The Normal Distribution

Slide 1

Shakeel Nouman
M.Phil Statistics

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4











Slide 2

The Normal Distribution

Using Statistics
The Normal Probability Distribution
The Standard Normal Distribution
The Transformation of Normal Random
Variables
The Inverse Transformation
The Normal Distribution as an
Approximation to Other Probability
Distributions
Summary and Review of Terms

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-1 Introduction

Slide 3

As n increases, the binomial distribution approaches a ...
n=6

n = 10

Bino mial Dis trib utio n: n=6, p =.5

n = 14

Bino mial Distrib utio n: n=1 0 , p =.5

Bino mial Dis trib utio n: n=1 4 , p =.5
0.3

0.2

0.2

0.2

0.1

P(x)

0.3

P(x)

P(x)

0.3

0.1

0.0

0.1

0.0
0

1

2

3

4

5

6

0.0
0

1

x

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

x

Normal Probability Density Function:
f ( x) 

1






 x
2
2p
where e  2.7182818... and p  314159265...
.

0.4
0.3

f(x)

x  2

e 2 2 for






Normal Distribution:  = 0,= 1

0.2
0.1
0.0
-5

0

x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

5
The Normal Probability
Distribution

Slide 4

The normal probability density function:
1

e

0.4

x  2





2 2

0.3

for

 x

2p 2
where e  2.7182818... and p  314159265...
.

f(x)

f ( x) 









Normal Dis tribution:  = 0,= 1

0.2
0.1
0.0
-5

0

x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

5
Properties of the Normal
Probability Distribution
•

Slide 5

The normal is a family of
Bell-shaped and symmetric distributions. because the
distribution is symmetric, one-half (.50 or 50%) lies
on either side of the mean.
Each is characterized by a different pair of mean, ,


and variance,  . That is: [X~N( )].
Each is asymptotic to the horizontal axis.
The area under any normal probability density
function within kof is the same for any normal
distribution, regardless of the mean and variance.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution (continued)
•
•
•

Slide 6

If several independent random variables are normally
distributed then their sum will also be normally
distributed.
The mean of the sum will be the sum of all the
individual means.
The variance of the sum will be the sum of all the
individual variances (by virtue of the independence).

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution
(continued)
•
•
•
•

Slide 7

If X1, X2, …, Xn are independent normal random
variable, then their sum S will also be normally
distributed with
E(S) = E(X1) + E(X2) + … + E(Xn)
V(S) = V(X1) + V(X2) + … + V(Xn)
Note: It is the variances that can be added above and
not the standard deviations.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution – Example
4-1

Slide 8

Example 4.1: Let X1, X2, and X3 be independent random
variables that are normally distributed with means and
variances as shown.
Mean

Variance

X1

10

1

X2

20

2

X3

30

3

Let S = X1 + X2 + X3. Then E(S) = 10 + 20 + 30 = 60 and
V(S) = 1 + 2 + 3 = 6. The standard deviation of S 6
is
= 2.45.
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties
of
the
Normal
Probability Distribution (continued)
•

•
•
•

Slide 9

If X1, X2, …, Xn are independent normal random
variable, then the random variable Q defined as Q =
a1X1 + a2X2 + … + anXn + b will also be normally
distributed with
E(Q) = a1E(X1) + a2E(X2) + … + anE(Xn) + b
V(Q) = a12 V(X1) + a22 V(X2) + … + an2 V(Xn)
Note: It is the variances that can be added above and
not the standard deviations.

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Properties of the Normal
Probability Distribution – Example
4-3

Slide 10

Example 4.3: Let X1 , X2 , X3 and X4 be independent random variables
that are normally distributed with means and variances as shown.
Find the mean and variance of Q = X1 - 2X2 + 3X2 - 4X4 + 5
Mean

Variance

X1

12

4

X2

-5

2

X3

8

5

X4

10

1

E(Q) = 12 – 2(-5) + 3(8) – 4(10) + 5 = 11

V(Q) = 4 + (-2)2(2) + 32(5) + (-4)2(1) = 73
SD(Q) =

73  8.544

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Computing the Mean, VarianceSlide 11
and Standard Deviation for the
Sum of Independent Random
Variables Using the Template

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Normal Probability Distributions

Slide 12

All of these are normal probability density functions, though each has a different mean and variance.
Normal Distribution: =40, 
=1

Normal Distribution: =30, 
=5

0.4

Normal Distribution: =50, 
=3

0.2

0.2

0.2

f(y)

f(x)

f(w)

0.3
0.1

0.1

0.1
0.0

0.0
35

40

45

0.0
0

w

10

20

30

40

50

x

W~N(40,1)

X~N(30,25)

60

35

45

50

55

y

Y~N(50,9)

Normal Distribution:  
=0, =1

Consider:

0.4

f(z)

0.3
0.2
0.1
0.0
-5

0

5

P(39 W 41)
P(25 X 35)
P(47 Y 53)
P(-1 Z 1)

The probability in each
case is an area under a
normal probability density
function.

z

Z~N(0,1)
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

65
Computing Normal Probabilities
Using the Template

Slide 13

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-3 The Standard Normal
Distribution

Slide 14

The standard normal random variable, Z, is the normal random
variable with mean = 0 and standard deviation = 1:
Z~N(0,12).
Standard Normal Distribution
0 .4


=1

{

f( z)

0 .3

0 .2

0 .1

0 .0
-5

-4

-3

-2

-1

0

1

2

3

4

5


=0
Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Probabilities of the
Standard Normal Distribution: P(0
< Z < 1.56)

Slide 15

Standard Normal Probabilities
Standard Normal Distribution
0.4

f(z)

0.3
0.2
0.1

{

1.56

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

Look in row labeled 1.5
and column labeled .06 to
find P(0 z 1.56) =
.4406

z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

.00
0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713
0.4772
0.4821
0.4861
0.4893
0.4918
0.4938
0.4953
0.4965
0.4974
0.4981
0.4987

.01
0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719
0.4778
0.4826
0.4864
0.4896
0.4920
0.4940
0.4955
0.4966
0.4975
0.4982
0.4987

.02
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726
0.4783
0.4830
0.4868
0.4898
0.4922
0.4941
0.4956
0.4967
0.4976
0.4982
0.4987

.03
0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.3708
0.3907
0.4082
0.4236
0.4370
0.4484
0.4582
0.4664
0.4732
0.4788
0.4834
0.4871
0.4901
0.4925
0.4943
0.4957
0.4968
0.4977
0.4983
0.4988

.04
0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.3729
0.3925
0.4099
0.4251
0.4382
0.4495
0.4591
0.4671
0.4738
0.4793
0.4838
0.4875
0.4904
0.4927
0.4945
0.4959
0.4969
0.4977
0.4984
0.4988

.05
0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.3749
0.3944
0.4115
0.4265
0.4394
0.4505
0.4599
0.4678
0.4744
0.4798
0.4842
0.4878
0.4906
0.4929
0.4946
0.4960
0.4970
0.4978
0.4984
0.4989

.06
0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.3770
0.3962
0.4131
0.4279
0.4406
0.4515
0.4608
0.4686
0.4750
0.4803
0.4846
0.4881
0.4909
0.4931
0.4948
0.4961
0.4971
0.4979
0.4985
0.4989

.07
0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.3790
0.3980
0.4147
0.4292
0.4418
0.4525
0.4616
0.4693
0.4756
0.4808
0.4850
0.4884
0.4911
0.4932
0.4949
0.4962
0.4972
0.4979
0.4985
0.4989

.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.3810
0.3997
0.4162
0.4306
0.4429
0.4535
0.4625
0.4699
0.4761
0.4812
0.4854
0.4887
0.4913
0.4934
0.4951
0.4963
0.4973
0.4980
0.4986
0.4990

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
0.3830
0.4015
0.4177
0.4319
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4990
Finding Probabilities of the
Standard Normal Distribution: P(Z
< -2.47)
To find P(Z<-2.47):
Find table area for 2.47
P(0 < Z < 2.47) = .4932

P(Z < -2.47) = .5 - P(0 < Z < 2.47)

z ...
.
.
.
2.3 ...
2.4 ...
2.5 ...

Slide 16

.06
.07
.08
.
.
.
.
.
.
.
.
.
0.4909 0.4911 0.4913
0.4931 0.4932 0.4934
0.4948 0.4949 0.4951
.
.
.

= .5 - .4932 = 0.0068

Standard Normal Distribution

Area to the left of -2.47
P(Z < -2.47) = .5 - 0.4932
= 0.0068

0.4

Table area for 2.47
P(0 < Z < 2.47) = 0.4932

f(z)

0.3

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Probabilities of the
Standard Normal Distribution:
P(1< Z < 2)
To find P(1  Z  2):
1. Find table area for 2.00
F(2)  P(Z  2.00)  .5 + .4772 .9772
2. Find table area for 1.00
F(1)  P(Z  1.00)  .5 + .3413  .8413
3. P(1  Z  2.00)  P(Z  2.00)  P(Z  1.00)

z

.00
.
.
.

0.9
1.0
1.1
.
.
.
1.9
2.0
2.1

 .9772  .8413  .1359

.
.
.

.
.
.
0.3159
0.3413
0.3643
.
.
.
0.4713
0.4772
0.4821
.
.
.

Slide 17

...

...
...
...

...
...
...

Standard Normal Distribution
0.4

Area between 1 and 2
P(1  Z  2)  .9772  .8413  0.1359

f(z)

0.3

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of the Standard
Normal Random Variable: P(0 < Z
< z) = 0.40
To find z such that
P(0 Z z) = .40:
1. Find a probability as close as
possible to .40 in the table of
standard normal probabilities.

z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
.
.
.

.00
0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
.
.
.

.01
0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
.
.
.

.02
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.3686
0.3888
0.4066
.
.
.

2. Then determine the value of z
from the corresponding row
and column.

.03
0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.3708
0.3907
0.4082
.
.
.

.04
0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.3729
0.3925
0.4099
.
.
.

.05
0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.3749
0.3944
0.4115
.
.
.

.06
0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.3770
0.3962
0.4131
.
.
.

Slide 18

.07
0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.3790
0.3980
0.4147
.
.
.

.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.3810
0.3997
0.4162
.
.
.

Standard Normal Distribution
0.4

Area to the left of 0 = .50

P(0 Z 1.28)  .40P(z 0) = .50

f(z)

Also, since P(Z 0) = .50

Area = .40 (.3997)

0.3

0.2

0.1

P(Z 1.28)  .90
0.0

-5

-4

-3

-2

-1

0

Z

1

2

3

4

5

Z = 1.28

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
0.3830
0.4015
0.4177
.
.
.
99% Interval around the Mean
To have .99 in the center of the distribution, there
should be (1/2)(1-.99) = (1/2)(.01) = .005 in each
tail of the distribution, and (1/2)(.99) = .495 in
each half of the .99 interval. That is:

P(0 Z z.005) = .495

z

.04

.

.
.
.
2.4 ...
2.5 ...
2.6 ...
.
.
.

.05

.08

.
.
.
0.4931
0.4948
0.4961
.
.
.

.09

.
.
.
0.4932
0.4949
0.4962
.
.
.

.
.
.
0.4934
0.4951
0.4963
.
.
.

.
.
0.4936
0.4952
0.4964
.
.
.

Total area in center = .99

Area in center left = .495
0.4

Area in center right = .495
0.3

f(z)

P(-.2575   .99
Z
)=

.07

.
.
.
0.4929
0.4946
0.4960
.
.
.

Look to the table of standard normal probabilities
to find that:

  
z.005
z.005 

.06

.
.
.
0.4927
0.4945
0.4959
.
.
.

Slide 19

0.2

Area in right tail = .005
Area in left tail = .005

0.1

0.0
-5

-4

-3

-2

-z.005
-2.575

-1

0

Z

1

2

3

4

5

z.005
2.575

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-4 The Transformation of
Normal Random Variables

Slide 20

The area within k of the mean is the same for all normal random variables. So an area
under any normal distribution is equivalent to an area under the standard normal. In this
example: P(40 X 
P(-1 Z  
since m = 50 and s = 10.
The transformation of X to Z:
X x
Z
x

Normal Distribution:=50,
=10
0.07
0.06

Transformation
f(x)

(1) Subtraction: (X -  )
x

0.05
0.04
0.03
 10
=

{

0.02

Standard Normal Distribution

0.01
0.00

0.4

0

20

30

40

50

60

70

80

90 100

X

0.3

0.2

(2) Division by  )
x

{

f(z)

10

1.0

0.1

0.0
-5

-4

-3

-2

-1

0

Z

1

2

3

4

5

The inverse transformation of Z to X:

X  x + Z x

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Normal
Transformation

Example 4-9
X~N(160,302)

Slide 21

Example 4-10
X~N(127,222)

P (100  X  180)
 100    X    180   
 P


P ( X  150)
 X    150   
 P






 

 
 100  160  Z  180  160
P

 30
30 

(

)

 P 2  Z  .6667
 0.4772 + 0.2475  0.7247

 
 
 150  127 
P Z 


22 

(

)

 P Z  1.045
 0.5 + 0.3520  0.8520

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Normal
Transformation - Example 4-11

Normal Dis tribution:  = 383, = 12

Example 4-11
X~N(383,122)

0.05
0.04

(

 
399  383

)

12

 P 0.9166  Z  1.333
 0.4088  0.3203  0.0885




0.03
0.02
0.01

Standard Normal Distribution
0.00
340

0.4

390

X
0.3

f(z)



f( )
X

P ( 394  X  399)
 394   X   399   
 P




 

 394  383
P
Z 
 12

Slide 22

0.2

0.1

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

Template solution

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

440
The Transformation of Normal
Random Variables
The transformation of X to Z:
Z 

X  x

x

Slide 23

The inverse transformation of Z to X:
X  

+ Z
x

x

The transformation of X to Z, where a and b are numbers::

a  

P( X  a)  P Z 


 
b  

P( X  b)  P Z 


 
b  
a 
P(a  X  b)  P
Z

 
 

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Normal
Rule)

Probabilities

(Empirical

S t a n d a rd N o rm a l D is trib u tio n

• The probability that a normal

•

•

0 .4

0 .3

f(z)

random variable will be within 1
standard deviation from its mean
(on either side) is 0.6826, or
approximately 0.68.
The probability that a normal
random variable will be within 2
standard deviations from its mean
is 0.9544, or approximately 0.95.
The probability that a normal
random variable will be within 3
standard deviation from its mean is
0.9974.

Slide 24

0 .2

0 .1

0 .0
-5

-4

-3

-2

-1

0

1

2

3

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

4

5
4-5 The Inverse Transformation

Slide 25

The area within k of the mean is the same for all normal random variables. To find a
probability associated with any interval of values for any normal random variable, all that
is needed is to express the interval in terms of numbers of standard deviations from the
mean. That is the purpose of the standard normal transformation. If X~N(50,102),
70  50 
 x   70   

P( X  70)  P

  P Z 
  P( Z  2)
 

 
10 

That is, P(X >70) can be found easily because 70 is 2 standard deviations above the mean
of X: 70 = + 2 P(X > 70) is equivalent to P(Z > 2), an area under the standard normal
.
distribution.
Normal Distribution:  = 124, = 12

Example 4-12
X~N(124,122)
P(X > x) = 0.10 and P(Z > 1.28) 
0.10
x = + z= 124 + (1.28)(12) =
139.36
.
.
.
1.1
1.2
1.3

.
.
.

.07
.
.
.
0.3790
0.3980
0.4147

.
.
.
...
...
...

.
.
.

.
.
.

.08
.
.
.
0.3810
0.3997
0.4162

.
.
.

.09
.
.
.
0.3830
0.4015
0.4177

.
.
.

0.03

f(x)

z

0.04

0.02

0.01

0.01

0.00
80

130

X

139.36

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

180
Template Solution for Example
4-12

Slide 26

Example 4-12
X~N(124,122)
P(X > x) = 0.10 and P(Z > 1.28) 
0.10
x = + z= 124 + (1.28)(12) =
139.36

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
The Inverse Transformation
(Continued)
Example 4-13
X~N(5.7,0.52)
P(X > x)=0.01 and P(Z > 2.33) 
0.01
x = + z= 5.7 + (2.33)(0.5) = 6.865
z
.
.
.
2.2
2.3
2.4
.
.
.

.02
.
.
.
0.4868
0.4898
0.4922

.
.
.
...
...
...
.
.
.

.03
.
.
.
0.4871
0.4901
0.4925

.
.
.

.
.
.

Example 4-14
X~N(2450,4002)
P(a<X<b)=0.95 and P(-1.96<Z<1.96)
0.95
x = z= 2450 (1.96)(400) = 2450
784=(1666,3234)
P(1666 < X < 3234) = 0.95

.04
.
.
.
0.4875
0.4904
0.4927

z
.
.
.
1.8
1.9
2.0
.

.
.
.

Normal Distribution: = 5.7  0.5
=

...
...
...
.
.

.06
.
.
.
0.4686
0.4750
0.4803
.

.

.

0.0015

Area = 0.49

.4750

.4750

0.0010

f(x)

0.5
0.4
X.01 = 
+z= 5.7 + (2.33)(0.5) = 6.865

0.3

0.0005

0.2

.0250

.0250

Area = 0.01

0.1
0.0

0.0000
3.2

4.2

5.2

6.2

7.2

8.2

1000

2000

X
-5

-4

-3

-2

-1

0

z

3000

4000

X
1

2

3

4

5

Z.01 = 2.33

-5

-4

-3

-2

-1.96

-1

0

Z

1

2

3

.07
.
.
.
0.4693
0.4756
0.4808
.
.

Normal Distribution:  = 2450 = 400

0.6

f(x)

.05
.
.
.
0.4678
0.4744
0.4798
.

.
.
.

.

0.8
0.7

Slide 27

4

5

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 40 0
0.0012
.
0.0010
.
0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 28

0.0006
.
0.0004
.
0.0002
.
0.0000
1000

2000

3000

4000

X

S ta nd a rd N o rm al D is trib utio n
0.4

f(z)

0.3
0.2
0.1
0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 400
0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the
normal
distribution
in
question and of the
standard normal
distribution.

Slide 29

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding to
the
desired
probability.

S ta nd a rd No rm al D is trib utio n
0.4

.4750

.4750

f(z)

0.3
0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 2450, = 400

3. From the table
of the standard
normal
distribution,
find the z value
or values.

0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 30

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding
to the desired
probability.

S ta nd a rd No rm al D is trib utio n
0.4

.4750

f(z)
z
.
.
.
1.8
1.9
2.0
.
.

.05
.
.
.
0.4678
0.4744
0.4798
.

.
.
.
...
...
...
.
.

.

.06
.
.
.
0.4686
0.4750
0.4803
.
.

.4750

0.3

.07
.
.
.
0.4693
0.4756
0.4808
.

0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

3

4

5

Z

.

-1.96

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability
Norm al Distribution:  = 24 50, = 400

3. From the table
of the standard
normal
distribution,
find the z value
or values.

0.0012
.

.4750

0.0010
.

.4750

0.0008
.

f(x)

1. Draw pictures of
the normal
distribution in
question and of the
standard normal
distribution.

Slide 31

0.0006
.
0.0004
.
0.0002
.

.9500

0.0000
1000

2000

3000

4000

X

2. Shade the area
corresponding
to the desired
probability.

0.4

.4750

.
.
.
...
...
...
.
.

.05
.
.
.
0.4678
0.4744
0.4798
.
.

.06
.
.
.
0.4686
0.4750
0.4803
.
.

.4750

0.3

f(z)
z
.
.
.
1.8
1.9
2.0
.
.

4. Use the
transformation
from z to x to get
value(s) of the
original random
variable.

S ta nd a rd No rm al D is trib utio n

.07
.
.
.
0.4693
0.4756
0.4808
.
.

0.2
0.1

.9500

0.0
-5

-4

-3

-2

-1

0

1

2

Z

-1.96

3

4

5

x = z= 2450
(1.96)(400)
= 2450 784=(1666,3234)

1.96

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Finding Values of a Normal
Random Variable, Given a
Probability

Slide 32

The normal distribution with = 3.5 and = 1.323 is a close
approximation to the binomial with n = 7 and p = 0.50.
P(x<4.5) = 0.7749

Normal Distribution:  = 3.5, = 1.323

Binomial Distribution: n = 7, p = 0.50

0.3

0.3

P( x  = 0.7734
4)
0.2

f(x)

P(x)

0.2

0.1

0.1

0.0

0.0
0

5

10

X

0

1

2

3

4

5

6

7

X

MTB > cdf 4.5;
SUBC> normal 3.5 1.323.
Cumulative Distribution Function

MTB > cdf 4;
SUBC> binomial 7,.5.
Cumulative Distribution Function

Normal with mean = 3.50000 and standard deviation = 1.32300

Binomial with n = 7 and p = 0.500000

x P( X <= x)
4.5000
0.7751

x P( X <= x)
4.00
0.7734

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
4-6 The Normal Approximation of
Binomial Distribution

Slide 33

The normal distribution with = 5.5 and = 1.6583 is a closer
approximation to the binomial with n = 11 and p = 0.50.
P(x < 4.5) = 0.2732
Normal Distribution: = 5.5, = 1.6583

Binomial Distribution: n = 11, p = 0.50

P(x 4) = 0.2744

0.3
0.2

f(x)

P(x)

0.2
0.1

0.1

0.0

0.0
0

5

10

X

MTB > cdf 4.5;
SUBC> normal 5.5 1.6583.
Cumulative Distribution Function
Normal with mean = 5.50000 and standard deviation = 1.65830
x P( X <= x)
4.5000
0.2732

0

1

2

3

4

5

6

7

8

9 10 11

X

MTB > cdf 4;
SUBC> binomial 11,.5.
Cumulative Distribution Function
Binomial with n = 11 and p = 0.500000
x P( X <= x)
4.00
0.2744

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Approximating a Binomial
Probability Using the Normal
Distribution

Slide 34

b  np 
 a  np
P ( a  X  b)  P 
Z


 np(1  p)
np(1  p) 
for n large (n  50) and p not too close to 0 or 1.00
or:

b + 0.5  np 
 a  0.5  np
P ( a  X  b)  P 
Z


np(1  p) 
 np(1  p)
for n moderately large (20  n < 50).

If p is either small (close to 0) or large (close to 1), use the Poisson
approximation.
The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Using the Template for Normal
Approximation of the Binomial
Distribution

Slide 35

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
Slide 36

Name
Religion
Domicile
Contact #
E.Mail
M.Phil (Statistics)

Shakeel Nouman
Christian
Punjab (Lahore)
0332-4462527. 0321-9898767
sn_gcu@yahoo.com
sn_gcu@hotmail.com
GC University, .
(Degree awarded by GC University)

M.Sc (Statistics)
Statitical Officer
(BS-17)
(Economics & Marketing
Division)

GC University, .
(Degree awarded by GC University)

Livestock Production Research Institute
Bahadurnagar (Okara), Livestock & Dairy Development
Department, Govt. of Punjab

The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer

The normal distribution

  • 1.
    The Normal Distribution Slide1 Shakeel Nouman M.Phil Statistics The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 2.
    4        Slide 2 The NormalDistribution Using Statistics The Normal Probability Distribution The Standard Normal Distribution The Transformation of Normal Random Variables The Inverse Transformation The Normal Distribution as an Approximation to Other Probability Distributions Summary and Review of Terms The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 3.
    4-1 Introduction Slide 3 Asn increases, the binomial distribution approaches a ... n=6 n = 10 Bino mial Dis trib utio n: n=6, p =.5 n = 14 Bino mial Distrib utio n: n=1 0 , p =.5 Bino mial Dis trib utio n: n=1 4 , p =.5 0.3 0.2 0.2 0.2 0.1 P(x) 0.3 P(x) P(x) 0.3 0.1 0.0 0.1 0.0 0 1 2 3 4 5 6 0.0 0 1 x 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x x Normal Probability Density Function: f ( x)  1      x 2 2p where e  2.7182818... and p  314159265... . 0.4 0.3 f(x) x  2  e 2 2 for      Normal Distribution:  = 0,= 1 0.2 0.1 0.0 -5 0 x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 5
  • 4.
    The Normal Probability Distribution Slide4 The normal probability density function: 1 e 0.4 x  2     2 2 0.3 for  x 2p 2 where e  2.7182818... and p  314159265... . f(x) f ( x)        Normal Dis tribution:  = 0,= 1 0.2 0.1 0.0 -5 0 x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 5
  • 5.
    Properties of theNormal Probability Distribution • Slide 5 The normal is a family of Bell-shaped and symmetric distributions. because the distribution is symmetric, one-half (.50 or 50%) lies on either side of the mean. Each is characterized by a different pair of mean, ,   and variance,  . That is: [X~N( )]. Each is asymptotic to the horizontal axis. The area under any normal probability density function within kof is the same for any normal distribution, regardless of the mean and variance. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 6.
    Properties of theNormal Probability Distribution (continued) • • • Slide 6 If several independent random variables are normally distributed then their sum will also be normally distributed. The mean of the sum will be the sum of all the individual means. The variance of the sum will be the sum of all the individual variances (by virtue of the independence). The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 7.
    Properties of theNormal Probability Distribution (continued) • • • • Slide 7 If X1, X2, …, Xn are independent normal random variable, then their sum S will also be normally distributed with E(S) = E(X1) + E(X2) + … + E(Xn) V(S) = V(X1) + V(X2) + … + V(Xn) Note: It is the variances that can be added above and not the standard deviations. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 8.
    Properties of theNormal Probability Distribution – Example 4-1 Slide 8 Example 4.1: Let X1, X2, and X3 be independent random variables that are normally distributed with means and variances as shown. Mean Variance X1 10 1 X2 20 2 X3 30 3 Let S = X1 + X2 + X3. Then E(S) = 10 + 20 + 30 = 60 and V(S) = 1 + 2 + 3 = 6. The standard deviation of S 6 is = 2.45. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 9.
    Properties of the Normal Probability Distribution (continued) • • • • Slide9 If X1, X2, …, Xn are independent normal random variable, then the random variable Q defined as Q = a1X1 + a2X2 + … + anXn + b will also be normally distributed with E(Q) = a1E(X1) + a2E(X2) + … + anE(Xn) + b V(Q) = a12 V(X1) + a22 V(X2) + … + an2 V(Xn) Note: It is the variances that can be added above and not the standard deviations. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 10.
    Properties of theNormal Probability Distribution – Example 4-3 Slide 10 Example 4.3: Let X1 , X2 , X3 and X4 be independent random variables that are normally distributed with means and variances as shown. Find the mean and variance of Q = X1 - 2X2 + 3X2 - 4X4 + 5 Mean Variance X1 12 4 X2 -5 2 X3 8 5 X4 10 1 E(Q) = 12 – 2(-5) + 3(8) – 4(10) + 5 = 11 V(Q) = 4 + (-2)2(2) + 32(5) + (-4)2(1) = 73 SD(Q) = 73  8.544 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 11.
    Computing the Mean,VarianceSlide 11 and Standard Deviation for the Sum of Independent Random Variables Using the Template The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 12.
    Normal Probability Distributions Slide12 All of these are normal probability density functions, though each has a different mean and variance. Normal Distribution: =40,  =1 Normal Distribution: =30,  =5 0.4 Normal Distribution: =50,  =3 0.2 0.2 0.2 f(y) f(x) f(w) 0.3 0.1 0.1 0.1 0.0 0.0 35 40 45 0.0 0 w 10 20 30 40 50 x W~N(40,1) X~N(30,25) 60 35 45 50 55 y Y~N(50,9) Normal Distribution:   =0, =1 Consider: 0.4 f(z) 0.3 0.2 0.1 0.0 -5 0 5 P(39 W 41) P(25 X 35) P(47 Y 53) P(-1 Z 1) The probability in each case is an area under a normal probability density function. z Z~N(0,1) The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 65
  • 13.
    Computing Normal Probabilities Usingthe Template Slide 13 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 14.
    4-3 The StandardNormal Distribution Slide 14 The standard normal random variable, Z, is the normal random variable with mean = 0 and standard deviation = 1: Z~N(0,12). Standard Normal Distribution 0 .4  =1 { f( z) 0 .3 0 .2 0 .1 0 .0 -5 -4 -3 -2 -1 0 1 2 3 4 5  =0 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 15.
    Finding Probabilities ofthe Standard Normal Distribution: P(0 < Z < 1.56) Slide 15 Standard Normal Probabilities Standard Normal Distribution 0.4 f(z) 0.3 0.2 0.1 { 1.56 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Look in row labeled 1.5 and column labeled .06 to find P(0 z 1.56) = .4406 z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 0.4192 0.4332 0.4452 0.4554 0.4641 0.4713 0.4772 0.4821 0.4861 0.4893 0.4918 0.4938 0.4953 0.4965 0.4974 0.4981 0.4987 .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 0.4207 0.4345 0.4463 0.4564 0.4649 0.4719 0.4778 0.4826 0.4864 0.4896 0.4920 0.4940 0.4955 0.4966 0.4975 0.4982 0.4987 .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 0.4222 0.4357 0.4474 0.4573 0.4656 0.4726 0.4783 0.4830 0.4868 0.4898 0.4922 0.4941 0.4956 0.4967 0.4976 0.4982 0.4987 .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 0.4236 0.4370 0.4484 0.4582 0.4664 0.4732 0.4788 0.4834 0.4871 0.4901 0.4925 0.4943 0.4957 0.4968 0.4977 0.4983 0.4988 .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 0.4251 0.4382 0.4495 0.4591 0.4671 0.4738 0.4793 0.4838 0.4875 0.4904 0.4927 0.4945 0.4959 0.4969 0.4977 0.4984 0.4988 .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 0.4265 0.4394 0.4505 0.4599 0.4678 0.4744 0.4798 0.4842 0.4878 0.4906 0.4929 0.4946 0.4960 0.4970 0.4978 0.4984 0.4989 .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 0.4279 0.4406 0.4515 0.4608 0.4686 0.4750 0.4803 0.4846 0.4881 0.4909 0.4931 0.4948 0.4961 0.4971 0.4979 0.4985 0.4989 .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 0.4292 0.4418 0.4525 0.4616 0.4693 0.4756 0.4808 0.4850 0.4884 0.4911 0.4932 0.4949 0.4962 0.4972 0.4979 0.4985 0.4989 .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 0.4306 0.4429 0.4535 0.4625 0.4699 0.4761 0.4812 0.4854 0.4887 0.4913 0.4934 0.4951 0.4963 0.4973 0.4980 0.4986 0.4990 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4441 0.4545 0.4633 0.4706 0.4767 0.4817 0.4857 0.4890 0.4916 0.4936 0.4952 0.4964 0.4974 0.4981 0.4986 0.4990
  • 16.
    Finding Probabilities ofthe Standard Normal Distribution: P(Z < -2.47) To find P(Z<-2.47): Find table area for 2.47 P(0 < Z < 2.47) = .4932 P(Z < -2.47) = .5 - P(0 < Z < 2.47) z ... . . . 2.3 ... 2.4 ... 2.5 ... Slide 16 .06 .07 .08 . . . . . . . . . 0.4909 0.4911 0.4913 0.4931 0.4932 0.4934 0.4948 0.4949 0.4951 . . . = .5 - .4932 = 0.0068 Standard Normal Distribution Area to the left of -2.47 P(Z < -2.47) = .5 - 0.4932 = 0.0068 0.4 Table area for 2.47 P(0 < Z < 2.47) = 0.4932 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 17.
    Finding Probabilities ofthe Standard Normal Distribution: P(1< Z < 2) To find P(1  Z  2): 1. Find table area for 2.00 F(2)  P(Z  2.00)  .5 + .4772 .9772 2. Find table area for 1.00 F(1)  P(Z  1.00)  .5 + .3413  .8413 3. P(1  Z  2.00)  P(Z  2.00)  P(Z  1.00) z .00 . . . 0.9 1.0 1.1 . . . 1.9 2.0 2.1  .9772  .8413  .1359 . . . . . . 0.3159 0.3413 0.3643 . . . 0.4713 0.4772 0.4821 . . . Slide 17 ... ... ... ... ... ... ... Standard Normal Distribution 0.4 Area between 1 and 2 P(1  Z  2)  .9772  .8413  0.1359 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 18.
    Finding Values ofthe Standard Normal Random Variable: P(0 < Z < z) = 0.40 To find z such that P(0 Z z) = .40: 1. Find a probability as close as possible to .40 in the table of standard normal probabilities. z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 . . . .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 . . . .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 . . . .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 . . . 2. Then determine the value of z from the corresponding row and column. .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 . . . .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 . . . .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 . . . .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 . . . Slide 18 .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 . . . .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 . . . Standard Normal Distribution 0.4 Area to the left of 0 = .50 P(0 Z 1.28)  .40P(z 0) = .50 f(z) Also, since P(Z 0) = .50 Area = .40 (.3997) 0.3 0.2 0.1 P(Z 1.28)  .90 0.0 -5 -4 -3 -2 -1 0 Z 1 2 3 4 5 Z = 1.28 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 . . .
  • 19.
    99% Interval aroundthe Mean To have .99 in the center of the distribution, there should be (1/2)(1-.99) = (1/2)(.01) = .005 in each tail of the distribution, and (1/2)(.99) = .495 in each half of the .99 interval. That is: P(0 Z z.005) = .495 z .04 . . . . 2.4 ... 2.5 ... 2.6 ... . . . .05 .08 . . . 0.4931 0.4948 0.4961 . . . .09 . . . 0.4932 0.4949 0.4962 . . . . . . 0.4934 0.4951 0.4963 . . . . . 0.4936 0.4952 0.4964 . . . Total area in center = .99 Area in center left = .495 0.4 Area in center right = .495 0.3 f(z) P(-.2575   .99 Z )= .07 . . . 0.4929 0.4946 0.4960 . . . Look to the table of standard normal probabilities to find that:    z.005 z.005  .06 . . . 0.4927 0.4945 0.4959 . . . Slide 19 0.2 Area in right tail = .005 Area in left tail = .005 0.1 0.0 -5 -4 -3 -2 -z.005 -2.575 -1 0 Z 1 2 3 4 5 z.005 2.575 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 20.
    4-4 The Transformationof Normal Random Variables Slide 20 The area within k of the mean is the same for all normal random variables. So an area under any normal distribution is equivalent to an area under the standard normal. In this example: P(40 X  P(-1 Z   since m = 50 and s = 10. The transformation of X to Z: X x Z x Normal Distribution:=50, =10 0.07 0.06 Transformation f(x) (1) Subtraction: (X -  ) x 0.05 0.04 0.03  10 = { 0.02 Standard Normal Distribution 0.01 0.00 0.4 0 20 30 40 50 60 70 80 90 100 X 0.3 0.2 (2) Division by  ) x { f(z) 10 1.0 0.1 0.0 -5 -4 -3 -2 -1 0 Z 1 2 3 4 5 The inverse transformation of Z to X: X  x + Z x The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 21.
    Using the Normal Transformation Example4-9 X~N(160,302) Slide 21 Example 4-10 X~N(127,222) P (100  X  180)  100    X    180     P  P ( X  150)  X    150     P          100  160  Z  180  160 P   30 30  ( )  P 2  Z  .6667  0.4772 + 0.2475  0.7247      150  127  P Z    22  ( )  P Z  1.045  0.5 + 0.3520  0.8520 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 22.
    Using the Normal Transformation- Example 4-11 Normal Dis tribution:  = 383, = 12 Example 4-11 X~N(383,122) 0.05 0.04 (   399  383 ) 12  P 0.9166  Z  1.333  0.4088  0.3203  0.0885   0.03 0.02 0.01 Standard Normal Distribution 0.00 340 0.4 390 X 0.3 f(z)  f( ) X P ( 394  X  399)  394   X   399     P        394  383 P Z   12 Slide 22 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Template solution The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 440
  • 23.
    The Transformation ofNormal Random Variables The transformation of X to Z: Z  X  x x Slide 23 The inverse transformation of Z to X: X   + Z x x The transformation of X to Z, where a and b are numbers:: a    P( X  a)  P Z      b    P( X  b)  P Z      b   a  P(a  X  b)  P Z      The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 24.
    Normal Rule) Probabilities (Empirical S t an d a rd N o rm a l D is trib u tio n • The probability that a normal • • 0 .4 0 .3 f(z) random variable will be within 1 standard deviation from its mean (on either side) is 0.6826, or approximately 0.68. The probability that a normal random variable will be within 2 standard deviations from its mean is 0.9544, or approximately 0.95. The probability that a normal random variable will be within 3 standard deviation from its mean is 0.9974. Slide 24 0 .2 0 .1 0 .0 -5 -4 -3 -2 -1 0 1 2 3 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 4 5
  • 25.
    4-5 The InverseTransformation Slide 25 The area within k of the mean is the same for all normal random variables. To find a probability associated with any interval of values for any normal random variable, all that is needed is to express the interval in terms of numbers of standard deviations from the mean. That is the purpose of the standard normal transformation. If X~N(50,102), 70  50   x   70     P( X  70)  P    P Z    P( Z  2)      10  That is, P(X >70) can be found easily because 70 is 2 standard deviations above the mean of X: 70 = + 2 P(X > 70) is equivalent to P(Z > 2), an area under the standard normal . distribution. Normal Distribution:  = 124, = 12 Example 4-12 X~N(124,122) P(X > x) = 0.10 and P(Z > 1.28)  0.10 x = + z= 124 + (1.28)(12) = 139.36 . . . 1.1 1.2 1.3 . . . .07 . . . 0.3790 0.3980 0.4147 . . . ... ... ... . . . . . . .08 . . . 0.3810 0.3997 0.4162 . . . .09 . . . 0.3830 0.4015 0.4177 . . . 0.03 f(x) z 0.04 0.02 0.01 0.01 0.00 80 130 X 139.36 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer 180
  • 26.
    Template Solution forExample 4-12 Slide 26 Example 4-12 X~N(124,122) P(X > x) = 0.10 and P(Z > 1.28)  0.10 x = + z= 124 + (1.28)(12) = 139.36 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 27.
    The Inverse Transformation (Continued) Example4-13 X~N(5.7,0.52) P(X > x)=0.01 and P(Z > 2.33)  0.01 x = + z= 5.7 + (2.33)(0.5) = 6.865 z . . . 2.2 2.3 2.4 . . . .02 . . . 0.4868 0.4898 0.4922 . . . ... ... ... . . . .03 . . . 0.4871 0.4901 0.4925 . . . . . . Example 4-14 X~N(2450,4002) P(a<X<b)=0.95 and P(-1.96<Z<1.96) 0.95 x = z= 2450 (1.96)(400) = 2450 784=(1666,3234) P(1666 < X < 3234) = 0.95 .04 . . . 0.4875 0.4904 0.4927 z . . . 1.8 1.9 2.0 . . . . Normal Distribution: = 5.7  0.5 = ... ... ... . . .06 . . . 0.4686 0.4750 0.4803 . . . 0.0015 Area = 0.49 .4750 .4750 0.0010 f(x) 0.5 0.4 X.01 =  +z= 5.7 + (2.33)(0.5) = 6.865 0.3 0.0005 0.2 .0250 .0250 Area = 0.01 0.1 0.0 0.0000 3.2 4.2 5.2 6.2 7.2 8.2 1000 2000 X -5 -4 -3 -2 -1 0 z 3000 4000 X 1 2 3 4 5 Z.01 = 2.33 -5 -4 -3 -2 -1.96 -1 0 Z 1 2 3 .07 . . . 0.4693 0.4756 0.4808 . . Normal Distribution:  = 2450 = 400 0.6 f(x) .05 . . . 0.4678 0.4744 0.4798 . . . . . 0.8 0.7 Slide 27 4 5 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 28.
    Finding Values ofa Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 40 0 0.0012 . 0.0010 . 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 28 0.0006 . 0.0004 . 0.0002 . 0.0000 1000 2000 3000 4000 X S ta nd a rd N o rm al D is trib utio n 0.4 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 29.
    Finding Values ofa Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 400 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 29 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. S ta nd a rd No rm al D is trib utio n 0.4 .4750 .4750 f(z) 0.3 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 30.
    Finding Values ofa Normal Random Variable, Given a Probability Norm al Distribution:  = 2450, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 30 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. S ta nd a rd No rm al D is trib utio n 0.4 .4750 f(z) z . . . 1.8 1.9 2.0 . . .05 . . . 0.4678 0.4744 0.4798 . . . . ... ... ... . . . .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 .07 . . . 0.4693 0.4756 0.4808 . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z . -1.96 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 31.
    Finding Values ofa Normal Random Variable, Given a Probability Norm al Distribution:  = 24 50, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. Slide 31 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. 0.4 .4750 . . . ... ... ... . . .05 . . . 0.4678 0.4744 0.4798 . . .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 f(z) z . . . 1.8 1.9 2.0 . . 4. Use the transformation from z to x to get value(s) of the original random variable. S ta nd a rd No rm al D is trib utio n .07 . . . 0.4693 0.4756 0.4808 . . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 Z -1.96 3 4 5 x = z= 2450 (1.96)(400) = 2450 784=(1666,3234) 1.96 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 32.
    Finding Values ofa Normal Random Variable, Given a Probability Slide 32 The normal distribution with = 3.5 and = 1.323 is a close approximation to the binomial with n = 7 and p = 0.50. P(x<4.5) = 0.7749 Normal Distribution:  = 3.5, = 1.323 Binomial Distribution: n = 7, p = 0.50 0.3 0.3 P( x  = 0.7734 4) 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 10 X 0 1 2 3 4 5 6 7 X MTB > cdf 4.5; SUBC> normal 3.5 1.323. Cumulative Distribution Function MTB > cdf 4; SUBC> binomial 7,.5. Cumulative Distribution Function Normal with mean = 3.50000 and standard deviation = 1.32300 Binomial with n = 7 and p = 0.500000 x P( X <= x) 4.5000 0.7751 x P( X <= x) 4.00 0.7734 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 33.
    4-6 The NormalApproximation of Binomial Distribution Slide 33 The normal distribution with = 5.5 and = 1.6583 is a closer approximation to the binomial with n = 11 and p = 0.50. P(x < 4.5) = 0.2732 Normal Distribution: = 5.5, = 1.6583 Binomial Distribution: n = 11, p = 0.50 P(x 4) = 0.2744 0.3 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 10 X MTB > cdf 4.5; SUBC> normal 5.5 1.6583. Cumulative Distribution Function Normal with mean = 5.50000 and standard deviation = 1.65830 x P( X <= x) 4.5000 0.2732 0 1 2 3 4 5 6 7 8 9 10 11 X MTB > cdf 4; SUBC> binomial 11,.5. Cumulative Distribution Function Binomial with n = 11 and p = 0.500000 x P( X <= x) 4.00 0.2744 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 34.
    Approximating a Binomial ProbabilityUsing the Normal Distribution Slide 34 b  np   a  np P ( a  X  b)  P  Z    np(1  p) np(1  p)  for n large (n  50) and p not too close to 0 or 1.00 or: b + 0.5  np   a  0.5  np P ( a  X  b)  P  Z   np(1  p)   np(1  p) for n moderately large (20  n < 50). If p is either small (close to 0) or large (close to 1), use the Poisson approximation. The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 35.
    Using the Templatefor Normal Approximation of the Binomial Distribution Slide 35 The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer
  • 36.
    Slide 36 Name Religion Domicile Contact # E.Mail M.Phil(Statistics) Shakeel Nouman Christian Punjab (Lahore) 0332-4462527. 0321-9898767 sn_gcu@yahoo.com sn_gcu@hotmail.com GC University, . (Degree awarded by GC University) M.Sc (Statistics) Statitical Officer (BS-17) (Economics & Marketing Division) GC University, . (Degree awarded by GC University) Livestock Production Research Institute Bahadurnagar (Okara), Livestock & Dairy Development Department, Govt. of Punjab The Normal Distribution By Shakeel Nouman M.Phil Statistics Govt. College University Lahore, Statistical Officer