SlideShare a Scribd company logo
1 of 33
Download to read offline
リチウムイオン電池シミュレーションセミナー




      株式会社ビー・テクノロジー
      http://www.bee-tech.com/
       horigome@bee-tech.com
      Copyright (C) Bee Technologies Inc. 2010   1
EDA




                      Designer

Technology
                                                        Device
    of
                                                        Model
Simulation

             Copyright (C) Bee Technologies Inc. 2010            2
モデル


    デザインキット
  回路方式のテンプレート

     回路解析シミュレータ
PSpice (ABMライブラリーが豊富)

                                      ABM=Analog Behavior Model
     Copyright (C) Bee Technologies Inc. 2010                     3
http://www.bee-tech.com/




                           Copyright (C) Bee Technologies Inc. 2010   4
スパイス・パーク http://www.spicepark.com/
55種類のデバイス、3,328モデル(2010年7月29日現在)をご提供中。
現在、グローバル版スパイス・パークを準備中。




                Copyright (C) Bee Technologies Inc. 2010   5
Bee Style: http://www.spicepark.com/
スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含め
PDF形式で参照及びダウンロード出来ます。




             Copyright (C) Bee Technologies Inc. 2010   6
バッテリーのスパイスモデルの推移




   放電特性         放電特性                                   充電特性
   付加抵抗         付加抵抗                                     +
    一定           可変                                    放電特性


       リチウムイオン電池
       ニッケル水素電池
         鉛蓄電池


            Copyright (C) Bee Technologies Inc. 2010          7
Copyright (C) Bee Technologies Inc. 2010   8
Design Kit
PV Li-Ion Battery System

                Copyright (C) Bee Technologies Inc. 2010   9
1.1 Lithium-Ion Batteries Pack Specification

  BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)

  • Capacity............................65[Wh], 4400[mAh] (Approximately)

  • Rated Current....................3[A]

  • Input Voltage.......................20.5 [Vdc]

  • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )

  • Charging time......................5[hours] (Approximately)




                                  Copyright (C) Bee Technologies Inc. 2010   10
1.2 Discharge Time Characteristics

18V
                                                                                                                               D1

                                                                                                                               DMOD

                                                                                     PARAMETERS:                                         Voch
16V                                                                                  rate = 1                                            16.8Vdc
                                                                                     CAh = 4400m                                        0
                                                                                                                      Hi

                                       0.2C ( 880 mA )                                                                                       0
                                                                                                                 C1             U1
14V                 0.5C ( 2200 mA )                                    IN+    OUT+                              1n    +   -    PBT-BAT-0001
                                                                        IN-    OUT-
                                                                     G1                                      0                  TSCALE = 3600
                                                                     GVALUE                                                     SOC1 = 100
              1C ( 4400 mA )                                         limit(V(%IN+, %IN-)/0.01, 0, rate*CAh )

12V                                                                                                                         TSCALE=3600 means
                                                                                       0                                   time Scale (Simulation
                                                                                                                             time : Real time) is
                                                                 Batteries Pack Model Parameters                                   1:3600
10V
                                                                 NS (number of batteries in series) = 4 cells
                                                                 C (capacity) = 4400 mA
                                                                 SOC1 (initial state of charge) = 100%
 8V                                                              TSCALE (time scale) ,           simulation : real time
      0s    1.0s   2.0s        3.0s    4.0s     5.0s     6.0s                                    1 : 3600s or
           V(Hi)                                                                                 1s : 1h
                               Time
                                                                 Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)




                                           Copyright (C) Bee Technologies Inc. 2010                                                                11
1.3 Single Cell Discharge Characteristics

                      Single cell




                    Measurement                                                                            Simulation
                                                                          4.50
                                                                                                                           0.2C ( 880mA )
                                                                                                                           0.5C ( 2200mA )
                                                                                                                           1.0C ( 4400mA )
                                                                          4.00




                                                            VOLTAGE [V]
                                                                          3.50



                                                                          3.00



                                                                          2.50



                                                                          2.00
                                                                                 100   90   80   70   60    50   40   30   20   10    0      -10
                                                                                                       SOC [%]


•   Single cell discharge characteristics are compared between measurement data and simulation data.




                                    Copyright (C) Bee Technologies Inc. 2010                                                                       12
1.4 Charge Time Characteristics

              SOC [%]                                                                                                                     D1
                    100V                                                         PARAMETERS:
                                                                                 rate = 0.2                                               DMOD
                                                                                 CAh = 4400m

                     80V                                                               G1                                                               Voch
                                                                                       GVALUE                                                           16.8Vdc
                                                                                       Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh )                          0
                                                                                                                                         Hi
                     60V




                                                                                           OUT+
                                                                                           OUT-
                                                                                                                                    C1             U1           0
                     40V                                                                                                            1n    +    -   PBT-BAT-0001




                                                                                           IN+
                                                                                           IN-
                                                                                                                                0                  TSCALE = 3600
                     20V                                                                                                                           SOC1 = 0
                                                                                 Vin
                                                                                 20.5Vdc
                    SEL>>
                       0V
Vbatt [V] ICharge [A]         V(X_U1.SOC)                                       0
        18V         5.0A
    1           2                                                             Batteries Pack Model Parameters

        16V         4.0A                                                      NS (number of batteries in series) = 4 cells
                                                                              C (capacity) = 4400 mA
        14V         3.0A                                                      SOC1 (initial state of charge) = 100%
                                                                              TSCALE (time scale) ,           simulation : real time
        12V         2.0A                                                                                      1 : 3600s or
                                                                                                              1s : 1h
        10V         1.0A
                                                                              Charger Adaptor
                      >>
         8V           0A                                                      Input Voltage = 20.5 Vdc
                         0s     1.0s 2.0s   3.0s 4.0s 5.0s   6.0s   7.0s
                                                                              Input Current = 880 mA(max.)
                          1      V(Hi) 2     I(U1:PLUS)
                                                  Time




                                                        Copyright (C) Bee Technologies Inc. 2010                                                             13
2.1 Solar Cells Specification

  BP Solar’s photovoltaic module : SX330

  • Maximum power (Pmax)..............30[W]

  • Voltage at Pmax (Vmp).............16.8[V]

  • Current at Pmax (Imp)...............1.78[A]                            502mm

  • Short-circuit current (Isc)...........1.94[A]

  • Open-circuit voltage(Voc)...........21.0[V]




                                                                                   595mm
                                Copyright (C) Bee Technologies Inc. 2010                   14
2.2 Output Characteristics vs. Incident Solar Radiation
                                                           SX330 Output Characteristics vs. Incident Solar Radiation

                                                                    2.5A
                                                                                     SOL=1
                                                                    2.0A




                                                    Current (A)
                                                                    1.5A

                                                                                     SOL=0.5
            +                                                       1.0A

                    U1                                              0.5A             SOL=0.16
                    SX330                                              0A
          SX330     SOL = 1                                                    I(Isence)
                                                                     40W

                                                                                                SOL=1
                                                                     30W




                                                        Power (W)
                                                                     20W
          Parameter, SOL is added as                                                             SOL=0.5

        normalized incident radiation,                               10W
                                                                                                 SOL=0.16
       where SOL=1 for AM1.5 conditions                             SEL>>
                                                                       0W
                                                                          0V    5V     10V     15V         20V   25V   30V
                                                                               I(Isence)* V(V1:+)
                                                                                              V_V1
                                                                                             Voltage (V)



                                Copyright (C) Bee Technologies Inc. 2010                                                     15
3. Solar Cell Battery Charger

•   Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique.
    Choose the solar cell that is able to provide current at charging rate or more with the
    maximum power voltage 100V
                          (Vmp) nears the batteries pack charging voltage.
                                    80V


•   PBT-BAT-0001 (Li-ion batteries pack)
                             60V


     – Charging time is approximately 5 hours with charging rate 0.2C or 880mA
                            40V


     – Voltage during charging with 0.2C is between 14.7 to 16.9 V
                            20V


                                      0V
                                              V(X_U1.SOC)
                         18V       5.0A
                     1         2
                                                                                             14.9 V
                         16V       4.0A
                                                                                             14.7 V
                         14V       3.0A


                         12V       2.0A

                                                        0.2C or 880mA
                         10V       1.0A
                                   SEL>>
                          8V          0A
                                         0s     1.0s 2.0s   3.0s 4.0s 5.0s     6.0s   7.0s
                                          1      V(Hi) 2     I(U1:PLUS)
                                                                  Time




                                              Copyright (C) Bee Technologies Inc. 2010                16
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit



                                                             Over Voltage Protection
                                                             Circuit
    Short circuit current ISC
  depends on condition: SOL
                                                            16.8V Clamp Circuit



         Photovoltaic                                                  Lithium-Ion
         Module                                                        Batteries Pack



        SX 330 (BP Solar)                                            PBT-BAT-0001 (BAYSUN)
        Vmp=16.8V                                                    DC12.8~16.4V (4 cells)
        Pmax=30W                                                     4400mAh




                                Copyright (C) Bee Technologies Inc. 2010                      17
3.2 PV Li-Ion Battery Charger Circuit

                                                                                D1

          PARAMETERS:
                                                                                DMOD
          sol = 1
                                                                                              Voch
                                                                                              16.8Vdc
                               pv                                                            0
                                                                               Hi


         +                                                         C1                    U1           0
                 U2                                                1n           +    -   PBT-BAT-0001
                 SX330
        SX330    SOL = {sol}
                                                               0                         TSCALE = 3600
                                                                                         SOC1 = 0
             0

    •     Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
          radiation, where SOL=1 for AM1.5 conditions.



                                    Copyright (C) Bee Technologies Inc. 2010                              18
3.3 Charging Time Characteristics vs. Weather Condition


        100V




         80V




         60V




         40V



                                                                                        sol = 1.00
         20V
                                                                                        sol = 0.50
                                                                                        sol = 0.16
          0V
               0s    1s       2s     3s       4s        5s       6s           7s   8s        9s      10s
                    V(X_U1.SOC)
                                                      Time




    •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                                   Copyright (C) Bee Technologies Inc. 2010                                19
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit
+ Constant Current


                                                                      Over Voltage Protection
                                                                      Circuit
    Short circuit current ISC
  depends on condition: SOL
                                                                     16.8V Clamp Circuit


                                 Constant
      Photovoltaic               Current                                       Lithium-Ion
      Module                     Control                                       Batteries Pack
                                 Circuit


     SX 330 (BP Solar)          Icharge=0.2C (880mA)                           PBT-BAT-0001 (BAYSUN)
     Vmp=16.8V                                                                 DC12.8~16.4V (4 cells)
     Pmax=30W                                                                  4400mAh




                                    Copyright (C) Bee Technologies Inc. 2010                            20
3.5 Constant Current PV Li-Ion Battery Charger Circuit

                                                                                    D1

          PARAMETERS:              PARAMETERS:
                                                                                    DMOD
          sol = 1                  rate = 0.2
                                   CAh = 4400m
                                                                                                  Voch
                                                                                                  16.8Vdc
                         pv                                                                      0
                                                                                   Hi
                                    OUT+
                                    OUT-
         +                                                                C1                 U1           0
                  U2                                                      1n        +    -   PBT-BAT-0001
                  SX330
                                    IN+
                                    IN-



        SX330     SOL = {sol}
                                                                      0                      TSCALE = 3600
                                   G1                                                        SOC1 = 0
                                   GVALUE
              0                    Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)



    •        Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
    •        “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.



                                        Copyright (C) Bee Technologies Inc. 2010                              21
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)

        100V




         80V




         60V




         40V



                                                                                        sol = 1.00
         20V
                                                                                        sol = 0.50
                                                                                        sol = 0.16
          0V
               0s    1s       2s     3s       4s        5s       6s           7s   8s        9s      10s
                    V(X_U1.SOC)
                                                      Time


    •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate
        current more than the constant charge rate (0.2A), battery can be fully charged in about 5
        hour.


                                   Copyright (C) Bee Technologies Inc. 2010                                22
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.


                                                                                    Over Voltage Protection
    The model contains 24hr.                                                        Circuit
   solar power data (example).
                                                                                  16.8V Clamp Circuit



  Photovoltaic                                                                      Lithium-Ion
  Module                                                                            Batteries Pack

                                 Low-Voltage                                      PBT-BAT-0001 (BAYSUN)
 SX 330 (BP Solar)               Shutdown                                         DC12.8~16.4V (4 cells)
 Vmp=16.8V                       Circuit                                          4400mAh
 Pmax=30W
                         Vopen= (V)
                         Vclose= (V)
                                                   DC/DC
                                                                                 DC Load
                                                   Converter

                                                 VIN=10~18V                     VIN = 5V
                                                 VOUT=5V                        IIN = 1.5A


                                     Copyright (C) Bee Technologies Inc. 2010                                 23
4.2 Short-Circuit Current vs. Time (24hr.)
                                                                                                The model contains
                                                                                               24hr. solar power data
                                                                                                     (example).
2.0A




1.6A
                                                                                              +

1.2A
                                                                                                     U2
                                                                                             SX330   SX330_24H_TS3600

0.8A




0.4A




  0A
       0s              4s          8s           12s            16s            20s      24s
            I(X_U1.I_I1)
                                                Time




            •    Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the
                 solar power profile (example) is included to the model.



                                            Copyright (C) Bee Technologies Inc. 2010                               24
4.3 PV-Battery System Simulation Circuit
Solar cell model with                                                                                                                                                            D1
 24hr. solar power                                                                                                                 Set initial battery
        data.                                                                                                                     voltage, IC=16.4, for                          DMOD

                                                                                                                                   convergence aid.                                             Voch
                                                                                                                                                                                                16.8Vdc
                  pv                                                                                                                                                                            0
                                  D2
                                                                                                                                                                               batt
                                  DMOD
                                                                                                                                                                   C1
       +                                                                                                                                                           100n                   U1           0
                                                                                       Low-Voltage Shutdown Circuit                                                IC = 16.4      +   -   PBT-BAT-0001
               U2
      SX330    SX330_24H_TS3600
                                         VON = 0.7                                                                                                                0                       TSCALE = 3600
                                         VOFF = 0.3                             E1                                                                                                        SOC1 = 70
                                         RON = 0.01                   Ronof f   EVALUE
           0                             ROFF = 10MEG                 100       IF(V(batt1)>V(dchth),5,0)                        Ronof f 1
                                             +                Lctrl                                                    batt1
                                                 +                              OUT+    IN+
                                   C3
                                         -       -                              OUT-    IN-       dchth                               100
                                   10n
                                         S2
                                                                Conof f
                                                                1n
                                                                                                                                                                                  SOC1 value is initial
                                                     0                                             OUT+     IN+
                                         S                      IC = 5
                                                                                                   OUT-     IN-
                                                                                                                                   Conof f 1                                     State Of Charge of the
                                                                                                                                   100n
                                         PARAMETERS:                                                 E2                                                                          battery, is set as 70%
                                         Lopen = 14                                                  EVALUE
                                                                                          IF( V(lctrl) > 0.25 ,Lopen ,Lclose)                                                        of full voltage.
                                         Lclose = 15.2                                                                            0



           Lopen value is load                                                                                                  DC/DC Converter                                                     7.5W Load
           shutdown voltage.                                                                                                                                                                        (5Vx1.5A).
                                                                                                                        PARAMETERS:
           Lclose value is load                                                                                         n=1                                             out_dc
            reconnect voltage                            IN                                                                                    OUT
                                                              G1                                       Iomax                                                                                I1
                                                                                                                        E3
                                                              IN+  OUT+                                                                                                              1.5Adc
                                                                                        IN+    OUT+                     IN+    OUT+
                                                              IN-  OUT-                 IN-    OUT-                     IN-    OUT-
                                                              GVALUE                    ecal_Iomax                      EVALUE
                                                                                        EVALUE                          IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
                                                                                                      0
                                                                                        n*V(%IN+, %IN-)*I(IN)/5

                                                         Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
                                                                                                                                                                                            0
                                                         DCDCコンバータの簡易モデル
                                         0                                                                          Simulation at 15W load, change I1 from 1.5A to 3A

 DCACコンバータの簡易モデルもあります。
                                                               Copyright (C) Bee Technologies Inc. 2010                                                                                                    25
4.3.1 Simulation Result (SOC1=100)

PV generated current
                              1.0A


                                0A
                                         I(pv)                                  PV module charge the battery
                 17.5V        2.0A
             1           2
Battery voltage
                 15.0V          0A
Battery current     >>
                 12.5V       -2.0A                                                                             Battery supplies current when solar
                                     1      V(batt)    2    I(U1:PLUS)                                         power drops.
                              100V
                               75V
Battery SOC                              SOC1=100                                            Fully charged,
                               50V
                                                                                             stop charging
                               25V
                                0V
                                         V(X_U1.SOC)
                  7.5V       600mA
DC output voltage
          1              2
                  5.0V
DC/DC input current          500mA
                  2.5V
                             SEL>>
                    0V       400mA
                                   0s                4s               8s               12s               16s       20s             24s
                                    1       V(out_dc) 2       I(IN)
                                                                         Charging
                                                                                      Time
                                                                         time


         •         C1: IC=16.4
         •         Run to time: 24s (24hours in real world)                             •     .Options ITL4=1000
         •         Step size: 0.01s



                                                           Copyright (C) Bee Technologies Inc. 2010                                                  26
4.3.2 Simulation Result (SOC1=70)

PV generated current
                                1.0A


                                  0A
                                            I(pv)                                       PV module charge the battery
             17.5V              2.0A
          1             2                           V=Lopen            (7.6750,15.199)
Battery voltage
             15.0V                0A
Battery current                                                                     V=Lclose
                                SEL>>                                (5.1850,14.000)
             12.5V              -2.0A                                                                                         Battery supplies current when solar
                                        1      V(batt)     2      I(U1:PLUS)                                                  power drops.
                                100V
                                             SOC1=70
                                 75V
Battery SOC                                                                                            Fully charged,
                                 50V
                                                                                                       stop charging
                                 25V    10.152m,69.889)
                                  0V
                                            V(X_U1.SOC)
               7.5V             1.0A                                  Shutdown
DC output voltage
           1                2
               5.0V
DC/DC input current             0.5A
               2.5V
                                  >>                                                Reconnect
                   0V             0A
                                     0s                    4s                  8s               12s                     16s         20s               24s
                                      1        V(out_dc)     2      I(IN)
                                                                               Charging
                                                                                                Time
                                                                               time

         •        C1: IC=16.4
         •        Run to time: 24s (24hours in real world)
                                                                                                •       .Options ITL4=1000
         •        Step size: 0.01s
         •        SKIPBP


                                                                 Copyright (C) Bee Technologies Inc. 2010                                                           27
4.3.3 Simulation Result (SOC1=30)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                      PV module charge the battery
                 17.5V            2.0A
             1            2                                              (7.6150,15.193)
Battery voltage                                   V=Lopen
                 15.0V              0A
Battery current                      >>                                               V=Lclose
                                                      (1.6328,14.004)                                                          Battery supplies current when solar
                 12.5V            -2.0A
                                          1      V(batt)     2      I(U1:PLUS)                                                 power drops.
                                  100V

Battery SOC                               (12.800m,29.854)                                              Fully charged,
                                                 SOC1=30                                                stop charging
                                  SEL>>
                                     0V
                                              V(X_U1.SOC)
                   7.5V           1.0A
DC output voltage
           1                  2
                   5.0V                                 Shutdown
DC/DC input current               0.5A
                   2.5V                                                               Reconnect
                                    >>
                     0V             0A
                                       0s                    4s                  8s                   12s                16s          20s               24s
                                        1        V(out_dc)     2      I(IN)       Charging time
                                                                                                  Time


         •         C1: IC=15
         •         Run to time: 24s (24hours in real world)
                                                                                                  •         .Options ITL4=1000
         •         Step size: 0.01s
         •         Total job time = 2s


                                                                   Copyright (C) Bee Technologies Inc. 2010                                                          28
4.3.4 Simulation Result (SOC1=10)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                      PV module charge the battery
                 17.5V            2.0A
             1            2                                              (7.6163,15.200)
Battery voltage
                 15.0V              0A
Battery current                   SEL>>                                               V=Lclose
                 12.5V            -2.0A                                                                                        Battery supplies current when solar
                                          1      V(batt)     2      I(U1:PLUS)                                                 power drops.
                                  100V

Battery SOC                                                                                             Fully charged,
                                              SOC1=10                                                   stop charging

                                    0V
                                              V(X_U1.SOC)
                   7.5V           1.0A
DC output voltage
           1                  2
                   5.0V                        Shutdown
DC/DC input current               0.5A
                   2.5V                                                               Reconnect
                                    >>
                     0V             0A
                                       0s                    4s                  8s                   12s                16s          20s               24s
                                        1        V(out_dc)     2      I(IN)       Charging time
                                                                                                  Time


         •         C1: IC=14.4
         •         Run to time: 24s (24hours in real world)                                       •         .Options RELTOL=0.01
         •         Step size: 0.01s                                                               •         .Options ITL4=1000
         •         SKIPBP


                                                                   Copyright (C) Bee Technologies Inc. 2010                                                          29
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                  PV module charge the battery
                 17.5V            2.0A                                                                                                  V=Lopen
             1            2
Battery voltage                                              V=Lopen (7.6086,15.200)
                                                         (3.8973,14.000)                                                          (20.473,14.003)
                 15.0V              0A
Battery current                   SEL>>
                 12.5V            -2.0A
                                          1      V(batt)    2    I(U1:PLUS)
                                                                                                                           Battery supplies current when solar
                                  100V
                                                                                                                           power drops.
                                   75V
Battery SOC                                   SOC1=100                                                    Fully charged,
                                   50V
                                                                                                          stop charging
                                   25V
                                    0V
                                              V(X_U1.SOC)
                   7.5V           2.0A
DC output voltage
           1                  2                                                                                                             Shutdown
                   5.0V                                           Shutdown
DC/DC input current               1.0A
                   2.5V
                                    >>
                     0V             0A
                                       0s                 4s                 8s             12s              16s                  20s             24s
                                        1        V(out_dc) 2       I(IN)
                                                                              Charging
                                                                                           Time
                                                                              time


         •         C1: IC=16.4
         •         Run to time: 24s (24hours in real world)                                  •     .Options ITL4=1000
         •         Step size: 0.001s



                                                                Copyright (C) Bee Technologies Inc. 2010                                                         30
4.3.4 Simulation Result (Example of Conclusion)

    The simulation start from midnight(time=0).
    The system supplies DC load 7.5W.

•    If initial SOC is 100%,
       – this system will never shutdown.
•    If initial SOC is 70%,
       – this system will shutdown after 5.185 hours (about 5:11AM.).
       – system load will reconnect again at 7:40AM (Morning).
•    If initial SOC is 30%,
       – this system will shutdown after 1.633 hours (about 1:38AM.).
       – system load will reconnect again at 7:37AM (Morning).
•    If initial SOC is 10%,
       – this system will start shutdown.
       – this system will reconnect again at 7:37AM (Morning).
•    With the PV generated current profile, battery will fully charged in about 4.25
     hours.



                               Copyright (C) Bee Technologies Inc. 2010                31
4.3.4 Simulation Result (Example of Conclusion)

The simulation start from midnight(time=0).
The system supplies DC load 15W.


• If initial SOC is 100%,
    – this system will shutdown after 3.897 hours (about 3:54AM.).
    – system load will reconnect again at 7:37AM (Morning).
    – this system will shutdown again at 8:28 PM (Night).
• With the PV generated current profile, battery will fully charged in about
  5.5 hours.




                          Copyright (C) Bee Technologies Inc. 2010             32
Bee Technologies Group




デバイスモデリング
スパイス・パーク(スパイスモデル・ライブラリー)
デザインキット
デバイスモデリング教材



【本社】                                                      本ドキュメントは予告なき変更をする場合がございます。
                                                          ご了承下さい。また、本文中に登場する製品及びサービス
株式会社ビー・テクノロジー                                             の名称は全て関係各社または個人の各国における商標
〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階                      または登録商標です。本原稿に関するお問い合わせは、
代表電話: 03-5401-3851                                        当社にご連絡下さい。
設立日:2002年9月10日
資本金:8,830万円
【子会社】                                                      お問合わせ先)
Bee Technologies Corporation (アメリカ)
Siam Bee Technologies Co.,Ltd. (タイランド)                     info@bee-tech.com
                      Copyright (C) Bee Technologies Inc. 2010                         33

More Related Content

What's hot

SPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKSPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKSPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARK
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARKSPICE MODEL of SG30SC6M (Professional Model) in SPICE PARK
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentationbinzhao2004
 
Models of Synaptic Transmission (2)
Models of Synaptic Transmission (2)Models of Synaptic Transmission (2)
Models of Synaptic Transmission (2)SSA KPI
 
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS204S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARKSPICE MODEL of XBS203V17R (Professional Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARK
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARKSPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARK
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3405 in SPICE PARK
SPICE MODEL of 2SC3405 in SPICE PARKSPICE MODEL of 2SC3405 in SPICE PARK
SPICE MODEL of 2SC3405 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARKSPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARK
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARKSPICE MODEL of SG10SC4M (Professional Model) in SPICE PARK
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARKSPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARK
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARKSPICE MODEL of IDT10S60C (Professional Model) in SPICE PARK
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKSPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKTsuyoshi Horigome
 

What's hot (18)

SPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKSPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
 
SPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKSPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARK
 
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARK
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARKSPICE MODEL of SG30SC6M (Professional Model) in SPICE PARK
SPICE MODEL of SG30SC6M (Professional Model) in SPICE PARK
 
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARKSPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
SPICE MODEL of XBS104S14R (Standard Model) in SPICE PARK
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
Models of Synaptic Transmission (2)
Models of Synaptic Transmission (2)Models of Synaptic Transmission (2)
Models of Synaptic Transmission (2)
 
SPICE Model of Fuse
SPICE Model of FuseSPICE Model of Fuse
SPICE Model of Fuse
 
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS204S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS204S17R (Standard Model) in SPICE PARK
 
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARKSPICE MODEL of XBS203V17R (Professional Model) in SPICE PARK
SPICE MODEL of XBS203V17R (Professional Model) in SPICE PARK
 
Colorimetry: LED Fundamentals
Colorimetry: LED FundamentalsColorimetry: LED Fundamentals
Colorimetry: LED Fundamentals
 
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARK
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARKSPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARK
SPICE MODEL of XBS024S15R-G (Standard Model) in SPICE PARK
 
SPICE MODEL of 2SC3405 in SPICE PARK
SPICE MODEL of 2SC3405 in SPICE PARKSPICE MODEL of 2SC3405 in SPICE PARK
SPICE MODEL of 2SC3405 in SPICE PARK
 
SPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARKSPICE MODEL of 2SA1774TLR in SPICE PARK
SPICE MODEL of 2SA1774TLR in SPICE PARK
 
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARK
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARKSPICE MODEL of SG10SC4M (Professional Model) in SPICE PARK
SPICE MODEL of SG10SC4M (Professional Model) in SPICE PARK
 
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARKSPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
SPICE MODEL of XBS304S17R (Standard Model) in SPICE PARK
 
SPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARKSPICE MODEL of 2SA1036KT146R in SPICE PARK
SPICE MODEL of 2SA1036KT146R in SPICE PARK
 
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARK
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARKSPICE MODEL of IDT10S60C (Professional Model) in SPICE PARK
SPICE MODEL of IDT10S60C (Professional Model) in SPICE PARK
 
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKSPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
 

Similar to リチウムイオン電池シミュレーションセミナー

PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションTsuyoshi Horigome
 
PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationTsuyoshi Horigome
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)spicepark
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)spicepark
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)spicepark
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpicespicepark
 
鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデルTsuyoshi Horigome
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKTsuyoshi Horigome
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILPTsuyoshi Horigome
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKTsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKTsuyoshi Horigome
 
GP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedGP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedAkkuShop.de
 

Similar to リチウムイオン電池シミュレーションセミナー (20)

PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System Simulation
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル
 
Manual dcout web
Manual dcout webManual dcout web
Manual dcout web
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARK
 
Manual acout web
Manual acout webManual acout web
Manual acout web
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILP
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARK
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARK
 
GP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedGP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt Datasheed
 
PUTのスパイスモデル
PUTのスパイスモデルPUTのスパイスモデル
PUTのスパイスモデル
 

More from spicepark

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社spicepark
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)spicepark
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)spicepark
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)spicepark
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)spicepark
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービスspicepark
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料spicepark
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料spicepark
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)spicepark
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎spicepark
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図spicepark
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)spicepark
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)spicepark
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料spicepark
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)spicepark
 

More from spicepark (20)

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービス
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
 

Recently uploaded

Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 

Recently uploaded (20)

Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 

リチウムイオン電池シミュレーションセミナー

  • 1. リチウムイオン電池シミュレーションセミナー 株式会社ビー・テクノロジー http://www.bee-tech.com/ horigome@bee-tech.com Copyright (C) Bee Technologies Inc. 2010 1
  • 2. EDA Designer Technology Device of Model Simulation Copyright (C) Bee Technologies Inc. 2010 2
  • 3. モデル デザインキット 回路方式のテンプレート 回路解析シミュレータ PSpice (ABMライブラリーが豊富) ABM=Analog Behavior Model Copyright (C) Bee Technologies Inc. 2010 3
  • 4. http://www.bee-tech.com/ Copyright (C) Bee Technologies Inc. 2010 4
  • 7. バッテリーのスパイスモデルの推移 放電特性 放電特性 充電特性 付加抵抗 付加抵抗 + 一定 可変 放電特性 リチウムイオン電池 ニッケル水素電池 鉛蓄電池 Copyright (C) Bee Technologies Inc. 2010 7
  • 8. Copyright (C) Bee Technologies Inc. 2010 8
  • 9. Design Kit PV Li-Ion Battery System Copyright (C) Bee Technologies Inc. 2010 9
  • 10. 1.1 Lithium-Ion Batteries Pack Specification BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) Copyright (C) Bee Technologies Inc. 2010 10
  • 11. 1.2 Discharge Time Characteristics 18V D1 DMOD PARAMETERS: Voch 16V rate = 1 16.8Vdc CAh = 4400m 0 Hi 0.2C ( 880 mA ) 0 C1 U1 14V 0.5C ( 2200 mA ) IN+ OUT+ 1n + - PBT-BAT-0001 IN- OUT- G1 0 TSCALE = 3600 GVALUE SOC1 = 100 1C ( 4400 mA ) limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) 12V TSCALE=3600 means 0 time Scale (Simulation time : Real time) is Batteries Pack Model Parameters 1:3600 10V NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% 8V TSCALE (time scale) , simulation : real time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 1 : 3600s or V(Hi) 1s : 1h Time Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) Copyright (C) Bee Technologies Inc. 2010 11
  • 12. 1.3 Single Cell Discharge Characteristics Single cell Measurement Simulation 4.50 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) 4.00 VOLTAGE [V] 3.50 3.00 2.50 2.00 100 90 80 70 60 50 40 30 20 10 0 -10 SOC [%] • Single cell discharge characteristics are compared between measurement data and simulation data. Copyright (C) Bee Technologies Inc. 2010 12
  • 13. 1.4 Charge Time Characteristics SOC [%] D1 100V PARAMETERS: rate = 0.2 DMOD CAh = 4400m 80V G1 Voch GVALUE 16.8Vdc Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) 0 Hi 60V OUT+ OUT- C1 U1 0 40V 1n + - PBT-BAT-0001 IN+ IN- 0 TSCALE = 3600 20V SOC1 = 0 Vin 20.5Vdc SEL>> 0V Vbatt [V] ICharge [A] V(X_U1.SOC) 0 18V 5.0A 1 2 Batteries Pack Model Parameters 16V 4.0A NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA 14V 3.0A SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 12V 2.0A 1 : 3600s or 1s : 1h 10V 1.0A Charger Adaptor >> 8V 0A Input Voltage = 20.5 Vdc 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s Input Current = 880 mA(max.) 1 V(Hi) 2 I(U1:PLUS) Time Copyright (C) Bee Technologies Inc. 2010 13
  • 14. 2.1 Solar Cells Specification BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] 502mm • Short-circuit current (Isc)...........1.94[A] • Open-circuit voltage(Voc)...........21.0[V] 595mm Copyright (C) Bee Technologies Inc. 2010 14
  • 15. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation 2.5A SOL=1 2.0A Current (A) 1.5A SOL=0.5 + 1.0A U1 0.5A SOL=0.16 SX330 0A SX330 SOL = 1 I(Isence) 40W SOL=1 30W Power (W) 20W Parameter, SOL is added as SOL=0.5 normalized incident radiation, 10W SOL=0.16 where SOL=1 for AM1.5 conditions SEL>> 0W 0V 5V 10V 15V 20V 25V 30V I(Isence)* V(V1:+) V_V1 Voltage (V) Copyright (C) Bee Technologies Inc. 2010 15
  • 16. 3. Solar Cell Battery Charger • Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage 100V (Vmp) nears the batteries pack charging voltage. 80V • PBT-BAT-0001 (Li-ion batteries pack) 60V – Charging time is approximately 5 hours with charging rate 0.2C or 880mA 40V – Voltage during charging with 0.2C is between 14.7 to 16.9 V 20V 0V V(X_U1.SOC) 18V 5.0A 1 2 14.9 V 16V 4.0A 14.7 V 14V 3.0A 12V 2.0A 0.2C or 880mA 10V 1.0A SEL>> 8V 0A 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 1 V(Hi) 2 I(U1:PLUS) Time Copyright (C) Bee Technologies Inc. 2010 16
  • 17. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack SX 330 (BP Solar) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh Copyright (C) Bee Technologies Inc. 2010 17
  • 18. 3.2 PV Li-Ion Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 16.8Vdc pv 0 Hi + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 SX330 SOL = {sol} 0 TSCALE = 3600 SOC1 = 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. Copyright (C) Bee Technologies Inc. 2010 18
  • 19. 3.3 Charging Time Characteristics vs. Weather Condition 100V 80V 60V 40V sol = 1.00 20V sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. Copyright (C) Bee Technologies Inc. 2010 19
  • 20. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Constant Photovoltaic Current Lithium-Ion Module Control Batteries Pack Circuit SX 330 (BP Solar) Icharge=0.2C (880mA) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh Copyright (C) Bee Technologies Inc. 2010 20
  • 21. 3.5 Constant Current PV Li-Ion Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD sol = 1 rate = 0.2 CAh = 4400m Voch 16.8Vdc pv 0 Hi OUT+ OUT- + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 IN+ IN- SX330 SOL = {sol} 0 TSCALE = 3600 G1 SOC1 = 0 GVALUE 0 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. Copyright (C) Bee Technologies Inc. 2010 21
  • 22. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 100V 80V 60V 40V sol = 1.00 20V sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. Copyright (C) Bee Technologies Inc. 2010 22
  • 23. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection The model contains 24hr. Circuit solar power data (example). 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack Low-Voltage PBT-BAT-0001 (BAYSUN) SX 330 (BP Solar) Shutdown DC12.8~16.4V (4 cells) Vmp=16.8V Circuit 4400mAh Pmax=30W Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=10~18V VIN = 5V VOUT=5V IIN = 1.5A Copyright (C) Bee Technologies Inc. 2010 23
  • 24. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 2.0A 1.6A + 1.2A U2 SX330 SX330_24H_TS3600 0.8A 0.4A 0A 0s 4s 8s 12s 16s 20s 24s I(X_U1.I_I1) Time • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. Copyright (C) Bee Technologies Inc. 2010 24
  • 25. 4.3 PV-Battery System Simulation Circuit Solar cell model with D1 24hr. solar power Set initial battery data. voltage, IC=16.4, for DMOD convergence aid. Voch 16.8Vdc pv 0 D2 batt DMOD C1 + 100n U1 0 Low-Voltage Shutdown Circuit IC = 16.4 + - PBT-BAT-0001 U2 SX330 SX330_24H_TS3600 VON = 0.7 0 TSCALE = 3600 VOFF = 0.3 E1 SOC1 = 70 RON = 0.01 Ronof f EVALUE 0 ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 + Lctrl batt1 + OUT+ IN+ C3 - - OUT- IN- dchth 100 10n S2 Conof f 1n SOC1 value is initial 0 OUT+ IN+ S IC = 5 OUT- IN- Conof f 1 State Of Charge of the 100n PARAMETERS: E2 battery, is set as 70% Lopen = 14 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) of full voltage. Lclose = 15.2 0 Lopen value is load DC/DC Converter 7.5W Load shutdown voltage. (5Vx1.5A). PARAMETERS: Lclose value is load n=1 out_dc reconnect voltage IN OUT G1 Iomax I1 E3 IN+ OUT+ 1.5Adc IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 0 DCDCコンバータの簡易モデル 0  Simulation at 15W load, change I1 from 1.5A to 3A DCACコンバータの簡易モデルもあります。 Copyright (C) Bee Technologies Inc. 2010 25
  • 26. 4.3.1 Simulation Result (SOC1=100) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 Battery voltage 15.0V 0A Battery current >> 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V 75V Battery SOC SOC1=100 Fully charged, 50V stop charging 25V 0V V(X_U1.SOC) 7.5V 600mA DC output voltage 1 2 5.0V DC/DC input current 500mA 2.5V SEL>> 0V 400mA 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s Copyright (C) Bee Technologies Inc. 2010 26
  • 27. 4.3.2 Simulation Result (SOC1=70) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 V=Lopen (7.6750,15.199) Battery voltage 15.0V 0A Battery current V=Lclose SEL>> (5.1850,14.000) 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V SOC1=70 75V Battery SOC Fully charged, 50V stop charging 25V 10.152m,69.889) 0V V(X_U1.SOC) 7.5V 1.0A Shutdown DC output voltage 1 2 5.0V DC/DC input current 0.5A 2.5V >> Reconnect 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • SKIPBP Copyright (C) Bee Technologies Inc. 2010 27
  • 28. 4.3.3 Simulation Result (SOC1=30) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 (7.6150,15.193) Battery voltage V=Lopen 15.0V 0A Battery current >> V=Lclose (1.6328,14.004) Battery supplies current when solar 12.5V -2.0A 1 V(batt) 2 I(U1:PLUS) power drops. 100V Battery SOC (12.800m,29.854) Fully charged, SOC1=30 stop charging SEL>> 0V V(X_U1.SOC) 7.5V 1.0A DC output voltage 1 2 5.0V Shutdown DC/DC input current 0.5A 2.5V Reconnect >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • C1: IC=15 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • Total job time = 2s Copyright (C) Bee Technologies Inc. 2010 28
  • 29. 4.3.4 Simulation Result (SOC1=10) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 (7.6163,15.200) Battery voltage 15.0V 0A Battery current SEL>> V=Lclose 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V Battery SOC Fully charged, SOC1=10 stop charging 0V V(X_U1.SOC) 7.5V 1.0A DC output voltage 1 2 5.0V Shutdown DC/DC input current 0.5A 2.5V Reconnect >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • C1: IC=14.4 • Run to time: 24s (24hours in real world) • .Options RELTOL=0.01 • Step size: 0.01s • .Options ITL4=1000 • SKIPBP Copyright (C) Bee Technologies Inc. 2010 29
  • 30. 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A V=Lopen 1 2 Battery voltage V=Lopen (7.6086,15.200) (3.8973,14.000) (20.473,14.003) 15.0V 0A Battery current SEL>> 12.5V -2.0A 1 V(batt) 2 I(U1:PLUS) Battery supplies current when solar 100V power drops. 75V Battery SOC SOC1=100 Fully charged, 50V stop charging 25V 0V V(X_U1.SOC) 7.5V 2.0A DC output voltage 1 2 Shutdown 5.0V Shutdown DC/DC input current 1.0A 2.5V >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.001s Copyright (C) Bee Technologies Inc. 2010 30
  • 31. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 7.5W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). • If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). • If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). • With the PV generated current profile, battery will fully charged in about 4.25 hours. Copyright (C) Bee Technologies Inc. 2010 31
  • 32. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 15W. • If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). • With the PV generated current profile, battery will fully charged in about 5.5 hours. Copyright (C) Bee Technologies Inc. 2010 32
  • 33. Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー) デザインキット デバイスモデリング教材 【本社】 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス 株式会社ビー・テクノロジー の名称は全て関係各社または個人の各国における商標 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 または登録商標です。本原稿に関するお問い合わせは、 代表電話: 03-5401-3851 当社にご連絡下さい。 設立日:2002年9月10日 資本金:8,830万円 【子会社】 お問合わせ先) Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) info@bee-tech.com Copyright (C) Bee Technologies Inc. 2010 33