Extinction Coefficients and Purity
of Single-walled Carbon Nanotubes


                   Bin Zhao


             Haddon R...
Applications of Carbon nanotubes
                       the needs of high purity


                                       ...
a




b      Purity evaluation by using
      electron microscopy (SEM)

    Give non-quantitative
     evaluation of the...
Energy of Interband transition of SWNTs




                                                                              ...
Solution phase near-IR spectra of SWNT samples



               0.40                                              a

    ...
Purity Evaluation of As-Prepared Single-Walled
    Carbon Nanotube Soot by Use of Solution-Phase
                 Near-IR ...
0.1
                     R                           X
                            AA(S,R)                        AA(S,X)
...
Controlled Purification of Single-Walled Carbon
             Nanotube Films by Use of Selective Oxidation and
            ...
AP-SWNT                                        Oxidized SWNT
              0.08                                           ...
Nitric Acid Purification of
                         Single-Walled Carbon Nanotubes

                   80

              ...
Extinction coefficient study of single-walled carbon
   nanotubes and other carbonaceous materials

   Solution phase NIR...
Absorptivity of Functionalized
Dissolution of small diameter
                                Single-Walled Carbon Nanotube...
The NIR spectra of carbonaceous materials
              1.0
                    carbon black              MWNT            ...
Electronic structures of SWNTs
                     produced by different methods


                                      ...
Purity of EA prepared SWNTs (against R-SWNT)
      Sample                 AA(S)                  AA(T)                    ...
(a)           (b)




      P1-EA         P2-EA
The purity of LO SWNTs
                              0.20

Method 1:                     0.15
                            ...
0.20
Method 2:
                           0.15
                                    AA(S, R)
                           0.1...
Purity of carbonaceous materials (against R-SWNT)


                                 Purity
Sample      AA(S)   AA(T)
    ...
0.35


             0.30                            M11

             0.25          S22
Absorbance




             0.20

...
0.35


             0.30                                M11

             0.25          S22
Absorbance




             0....
The applicability of Beer’s law of carbonaceous materials



                                            AA
effective spec...
50
                                                                               AP1-EA
                                 ...
50
                                                                               AP1-EA
                                 ...
50
                                                                               AP1-EA
                                 ...
50
                                                                               AP1-EA
                                 ...
Beer’s Law: A =   C  l

                                                                          C = 0.01mg/mL 8.3  ...
A(T)=A(S) + A(N) + A(I)
                      C(T)=C(NS) + C(I)

                      A(I) = (I)  C(I)
                ...
0.34


       0.32


       0.30

A(T)
       0.28


       0.26


       0.24


       0.22

          0.00     0.01   0....
the gradient is [(N) + (S) – (I)]  (S) -1  2




   (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
Conclusion

 Solution phase NIR is a powerful tool to assess
  carbonaceous purity of SWNTs.

 The Effective extinction ...
Acknowledgement

Haddon research group


Dr. Robert C. Haddon (advisor)

Dr. Mikhail E. Itkis
    Hui Hu
Dr. Rahul Sen

Da...
Upcoming SlideShare
Loading in …5
×

227th ACS BZ Oral Presentation

731 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
731
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

227th ACS BZ Oral Presentation

  1. 1. Extinction Coefficients and Purity of Single-walled Carbon Nanotubes Bin Zhao Haddon Research Group Departments of Chemistry and Chemical & Environmental Engineering Center for Nanoscale Science and Engineering University of California, Riverside
  2. 2. Applications of Carbon nanotubes the needs of high purity High strength light weight composites Nano-electronic devices carbon nanotubes AFM probes biology Hydrogen storage fuel cells Field emission devices
  3. 3. a b Purity evaluation by using electron microscopy (SEM) Give non-quantitative evaluation of the purity of SWNTs. c Detect samples at 10-12 gram scale.
  4. 4. Energy of Interband transition of SWNTs M11 1 S22 energy (eV) 0 Semiconducting S11 S11 S22 SWNTs Absorbance AA(N) -1 DOS (a.u.) AA(I) 1 energy (eV) metallic 0 M11 SWNTs -1 DOS (a.u.) AA(S) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 (eV)
  5. 5. Solution phase near-IR spectra of SWNT samples 0.40 a 0.35 b 0.30 Absorbance 0.25 c 0.20 0.15 0.10 0.05 0.00 8000 10000 12000 14000 16000 18000 -1 Wavenumber (cm )
  6. 6. Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy reference sample (R) M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, H.Hu, B. Zhao, and R. C. Haddon* Nano lett. 2003, 3, 309.
  7. 7. 0.1 R X AA(S,R) AA(S,X) Absorbance 0.0 0.4 AA(T,X) AA(T,R) 0.2 SWNTs: 67% REFERENCE (R) CARBONACEOUS IMPURITIES: 33% 0.0 8000 10000 12000 8000 10000 12000 -1 Wavenumber (cm ) AA(S, R) AA(S, X) = 0.141 = 0.095 AA(T, R) AA(T, X) Purity of X against R = (0.095/0.141)*100% =67%
  8. 8. Controlled Purification of Single-Walled Carbon Nanotube Films by Use of Selective Oxidation and Near-IR Spectroscopy 0.12 0.12 M11 0.10 0.10 S22 Absorbance 0.08 0.08 0.06 S11 0.06 0.04 0.04 0.02 O2-292oC-4h 0.02 0.00 0.00 5000 10000 15000 5000 10000 15000 -1 -1 Wavenumber (cm ) Wavenumber (cm ) AP-SWNT Oxidized SWNT R. Sen, S. M. Rickard, M. E. Itkis, and R. C. Haddon* Chem. Mater. 2003, 15, 4273.
  9. 9. AP-SWNT Oxidized SWNT 0.08 0.08 0.06 0.06 Absorbance Absorbance 0.04 0.04 AA(T)=278 0.02 0.02 AA(T)=67 0.00 0.00 0.008 0.008 0.004 0.004 AA(S)=17.7 AA(S) =12.8 0.000 0.000 8000 9000 10000 11000 8000 9000 10000 11000 -1 -1 Wavenumber (cm ) Wavenumber (cm ) AA(S)/AA(T) = 0.0635 AA(S)/AA(T) = 0.191 AA(S, OX)/AA(T, OX) Relative Purity (RP) = = 3.0 AA(S, AP)/AA(T, AP)
  10. 10. Nitric Acid Purification of Single-Walled Carbon Nanotubes 80 60 3M/12h 3M/24h AP 3M/48h 7M/6h 7M/12h AP-SWNT Weight% 40 16M/6h 20 16M/12h 0 20 Weight loss% 40 7M/6h 60 SWNT weight% Metal weight% 80 Carbonaceous impurities weight% 100 Lost Weight% H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon 15M/12h J. Phys. Chem. B. 2003, 107, 13838.
  11. 11. Extinction coefficient study of single-walled carbon nanotubes and other carbonaceous materials  Solution phase NIR is a powerful tool to assess carbonaceous purity of SWNTs.  Demonstration of the applicability of Beer’s law of carbonaceous materials.  Effective extinction coefficient study of SWNTs and carbonaceous materials – a way to estimate the universal purity of SWNTs.
  12. 12. Absorptivity of Functionalized Dissolution of small diameter Single-Walled Carbon Nanotubes single-wall carbon nanotubes in Solution in organic solvents J. A. Bahr, et. al. B. Zhou, et. al. Chem. Comm. 2001, 193. JPCB 2003, 107, 13588.
  13. 13. The NIR spectra of carbonaceous materials 1.0 carbon black MWNT AP-SWNT (EA) 0.8 Absorbance 0.6 0.4 0.2 0.0 10000 15000 20000 25000 10000 15000 20000 25000 10000 15000 20000 25000 30000 1.0 purified SWNT (EA) AP-SWNT (LO) AP-SWNT (HC) Absorbance 0.8 0.6 0.4 0.2 0.0 10000 15000 20000 25000 10000 15000 20000 25000 10000 15000 20000 25000 30000 -1 Wavenumber (cm )
  14. 14. Electronic structures of SWNTs produced by different methods HC LO Absrobance (a.u.) EA S11 S11 S22 M11 S11 S22 M11 S22 M11 1 2 3 Energy (eV)
  15. 15. Purity of EA prepared SWNTs (against R-SWNT) Sample AA(S) AA(T) Purity (% of R-SWNT) AP1-EA 101.9 1149.5 63 AP2-EA 50.2 962.2 37 AP3-EA 113.9 1162 70 AP4-EA 13.7 892.1 11 AP5-EA 60.4 1109.8 39 AP6-EA 43.2 960.1 32 P1-EA 158.5 971.6 116 P2-EA 252.3 1348.1 133 P3-EA 208.8 1304 113 133 140 116 113 120 100 Purity (%) 70 80 63 60 39 37 32 40 11 20 0 -EA -EA -EA A A A A A A 1-E 2-E 3-E 4-E 5-E 6-E P1 P2 P3 AP AP AP AP AP AP
  16. 16. (a) (b) P1-EA P2-EA
  17. 17. The purity of LO SWNTs 0.20 Method 1: 0.15 AA(S, R) 0.10 Absorbance 0.05 AA(B, R) 0.00 AA(S, LO) 0.15 0.10 0.05 AA(B, LO) 0.00 8000 9000 10000 11000 12000 13000 -1 Wavenumber (cm ) AA(S, R) AA(S, LO) = 0.141 = 0.066 AA(S, R) + AA(B, R) AA(S, LO) + AA(B, LO) Purity of LO-SWNT = (0.066/0.141)  100% = 47%
  18. 18. 0.20 Method 2: 0.15 AA(S, R) 0.10 0.05 Absorbance AA(B, R) 0.00 AA(S, LO) 0.15 0.10 0.05 AA(B, LO) 0.00 8000 9000 10000 11000 12000 13000 -1 Wavenumber (cm ) AA(S, R) AA(S, LO) = 0.096 = 0.046 AA(S, R) + AA(B, R) AA(S, LO) + AA(B, LO) Purity of LO-SWNT = (0.046/0.096)  100% = 48%
  19. 19. Purity of carbonaceous materials (against R-SWNT) Purity Sample AA(S) AA(T) (% of R-SWNT) AP1-EA 101.9 1149.5 63 133 AP2-EA 50.2 962.2 37 140 116 113 AP3-EA 113.9 1162 70 120 101 AP4-EA 13.7 892.1 11 100 Purity (%) AP5-EA 60.4 1109.8 39 80 70 66 AP6-EA 43.2 960.1 32 63 59 60 47 P1-EA 158.5 971.6 116 39 37 P2-EA 252.3 1348.1 133 32 40 P3-EA 208.8 1304 113 11 20 1 AC 1 831.4 <1 0 HC 138.5 2127.4 49~69 C -EA -EA -EA O A A A A A A HC AC LO P-H 1-E 2-E 3-E 4-E 5-E 6-E P-L P-HC 165.2 2078.7 55~76 P1 P2 P3 AP AP AP AP AP AP LO 62.6 1252.2 48~48 P-LO 85.4 803.8 92~110
  20. 20. 0.35 0.30 M11 0.25 S22 Absorbance 0.20 0.15 0.10 8000 10000 12000 14000 16000 -1 wavenumber (cm )
  21. 21. 0.35 0.30 M11 0.25 S22 Absorbance 0.20 AA(S) 0.15 AA(N) AA(T) 0.10 AA(I) 8000 10000 12000 14000 16000 -1 wavenumber (cm ) AA(T)=AA(S) + AA(N) + AA(I)
  22. 22. The applicability of Beer’s law of carbonaceous materials AA effective spectral absorbance: A = spectral width of cutoff A(T) = A(S) + A(N) + A(I) C(T) = C(NS) + C(I) A(I) = (I)  C(I)  l A(N) = (N)  C(NS)  l A(S) = (S)  C(NS)  l
  23. 23. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA 30 20 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  24. 24. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT 20 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  25. 25. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT HC(S11) HC(S22) 20 P-HC(S11) P-HC(S22) 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  26. 26. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT HC(S11) HC(S22) 20 P-HC(S11) P-HC(S22) LO P-LO 10 AP-C60 P-C60 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  27. 27. Beer’s Law: A =   C  l C = 0.01mg/mL 8.3  10-4 mol/L 500 496 487 450 437 405 400 391 345 349  (S)  (T) 382 Sample 386 350 (Lmol-1cm-1) (Lmol-1cm-1) 364 333 AP1-EA 31 345 289 AP2-EA 15 289 300 AP3-EA 34 288 292 349 AP4-EA 268 4 268 AP5-EA 18 333 301 250 AP6-EA 13 288 261 P1-EA 48 292 P2-EA 76 405 200 P3-EA 63 391 AC 0 261 150 CB - 437 MWNT - 364 194 HC (S11) 118 382 100 HC (S22) 32 496 143 P-HC (S11) 129 386 50 P-HC (S22) 39 487 129 31 LO 15 301 118 34 15 P-LO 20 194 76 0 4 18 48 63 AP-C60 - 13 143 A A (T) P-C60 - 2 1-E A 0.1 2-E A 32 3-E A 4-E A 39 AP 5-E -EA AP 6-E -EA AP -EA 2 AP AC AP 15 20 P1 AP CB (S) T P2 P3 N 1) 2) 1) MW (S1 2) (S2 S1 LO S2 O HC C( 60 P-L HC 60 C( -C P-H P-C P-H AP
  28. 28. A(T)=A(S) + A(N) + A(I) C(T)=C(NS) + C(I) A(I) = (I)  C(I) A(N) = (N)  C(NS) A(S) = (S)  C(NS) A(T) = (I)  C(I) + [(N) + (S)]  C(NS) A(T) = (I)  C(T) + [(N) + (S) – (I)]  (S) -1  A(S) the intercept is (I)  C(T) the gradient is [(N) + (S) – (I)]  (S) -1.
  29. 29. 0.34 0.32 0.30 A(T) 0.28 0.26 0.24 0.22 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 A(S) C = 0.01mg/mL 8.3  10-4 mol/L (I) = 270  10 L mol-1 cm-1
  30. 30. the gradient is [(N) + (S) – (I)]  (S) -1  2 (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
  31. 31. Conclusion  Solution phase NIR is a powerful tool to assess carbonaceous purity of SWNTs.  The Effective extinction coefficient of EA produced SWNTs falls in the range of 268 ~ 391 L mol-1 cm-1 .  The effective extinction coefficient of carbonaceous impurities in SWNTs is 270  10 L mol-1 cm-1 (calculation).  The relationship of extinction coefficient of carbonaceous contents in EA-SWNTs is: (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
  32. 32. Acknowledgement Haddon research group Dr. Robert C. Haddon (advisor) Dr. Mikhail E. Itkis Hui Hu Dr. Rahul Sen Daniel Perea Sandip Niyogi Dr. Elena Bekyarova James Love Jingtao Zhang Shawna M. Rickard

×