(Xn) Note: It is the variances that can be added above and not the standard deviations. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 8. Properties of the Normal Probability Distribution – Example 4-1 Slide 8 Example 4.1: Let X1, X2, and X3 be independent random variables that are normally distributed with means and variances as shown. Mean Variance X1 10 1 X2 20 2 X3 30 3 Let S = X1 + X2 + X3. Then E(S) = 10 + 20 + 30 = 60 and V(S) = 1 + 2 + 3 = 6. The standard deviation of S 6 is = 2.45. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 9. Properties of the Normal Probability Distribution (continued) • • • • Slide 9 If X1, X2, …, Xn are independent normal random variable, then the random variable Q defined as Q = a1X1 + a2X2 + … + anXn + b will also be normally distributed with E(Q) = a1E(X1) + a2E(X2) + … + anE(Xn) + b V(Q) = a12 V(X1) + a22 V(X2) + … + an2 V(Xn) Note: It is the variances that can be added above and not the standard deviations. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 10. Properties of the Normal Probability Distribution – Example 4-3 Slide 10 Example 4.3: Let X1 , X2 , X3 and X4 be independent random variables that are normally distributed with means and variances as shown. Find the mean and variance of Q = X1 - 2X2 + 3X2 - 4X4 + 5 Mean Variance X1 12 4 X2 -5 2 X3 8 5 X4 10 1 E(Q) = 12 – 2(-5) + 3(8) – 4(10) + 5 = 11 V(Q) = 4 + (-2)2(2) + 32(5) + (-4)2(1) = 73 SD(Q) = 73  8.544 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 11. Computing the Mean, VarianceSlide 11 and Standard Deviation for the Sum of Independent Random Variables Using the Template The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 12. Normal Probability Distributions Slide 12 All of these are normal probability density functions, though each has a different mean and variance. Normal Distribution: =40,  =1 Normal Distribution: =30,  =5 0.4 Normal Distribution: =50,  =3 0.2 0.2 0.2 f(y) f(x) f(w) 0.3 0.1 0.1 0.1 0.0 0.0 35 40 45 0.0 0 w 10 20 30 40 50 x W~N(40,1) X~N(30,25) 60 35 45 50 55 y Y~N(50,9) Normal Distribution:   =0, =1 Consider: 0.4 f(z) 0.3 0.2 0.1 0.0 -5 0 5 P(39 W 41) P(25 X 35) P(47 Y 53) P(-1 Z 1) The probability in each case is an area under a normal probability density function. z Z~N(0,1) The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 65
  • 13. Computing Normal Probabilities Using the Template Slide 13 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 14. 4-3 The Standard Normal Distribution Slide 14 The standard normal random variable, Z, is the normal random variable with mean = 0 and standard deviation = 1: Z~N(0,12). Standard Normal Distribution 0 .4  =1 { f( z) 0 .3 0 .2 0 .1 0 .0 -5 -4 -3 -2 -1 0 1 2 3 4 5  =0 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 15. Finding Probabilities of the Standard Normal Distribution: P(0 < Z < 1.56) Slide 15 Standard Normal Probabilities Standard Normal Distribution 0.4 f(z) 0.3 0.2 0.1 { 1.56 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Look in row labeled 1.5 and column labeled .06 to find P(0 z 1.56) = .4406 z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 0.4192 0.4332 0.4452 0.4554 0.4641 0.4713 0.4772 0.4821 0.4861 0.4893 0.4918 0.4938 0.4953 0.4965 0.4974 0.4981 0.4987 .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 0.4207 0.4345 0.4463 0.4564 0.4649 0.4719 0.4778 0.4826 0.4864 0.4896 0.4920 0.4940 0.4955 0.4966 0.4975 0.4982 0.4987 .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 0.4222 0.4357 0.4474 0.4573 0.4656 0.4726 0.4783 0.4830 0.4868 0.4898 0.4922 0.4941 0.4956 0.4967 0.4976 0.4982 0.4987 .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 0.4236 0.4370 0.4484 0.4582 0.4664 0.4732 0.4788 0.4834 0.4871 0.4901 0.4925 0.4943 0.4957 0.4968 0.4977 0.4983 0.4988 .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 0.4251 0.4382 0.4495 0.4591 0.4671 0.4738 0.4793 0.4838 0.4875 0.4904 0.4927 0.4945 0.4959 0.4969 0.4977 0.4984 0.4988 .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 0.4265 0.4394 0.4505 0.4599 0.4678 0.4744 0.4798 0.4842 0.4878 0.4906 0.4929 0.4946 0.4960 0.4970 0.4978 0.4984 0.4989 .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 0.4279 0.4406 0.4515 0.4608 0.4686 0.4750 0.4803 0.4846 0.4881 0.4909 0.4931 0.4948 0.4961 0.4971 0.4979 0.4985 0.4989 .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 0.4292 0.4418 0.4525 0.4616 0.4693 0.4756 0.4808 0.4850 0.4884 0.4911 0.4932 0.4949 0.4962 0.4972 0.4979 0.4985 0.4989 .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 0.4306 0.4429 0.4535 0.4625 0.4699 0.4761 0.4812 0.4854 0.4887 0.4913 0.4934 0.4951 0.4963 0.4973 0.4980 0.4986 0.4990 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4441 0.4545 0.4633 0.4706 0.4767 0.4817 0.4857 0.4890 0.4916 0.4936 0.4952 0.4964 0.4974 0.4981 0.4986 0.4990
  • 16. Finding Probabilities of the Standard Normal Distribution: P(Z < -2.47) To find P(Z<-2.47): Find table area for 2.47 P(0 < Z < 2.47) = .4932 P(Z < -2.47) = .5 - P(0 < Z < 2.47) z ... . . . 2.3 ... 2.4 ... 2.5 ... Slide 16 .06 .07 .08 . . . . . . . . . 0.4909 0.4911 0.4913 0.4931 0.4932 0.4934 0.4948 0.4949 0.4951 . . . = .5 - .4932 = 0.0068 Standard Normal Distribution Area to the left of -2.47 P(Z < -2.47) = .5 - 0.4932 = 0.0068 0.4 Table area for 2.47 P(0 < Z < 2.47) = 0.4932 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 17. Finding Probabilities of the Standard Normal Distribution: P(1< Z < 2) To find P(1  Z  2): 1. Find table area for 2.00 F(2)  P(Z  2.00)  .5 + .4772 .9772 2. Find table area for 1.00 F(1)  P(Z  1.00)  .5 + .3413  .8413 3. P(1  Z  2.00)  P(Z  2.00)  P(Z  1.00) z .00 . . . 0.9 1.0 1.1 . . . 1.9 2.0 2.1  .9772  .8413  .1359 . . . . . . 0.3159 0.3413 0.3643 . . . 0.4713 0.4772 0.4821 . . . Slide 17 ... ... ... ... ... ... ... Standard Normal Distribution 0.4 Area between 1 and 2 P(1  Z  2)  .9772  .8413  0.1359 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 18. Finding Values of the Standard Normal Random Variable: P(0 < Z < z) = 0.40 To find z such that P(0 Z z) = .40: 1. Find a probability as close as possible to .40 in the table of standard normal probabilities. z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 . . . .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 . . . .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 . . . .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 . . . 2. Then determine the value of z from the corresponding row and column. .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 . . . .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 . . . .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 . . . .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 . . . Slide 18 .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 . . . .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 . . . Standard Normal Distribution 0.4 Area to the left of 0 = .50 P(0 Z 1.28)  .40P(z 0) = .50 f(z) Also, since P(Z 0) = .50 Area = .40 (.3997) 0.3 0.2 0.1 P(Z 1.28)  .90 0.0 -5 -4 -3 -2 -1 0 Z 1 2 3 4 5 Z = 1.28 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 . . .
  • 19. 99% Interval around the Mean To have .99 in the center of the distribution, there should be (1/2)(1-.99) = (1/2)(.01) = .005 in each tail of the distribution, and (1/2)(.99) = .495 in each half of the .99 interval. That is: P(0 Z z.005) = .495 z .04 . . . . 2.4 ... 2.5 ... 2.6 ... . . . .05 .08 . . . 0.4931 0.4948 0.4961 . . . .09 . . . 0.4932 0.4949 0.4962 . . . . . . 0.4934 0.4951 0.4963 . . . . . 0.4936 0.4952 0.4964 . . . Total area in center = .99 Area in center left = .495 0.4 Area in center right = .495 0.3 f(z) P(-.2575   .99 Z )= .07 . . . 0.4929 0.4946 0.4960 . . . Look to the table of standard normal probabilities to find that:    z.005 z.005  .06 . . . 0.4927 0.4945 0.4959 . . . Slide 19 0.2 Area in right tail = .005 Area in left tail = .005 0.1 0.0 -5 -4 -3 -2 -z.005 -2.575 -1 0 Z 1 2 3 4 5 z.005 2.575 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 20. 4-4 The Transformation of Normal Random Variables Slide 20 The area within k of the mean is the same for all normal random variables. So an area under any normal distribution is equivalent to an area under the standard normal. In this example: P(40 X  P(-1 Z   since m = 50 and s = 10. The transformation of X to Z: X x Z x Normal Distribution:=50, =10 0.07 0.06 Transformation f(x) (1) Subtraction: (X -  ) x 0.05 0.04 0.03  10 = { 0.02 Standard Normal Distribution 0.01 0.00 0.4 0 20 30 40 50 60 70 80 90 100 X 0.3 0.2 (2) Division by  ) x { f(z) 10 1.0 0.1 0.0 -5 -4 -3 -2 -1 0 Z 1 2 3 4 5 The inverse transformation of Z to X: X  x + Z x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 21. Using the Normal Transformation Example 4-9 X~N(160,302) Slide 21 Example 4-10 X~N(127,222) P (100  X  180)  100    X    180     P  P ( X  150)  X    150     P          100  160  Z  180  160 P   30 30  ( )  P 2  Z  .6667  0.4772 + 0.2475  0.7247      150  127  P Z    22  ( )  P Z  1.045  0.5 + 0.3520  0.8520 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 22. Using the Normal Transformation - Example 4-11 Normal Dis tribution:  = 383, = 12 Example 4-11 X~N(383,122) 0.05 0.04 (   399  383 ) 12  P 0.9166  Z  1.333  0.4088  0.3203  0.0885   0.03 0.02 0.01 Standard Normal Distribution 0.00 340 0.4 390 X 0.3 f(z)  f( ) X P ( 394  X  399)  394   X   399     P        394  383 P Z   12 Slide 22 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Template solution The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 440
  • 23. The Transformation of Normal Random Variables The transformation of X to Z: Z  X  x x Slide 23 The inverse transformation of Z to X: X   + Z x x The transformation of X to Z, where a and b are numbers:: a    P( X  a)  P Z      b    P( X  b)  P Z      b   a  P(a  X  b)  P Z      The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 24. Normal Rule) Probabilities (Empirical S t a n d a rd N o rm a l D is trib u tio n • The probability that a normal • • 0 .4 0 .3 f(z) random variable will be within 1 standard deviation from its mean (on either side) is 0.6826, or approximately 0.68. The probability that a normal random variable will be within 2 standard deviations from its mean is 0.9544, or approximately 0.95. The probability that a normal random variable will be within 3 standard deviation from its mean is 0.9974. Slide 24 0 .2 0 .1 0 .0 -5 -4 -3 -2 -1 0 1 2 3 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 4 5
  • 25. 4-5 The Inverse Transformation Slide 25 The area within k of the mean is the same for all normal random variables. To find a probability associated with any interval of values for any normal random variable, all that is needed is to express the interval in terms of numbers of standard deviations from the mean. That is the purpose of the standard normal transformation. If X~N(50,102), 70  50   x   70     P( X  70)  P    P Z    P( Z  2)      10  That is, P(X >70) can be found easily because 70 is 2 standard deviations above the mean of X: 70 = + 2 P(X > 70) is equivalent to P(Z > 2), an area under the standard normal . distribution. Normal Distribution:  = 124, = 12 Example 4-12 X~N(124,122) P(X > x) = 0.10 and P(Z > 1.28)  0.10 x = + z= 124 + (1.28)(12) = 139.36 . . . 1.1 1.2 1.3 . . . .07 . . . 0.3790 0.3980 0.4147 . . . ... ... ... . . . . . . .08 . . . 0.3810 0.3997 0.4162 . . . .09 . . . 0.3830 0.4015 0.4177 . . . 0.03 f(x) z 0.04 0.02 0.01 0.01 0.00 80 130 X 139.36 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 180
  • 26. Template Solution for Example 4-12 Slide 26 Example 4-12 X~N(124,122) P(X > x) = 0.10 and P(Z > 1.28)  0.10 x = + z= 124 + (1.28)(12) = 139.36 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 27. The Inverse Transformation (Continued) Example 4-13 X~N(5.7,0.52) P(X > x)=0.01 and P(Z > 2.33)  0.01 x = + z= 5.7 + (2.33)(0.5) = 6.865 z . . . 2.2 2.3 2.4 . . . .02 . . . 0.4868 0.4898 0.4922 . . . ... ... ... . . . .03 . . . 0.4871 0.4901 0.4925 . . . . . . Example 4-14 X~N(2450,4002) P(a<X<b)=0.95 and P(-1.96<Z<1.96) 0.95 x = z= 2450 (1.96)(400) = 2450 784=(1666,3234) P(1666 < X < 3234) = 0.95 .04 . . . 0.4875 0.4904 0.4927 z . . . 1.8 1.9 2.0 . . . . Normal Distribution: = 5.7  0.5 = ... ... ... . . .06 . . . 0.4686 0.4750 0.4803 . . . 0.0015 Area = 0.49 .4750 .4750 0.0010 f(x) 0.5 0.4 X.01 =  +z= 5.7 + (2.33)(0.5) = 6.865 0.3 0.0005 0.2 .0250 .0250 Area = 0.01 0.1 0.0 0.0000 3.2 4.2 5.2 6.2 7.2 8.2 1000 2000 X -5 -4 -3 -2 -1 0 z 3000 4000 X 1 2 3 4 5 Z.01 = 2.33 -5 -4 -3 -2 -1.96 -1 0 Z 1 2 3 .07 . . . 0.4693 0.4756 0.4808 . . Normal Distribution:  = 2450 = 400 0.6 f(x) .05 . . . 0.4678 0.4744 0.4798 . . . . . 0.8 0.7 Slide 27 4 5 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 28. Finding Values of a Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 40 0 0.0012 . 0.0010 . 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 28 0.0006 . 0.0004 . 0.0002 . 0.0000 1000 2000 3000 4000 X S ta nd a rd N o rm al D is trib utio n 0.4 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 29. Finding Values of a Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 400 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 29 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. S ta nd a rd No rm al D is trib utio n 0.4 .4750 .4750 f(z) 0.3 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 30. Finding Values of a Normal Random Variable, Given a Probability Norm al Distribution:  = 2450, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 30 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. S ta nd a rd No rm al D is trib utio n 0.4 .4750 f(z) z . . . 1.8 1.9 2.0 . . .05 . . . 0.4678 0.4744 0.4798 . . . . ... ... ... . . . .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 .07 . . . 0.4693 0.4756 0.4808 . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z . -1.96 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 31. Finding Values of a Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 31 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. 0.4 .4750 . . . ... ... ... . . .05 . . . 0.4678 0.4744 0.4798 . . .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 f(z) z . . . 1.8 1.9 2.0 . . 4. Use the transformation from z to x to get value(s) of the original random variable. S ta nd a rd No rm al D is trib utio n .07 . . . 0.4693 0.4756 0.4808 . . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 Z -1.96 3 4 5 x = z= 2450 (1.96)(400) = 2450 784=(1666,3234) 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 32. Finding Values of a Normal Random Variable, Given a Probability Slide 32 The normal distribution with = 3.5 and = 1.323 is a close approximation to the binomial with n = 7 and p = 0.50. P(x<4.5) = 0.7749 Normal Distribution:  = 3.5, = 1.323 Binomial Distribution: n = 7, p = 0.50 0.3 0.3 P( x  = 0.7734 4) 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 10 X 0 1 2 3 4 5 6 7 X MTB > cdf 4.5; SUBC> normal 3.5 1.323. Cumulative Distribution Function MTB > cdf 4; SUBC> binomial 7,.5. Cumulative Distribution Function Normal with mean = 3.50000 and standard deviation = 1.32300 Binomial with n = 7 and p = 0.500000 x P( X <= x) 4.5000 0.7751 x P( X <= x) 4.00 0.7734 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 33. 4-6 The Normal Approximation of Binomial Distribution Slide 33 The normal distribution with = 5.5 and = 1.6583 is a closer approximation to the binomial with n = 11 and p = 0.50. P(x < 4.5) = 0.2732 Normal Distribution: = 5.5, = 1.6583 Binomial Distribution: n = 11, p = 0.50 P(x 4) = 0.2744 0.3 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 10 X MTB > cdf 4.5; SUBC> normal 5.5 1.6583. Cumulative Distribution Function Normal with mean = 5.50000 and standard deviation = 1.65830 x P( X <= x) 4.5000 0.2732 0 1 2 3 4 5 6 7 8 9 10 11 X MTB > cdf 4; SUBC> binomial 11,.5. Cumulative Distribution Function Binomial with n = 11 and p = 0.500000 x P( X <= x) 4.00 0.2744 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 34. Approximating a Binomial Probability Using the Normal Distribution Slide 34 b  np   a  np P ( a  X  b)  P  Z    np(1  p) np(1  p)  for n large (n  50) and p not too close to 0 or 1.00 or: b + 0.5  np   a  0.5  np P ( a  X  b)  P  Z   np(1  p)   np(1  p) for n moderately large (20  n < 50). If p is either small (close to 0) or large (close to 1), use the Poisson approximation. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 35. Using the Template for Normal Approximation of the Binomial Distribution Slide 35 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 36. Slide 36 Name Religion Domicile Contact # E.Mail M.Phil (Statistics) Shakeel Nouman Christian Punjab (Lahore) 0332-4462527. 0321-9898767 sn_gcu@yahoo.com sn_gcu@hotmail.com GC University, . (Degree awarded by GC University) M.Sc (Statistics) Statitical Officer (BS-17) (Economics & Marketing Division) GC University, . (Degree awarded by GC University) Livestock Production Research Institute Bahadurnagar (Okara), Livestock & Dairy Development Department, Govt. of Punjab The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer