Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
1.リチウムイオン電池のシンプルモデル2.ニッケル水素電池のシンプルモデル3.鉛蓄電池のシンプルモデル4.太陽電池のSPICEモデル解説5.太陽光発電システム全体シミュレーション6.環境発電のシミュレーション7.社会インフラ系シミュレーションに...
マルツエレックのサービス様々なシチュエーションでお客様の【ものづくり】をサポート致します回路設計の技術サポート回路シミュレーションのアプローチで御社の回路設計をサポートいたします。部品調達大量調達、中止品調達お任せ下さい!WebShopと12店...
Parameter SettingsC is the amp-hour battery capacity [Ah]– e.g. C = 0.3, 1.4, or 2.8 [Ah]NS is the number of cells in seri...
• The battery information refer to a battery part number LIR18500 of EEMB BATTERY.Copyright (C) Bee Technologies 2013 4+ -...
Time0s 50s 100s 150s 200s1 V(HI) 2 I(IBATT)3.0V3.2V3.4V3.6V3.8V4.0V4.2V4.4V10A0.4A0.6A0.8A1.0A1.2A1.4A2SEL>>SEL>>V(X_U1.SO...
PARAMETERS:rate = 0.5CAh = 1.4N = 10Vin5VIBATT+ -U1LI-ION_BATTERYSOC = 0NS = {N}TSCALE = 60C = 1.40C110nHIIN-OUT+OUT-IN+G1...
Time0s 100s 200s 300s 400sV(HI)2.6V2.8V3.0V3.2V3.4V3.6V3.8V4.0V4.2V4.4V0+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 60C = 1.4...
0+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 60C = 1.4HI00IN-OUT+OUT-IN+G1limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )PARAMETERS:r...
+ -U1LI-ION_BATTERYSOC = 1NS = 4TSCALE = 60C = 4.4• The battery information refer to a battery part number PBT-BAT-0001 of...
Time0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s1 V(HI) 2 I(IBATT)12V13V14V15V16V17V18V10A0.8A1.2A1.6A2.0A2.4A2>>V(X_U1.SOC)0V0.2V0.4...
PARAMETERS:rate = 0.2CAh = 4.4N = 40Vin20.5VIBATT+ -U1LI-ION_BATTERYSOC = 0NS = {N}TSCALE = 3600C = 4.40C110nHIIN-OUT+OUT-...
Time0s 0.4s 0.8s 1.2s 1.6s 2.0sV(HI)10V11V12V13V14V15V16V17V18VCopyright (C) Bee Technologies 2013 12• Charging Voltage: 1...
0+ -U1LI-ION_BATTERYSOC = 1NS = 4TSCALE = 3600C = 4.4HI00IN-OUT+OUT-IN+G1limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )PARAMETERS...
-+U1NI-MH_BATTERYC = 1350MTSCALE = 1NS = 1SOC = 1C is the amp-hour battery capacity [Ah]– e.g. C = 0.3, 1.4, or 2.8 [Ah]NS...
-+U1NI-MH_BATTERYC = 1350MTSCALE = 1NS = 1SOC = 1• The battery information refer to a battery part number HF-A1U of SANYO....
Time0s 10s 20s 30s 40s 50s 60s 70s 80sV(HI)1.0V1.1V1.2V1.3V1.4V1.5V1.6V1.7V1.8VCopyright (C) Bee Technologies 2013 16• Cha...
-+U1NI-MH_BATTERYC = 1350MTSCALE = 60NS = 1SOC = 10.91.01.11.21.31.41.51.60 250 500 750 1000 1250 1500CellVoltage[V]Discha...
C is the amp-hour battery capacity [Ah]– e.g. C = 1, 50, or 100 [Ah]NS is the number of cells in series– e.g. NS=1 for 1 c...
• The battery information refer to a battery part number MSE Series of GS YUASA.Copyright (C) Bee Technologies 2013 19Batt...
Copyright (C) Bee Technologies 2013 20• Charging Time: 24 [hours] @ 0.1C10A(hour)Measurement SimulationSOC=0 means battery...
Copyright (C) Bee Technologies 2013 21(hour)Measurement SimulationSOC=1 means batterystart from 100% ofcapacity0.1C10A0.23...
22Copyright (C) Bee Technologies 2013RsRsh電流源 IDC ダイオード 抵抗抵抗4.太陽電池のSPICEモデル解説
23Copyright (C) Bee Technologies 2013太陽電池モデルのシミュレーション結果V_V10V 5V 10V 15V 20V 25V 30VI(Isence)* V(V1:+)0W50W100W150W200W(16...
24Copyright (C) Bee Technologies 2013太陽電池モデルの出力特性の解析精度+Symbol Measurement Simulation %ErrorIsc 7.4000 7.3196 -1.086Voc 21....
25Copyright (C) Bee Technologies 2013日射データの過渡的なデータがある場合日射量時間電流値換算4.太陽電池のSPICEモデル解説気象条件NEDOのMONSOLA05(801)データ
26Copyright (C) Bee Technologies 2013日射データの過渡的なデータがある場合RsRsh電流源 IDC ダイオード 抵抗抵抗I1電流源IPWL4.太陽電池のSPICEモデル解説
27Copyright (C) Bee Technologies 20134.太陽電池のSPICEモデル解説
28Copyright (C) Bee Technologies 20134.太陽電池のSPICEモデル解説
Concept of Simulation PV Li-Ion Battery System in 24hr.Copyright (C) Bee Technologies 2013 29Lithium-IonBatteries PackPhot...
Short-circuit current vs. time characteristics of photovoltaic module SX330 for24hours as the solar power profile (example...
PV-Battery System Simulation CircuitCopyright (C) Bee Technologies 2013 31Ronof f 1100dchthLow-Voltage Shutdown CircuitDC/...
Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V1400mA500mA600mA2SEL>>SEL>>V(X_U1.SOC)0V25V50V75V100V1 V(batt...
Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V25V50V75V100V10.152m,69.889)1 V(ba...
Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V100VSEL>>(12.800m,29.854)1 V(batt)...
Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V100V1 V(batt) 2 I(U1:PLUS)12.5V15....
Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A1.0A2.0A2>>V(X_U1.SOC)0V25V50V75V100V1 V(batt) 2 I(U1:PLUS...
6.環境発電のシミュレーションLTC3105は、225mVの低い入力電圧で動作可能な高効率の昇圧DC/DCコンバータです。250mVでの起動が可能で、最大電力点コントローラ (MPPC)を搭載しているので、光起電力電池、TEG (熱電発電機)、...
Case1: Voltage Source(v1) with LTC3105 Simulation Result • Total elapsed time: 410.938sec. ≈ 7min.Input VoltageOutput Vol...
Solar Cell Specification• The information refer to a part number 19_12_93 of CONRAD ELECTRONIC.PARAMETER VALUEPmax (W) 0.4...
Copyright (C) Bee Technologies 2013 40Case2: MPPC Response to Input Source (SOL=100%) Simulation Circuit and SettingOutpu...
Copyright (C) Bee Technologies 2013 41Case2: MPPC Response to Input Source (SOL=100%) Simulation Result• Total elapsed ti...
Copyright (C) Bee Technologies 2013 42Case3: MPPC Response to Input Source (SOL=50%) Simulation Circuit and SettingOutput...
Copyright (C) Bee Technologies 2013 43Case3: MPPC Response to Input Source (SOL=50%) Simulation Result • Total elapsed ti...
Copyright (C) Bee Technologies 2013 44Case4: Maximum power point tracking (SOL=30%) Simulation Circuit and SettingOutput ...
Copyright (C) Bee Technologies 2013 45Case4: Maximum power point tracking (SOL=30%) Simulation Result • Total elapsed tim...
Copyright (C) Bee Technologies 2013 467.1 電気二重層キャパシタMeasurementBattery VoltageCharging CurrentSimulation7.2 リチウムイオンキャパシタ当日...
Copyright (C) Bee Technologies 2013 47今後のシンプルモデルのご提供予定【近日中】パワー・コンディショナー【開発中】電気二重層キャパシタリチウムイオンキャパシタ
Copyright (C) Bee Technologies 2013 48質疑応答
Upcoming SlideShare
Loading in …5
×

SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料

1,421 views

Published on

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料

  1. 1. 1.リチウムイオン電池のシンプルモデル2.ニッケル水素電池のシンプルモデル3.鉛蓄電池のシンプルモデル4.太陽電池のSPICEモデル解説5.太陽光発電システム全体シミュレーション6.環境発電のシミュレーション7.社会インフラ系シミュレーションに関連するデバイスモデリングサービスのご紹介7.1電気二重層キャパシタシミュレーション7.2リチウムイオンキャパシタシミュレーション8.質疑応答SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー2013年4月18日1Copyright (C) Bee Technologies 2013
  2. 2. マルツエレックのサービス様々なシチュエーションでお客様の【ものづくり】をサポート致します回路設計の技術サポート回路シミュレーションのアプローチで御社の回路設計をサポートいたします。部品調達大量調達、中止品調達お任せ下さい!WebShopと12店舗のネットワークで、部品調達を徹底サポート致します。基板設計・製造・実装試作から量産まで承ります。実装だけでなく調達もお任せ下さい。ケース、ハーネス加工穴あけ、切削、シルク印刷など指示書一枚で様々な加工が可能です。2
  3. 3. Parameter SettingsC is the amp-hour battery capacity [Ah]– e.g. C = 0.3, 1.4, or 2.8 [Ah]NS is the number of cells in series– e.g. NS=1 for 1 cell battery, NS=2 for 2 cellsbattery (battery voltage is double from 1 cell)SOC is the initial state of charge in percent– e.g. SOC=0 for a empty battery (0%), SOC=1 fora full charged battery (100%)TSCALE turns TSCALE seconds into a second– e.g. TSCALE=60 turns 60s or 1min into a second,TSCALE=3600 turns 3600s or 1h into a second,• From the Li-Ion Battery specification, the model is characterized by setting parametersC, NS, SOC and TSCALE.Copyright (C) Bee Technologies 2013 3Model Parameters:+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 1C = 1.4(Default values)1.リチウムイオン電池のシンプルモデル
  4. 4. • The battery information refer to a battery part number LIR18500 of EEMB BATTERY.Copyright (C) Bee Technologies 2013 4+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 60C = 1.4Battery capacity isinput as a modelparameterNominal Voltage 3.7VNominalCapacityTypical 1400mAh (0.2C discharge)Charging Voltage 4.20V±0.05VCharging Std. Current 700mAMax CurrentCharge 1400mADischarge 2800mADischarge cut-off voltage 2.75V1.リチウムイオン電池のシンプルモデル
  5. 5. Time0s 50s 100s 150s 200s1 V(HI) 2 I(IBATT)3.0V3.2V3.4V3.6V3.8V4.0V4.2V4.4V10A0.4A0.6A0.8A1.0A1.2A1.4A2SEL>>SEL>>V(X_U1.SOC)0V0.2V0.4V0.6V0.8V1.0V+ -U1LI-ION_BATTERYSOC = 0NS = 1TSCALE = 60C = 1.4Copyright (C) Bee Technologies 2013 5• Charging Voltage: 4.20V±0.05V• Charging Current: 700mA (0.5 Charge)Current=700mAVoltage=4.20VCapacity=100%(minute)Measurement SimulationSOC=0 means batterystart from 0% ofcapacity (empty)1.リチウムイオン電池のシンプルモデル
  6. 6. PARAMETERS:rate = 0.5CAh = 1.4N = 10Vin5VIBATT+ -U1LI-ION_BATTERYSOC = 0NS = {N}TSCALE = 60C = 1.40C110nHIIN-OUT+OUT-IN+G1Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )0Voch{(4.20*N)-8.2m}DMODD10*Analysis directives:.TRAN 0 200 0 0.5.PROBE V(*) I(*) W(*) D(*) NOISE(*)Copyright (C) Bee Technologies 2013 61 minute in secondsOver-Voltage Protector:(Charging Voltage*1) - VF of D1Input Voltage1.リチウムイオン電池のシンプルモデル
  7. 7. Time0s 100s 200s 300s 400sV(HI)2.6V2.8V3.0V3.2V3.4V3.6V3.8V4.0V4.2V4.4V0+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 60C = 1.4HI00IN-OUT+OUT-IN+G1limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )PARAMETERS:rate = 1CAh = 1.4C110nsense*Analysis directives:.TRAN 0 300 0 0.5.STEP PARAM rate LIST 0.2,0.5,1.PROBE V(*) I(*) W(*) D(*) NOISE(*)Copyright (C) Bee Technologies 2013 70.2C0.5C1C(minute)TSCALE turns 1 minute in seconds,battery starts from 100% of capacity (fully charged)• Battery voltage vs. time are simulated at 0.2C, 0.5C, and 1C discharge rates.1.リチウムイオン電池のシンプルモデル
  8. 8. 0+ -U1LI-ION_BATTERYSOC = 1NS = 1TSCALE = 60C = 1.4HI00IN-OUT+OUT-IN+G1limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )PARAMETERS:rate = 0.2CAh = 1.4C110nsenseCopyright (C) Bee Technologies 2013 8*Analysis directives:.TRAN 0 296.82 0 0.5.PROBE V(*) I(*) W(*) D(*) NOISE(*)1 minute in seconds1.リチウムイオン電池のシンプルモデル
  9. 9. + -U1LI-ION_BATTERYSOC = 1NS = 4TSCALE = 60C = 4.4• The battery information refer to a battery part number PBT-BAT-0001 of BAYSUN Co., Ltd.Copyright (C) Bee Technologies 2013 9The number of cells inseries is input as amodel parameterOutput Voltage DC 12.8~16.4VCapacity of Approximately 4400mAhInput Voltage DC 20.5VCharging Time About 5 hoursBasic SpecificationLi-ion needs 4 cellsto reach thisvoltage level1.リチウムイオン電池のシンプルモデル
  10. 10. Time0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s1 V(HI) 2 I(IBATT)12V13V14V15V16V17V18V10A0.8A1.2A1.6A2.0A2.4A2>>V(X_U1.SOC)0V0.2V0.4V0.6V0.8V1.0VSEL>>Copyright (C) Bee Technologies 2013 10• Input Voltage: 20.5V• Charging Voltage: 16.8V• Charging Current: 880mA (0.2 Charge)Current=880mAVoltage=16.8VCapacity=100%(hour)The battery needs 5 hours to be fully charged1.リチウムイオン電池のシンプルモデル
  11. 11. PARAMETERS:rate = 0.2CAh = 4.4N = 40Vin20.5VIBATT+ -U1LI-ION_BATTERYSOC = 0NS = {N}TSCALE = 3600C = 4.40C110nHIIN-OUT+OUT-IN+G1Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )0Voch{(4.2*N)-8.2m}DMODD10*Analysis directives:.TRAN 0 10 0 0.05.PROBE V(*) I(*) W(*) D(*) NOISE(*)Copyright (C) Bee Technologies 2013 111 Hour in secondsInput VoltageOver-Voltage Protector:(Charging Voltage*4) - VF of D11.リチウムイオン電池のシンプルモデル
  12. 12. Time0s 0.4s 0.8s 1.2s 1.6s 2.0sV(HI)10V11V12V13V14V15V16V17V18VCopyright (C) Bee Technologies 2013 12• Charging Voltage: 16.8V• Charging Current: 880mA (0.2 Charge)(hour)0.5C1C16.4V12.8VOutputvoltagerange1.リチウムイオン電池のシンプルモデル
  13. 13. 0+ -U1LI-ION_BATTERYSOC = 1NS = 4TSCALE = 3600C = 4.4HI00IN-OUT+OUT-IN+G1limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )PARAMETERS:rate = 1CAh = 4.4C110nsense*Analysis directives:.TRAN 0 3 0 0.05.STEP PARAM rate LIST 0.5,1.PROBE V(*) I(*) W(*) D(*) NOISE(*)Copyright (C) Bee Technologies 2013 131 Hour in secondsParametric sweep “rate”1.リチウムイオン電池のシンプルモデル
  14. 14. -+U1NI-MH_BATTERYC = 1350MTSCALE = 1NS = 1SOC = 1C is the amp-hour battery capacity [Ah]– e.g. C = 0.3, 1.4, or 2.8 [Ah]NS is the number of cells in series– e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery(battery voltage is double from 1 cell)SOC is the initial state of charge in percent– e.g. SOC=0 for a empty battery (0%), SOC=1 for a fullcharged battery (100%)TSCALE turns TSCALE seconds(in the real world) into asecond(in simulation)– e.g. TSCALE=60 turns 60s or 1min (in the real world)into a second(in simulation), TSCALE=3600 turns 3600sor 1h into a second.• From the Ni-Mh Battery specification, the model is characterized by setting parametersC, NS, SOC and TSCALE.Copyright (C) Bee Technologies 2013 14Model Parameters:(Default values)2.ニッケル水素電池のシンプルモデル
  15. 15. -+U1NI-MH_BATTERYC = 1350MTSCALE = 1NS = 1SOC = 1• The battery information refer to a battery part number HF-A1U of SANYO.Copyright (C) Bee Technologies 2013 15Battery capacity[Typ.] is input as amodel parameterNominal Voltage 1.2VCapacityTypical 1350mAhMinimum 1250mAhCharging Current  Time 1350mA  about 1.1hDischarge cut-off voltage 1.0V2.ニッケル水素電池のシンプルモデル
  16. 16. Time0s 10s 20s 30s 40s 50s 60s 70s 80sV(HI)1.0V1.1V1.2V1.3V1.4V1.5V1.6V1.7V1.8VCopyright (C) Bee Technologies 2013 16• Charging Current: 1350mA  about 1.1h(min.)Measurement SimulationSOC=0 means batterystart from 0% ofcapacity (empty)-+U1NI-MH_BATTERYC = 1350MTSCALE = 60NS = 1SOC = 0Charge: 1350mA2.ニッケル水素電池のシンプルモデル
  17. 17. -+U1NI-MH_BATTERYC = 1350MTSCALE = 60NS = 1SOC = 10.91.01.11.21.31.41.51.60 250 500 750 1000 1250 1500CellVoltage[V]Discharge Capacity [mAh]0.2C (270mA)1.0C (1350mA)2.0C (2700mA)0.00.20.40.60.81.01.20 1 2 3 4 5ActualCapacity(%ofRatedCapacity)Discharge Rate (Multiples of C)MesurementSimulationCopyright (C) Bee Technologies 2013 17• Nominal Voltage: 1.2V• Capacity: 1350mAh• Discharge cut-off voltage: 1.0V2700mAMeasurement SimulationSimulation1350mA270mA2.ニッケル水素電池のシンプルモデル
  18. 18. C is the amp-hour battery capacity [Ah]– e.g. C = 1, 50, or 100 [Ah]NS is the number of cells in series– e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery(battery voltage is double from 1 cell)SOC is the initial state of charge in percent– e.g. SOC=0 for a empty battery (0%), SOC=1 for a fullcharged battery (100%)TSCALE turns TSCALE seconds(in the real world) into asecond(in simulation)– e.g. TSCALE=60 turns 60s or 1min (in the real world)into a second(in simulation), TSCALE=3600 turns 3600sor 1h into a second.• From the Lead-Acid Battery specification, the model is characterized by settingparameters C, NS, SOC and TSCALE.Copyright (C) Bee Technologies 2013 18Model Parameters:(Default values)3.鉛蓄電池のシンプルモデル
  19. 19. • The battery information refer to a battery part number MSE Series of GS YUASA.Copyright (C) Bee Technologies 2013 19Battery capacity[Typ.] is input as amodel parameterNominal Voltage 2.0 [Vdc] /CellCapacity 50AhRated Charge 0.1C10AVoltage Set 2.23 [Vdc] /CellCharging Time 24 [hours] @ 0.1C10A3.鉛蓄電池のシンプルモデル
  20. 20. Copyright (C) Bee Technologies 2013 20• Charging Time: 24 [hours] @ 0.1C10A(hour)Measurement SimulationSOC=0 means batterystart from 0% ofcapacity (empty)Current: 5A (0.1C10A)Voltage: 2.23V3.鉛蓄電池のシンプルモデル
  21. 21. Copyright (C) Bee Technologies 2013 21(hour)Measurement SimulationSOC=1 means batterystart from 100% ofcapacity0.1C10A0.23C10A0.65C10A1.0C10A3.鉛蓄電池のシンプルモデル
  22. 22. 22Copyright (C) Bee Technologies 2013RsRsh電流源 IDC ダイオード 抵抗抵抗4.太陽電池のSPICEモデル解説
  23. 23. 23Copyright (C) Bee Technologies 2013太陽電池モデルのシミュレーション結果V_V10V 5V 10V 15V 20V 25V 30VI(Isence)* V(V1:+)0W50W100W150W200W(16.900,109.848)I(Isence)0A2A4A6A8A10ASEL>>(16.900,6.4999)(21.596,0.000)0.000,7.3196)4.太陽電池のSPICEモデル解説
  24. 24. 24Copyright (C) Bee Technologies 2013太陽電池モデルの出力特性の解析精度+Symbol Measurement Simulation %ErrorIsc 7.4000 7.3196 -1.086Voc 21.6000 21.5950 -0.023Ipm 6.5000 6.4999 -0.002Vpm 16.9000 16.9000 0.000Pmax(Ipm*Vpm) 109.8500 109.8480 -0.002V_V1I(Isence)* V(V1:+)SEL>>I(Isence)Vpm VocPmaxIpmIsc4.太陽電池のSPICEモデル解説
  25. 25. 25Copyright (C) Bee Technologies 2013日射データの過渡的なデータがある場合日射量時間電流値換算4.太陽電池のSPICEモデル解説気象条件NEDOのMONSOLA05(801)データ
  26. 26. 26Copyright (C) Bee Technologies 2013日射データの過渡的なデータがある場合RsRsh電流源 IDC ダイオード 抵抗抵抗I1電流源IPWL4.太陽電池のSPICEモデル解説
  27. 27. 27Copyright (C) Bee Technologies 20134.太陽電池のSPICEモデル解説
  28. 28. 28Copyright (C) Bee Technologies 20134.太陽電池のSPICEモデル解説
  29. 29. Concept of Simulation PV Li-Ion Battery System in 24hr.Copyright (C) Bee Technologies 2013 29Lithium-IonBatteries PackPhotovoltaicModuleOver Voltage ProtectionCircuit16.8V Clamp CircuitPBT-BAT-0001 (BAYSUN)DC12.8~16.4V (4 cells)4400mAhSX 330 (BP Solar)Vmp=16.8VPmax=30WDC/DCConverterVopen= (V)Vclose= (V)The model contains 24hr.solar power data (example).DC LoadVIN=10~18VVOUT=5VVIN = 5VIIN = 1.5ALow-VoltageShutdownCircuit5.太陽光発電システム全体シミュレーション
  30. 30. Short-circuit current vs. time characteristics of photovoltaic module SX330 for24hours as the solar power profile (example) is included to the model.Copyright (C) Bee Technologies 2013 30Time0s 4s 8s 12s 16s 20s 24sI(X_U1.I_I1)0A0.4A0.8A1.2A1.6A2.0ASX330+U2SX330_24H_TS3600The model contains24hr. solar power data(example).5.太陽光発電システム全体シミュレーション
  31. 31. PV-Battery System Simulation CircuitCopyright (C) Bee Technologies 2013 31Ronof f 1100dchthLow-Voltage Shutdown CircuitDC/DC ConverterDMODD1Voch16.8Vdc00batt0C1100nIC = 16.40pv+ -U1PBT-BAT-0001TSCALE = 3600SOC1 = 70SX330+U2SX330_24H_TS3600batt1C310n+-+-S2SVON = 0.7VOFF = 0.3ROFF = 10MEGRON = 0.0100IN+IN-OUT+OUT-ecal_Iomaxn*V(%IN+, %IN-)*I(IN)/5EVALUEIomax0IN+IN-OUT+OUT-E2IF( V(lctrl) > 0.25 ,Lopen ,Lclose)EVALUE0PARAMETERS:Lopen = 14Lclose = 15.2IN+IN-OUT+OUT-E1IF(V(batt1)>V(dchth),5,0)EVALUERonof f100Conof f1nIC = 5LctrlPARAMETERS:n = 1I11.5Adc0OUTIN+IN-OUT+OUT-E3IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )EVALUEout_dcDMODD2Conof f 1100nIN-OUT+OUT-IN+G1Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )GVALUEINSolar cell model with24hr. solar powerdata.Lopen value is loadshutdown voltage.Lclose value is loadreconnect voltageSet initial batteryvoltage, IC=16.4, forconvergence aid.SOC1 value is initialState Of Charge of thebattery, is set as 70%of full voltage.7.5W Load(5Vx1.5A). Simulation at 15W load, change I1 from 1.5A to 3A5.太陽光発電システム全体シミュレーション
  32. 32. Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V1400mA500mA600mA2SEL>>SEL>>V(X_U1.SOC)0V25V50V75V100V1 V(batt) 2 I(U1:PLUS)12.5V15.0V17.5V1>>-2.0A0A2.0A2I(pv)0A1.0ASimulation Result (SOC1=100)C1: IC=16.4Run to time: 24s (24hours in real world)Step size: 0.01sCopyright (C) Bee Technologies 2013 32PV generated currentBattery currentBattery voltageBattery SOCDC/DC input currentDC output voltage• .Options ITL4=1000SOC1=100 Fully charged, stopchargingBattery supplies current when solarpower drops.PV module charge the batteryCharging time5.太陽光発電システム全体シミュレーション
  33. 33. Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V25V50V75V100V10.152m,69.889)1 V(batt) 2 I(U1:PLUS)12.5V15.0V17.5V1-2.0A0A2.0A2SEL>>SEL>>(7.6750,15.199)(5.1850,14.000)I(pv)0A1.0AC1: IC=16.4Run to time: 24s (24hours in real world)Step size: 0.01sSKIPBPCopyright (C) Bee Technologies 2013 33PV generated currentBattery currentBattery voltageBattery SOCDC/DC input currentDC output voltage• .Options ITL4=1000SOC1=70V=LopenV=LcloseShutdownReconnectFully charged, stopchargingBattery supplies current when solarpower drops.PV module charge the batteryCharging time5.太陽光発電システム全体シミュレーションSimulation Result (SOC1=70)
  34. 34. Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V100VSEL>>(12.800m,29.854)1 V(batt) 2 I(U1:PLUS)12.5V15.0V17.5V1-2.0A0A2.0A2>> (1.6328,14.004)(7.6150,15.193)I(pv)0A1.0ASimulation Result (SOC1=30)C1: IC=15Run to time: 24s (24hours in real world)Step size: 0.01sTotal job time = 2sCopyright (C) Bee Technologies 2013 34PV generated currentBattery currentBattery voltageBattery SOCDC/DC input currentDC output voltage• .Options ITL4=1000SOC1=30V=LopenV=LcloseShutdownReconnectFully charged, stopchargingBattery supplies current when solarpower drops.PV module charge the batteryCharging time5.太陽光発電システム全体シミュレーション
  35. 35. Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A0.5A1.0A2>>V(X_U1.SOC)0V100V1 V(batt) 2 I(U1:PLUS)12.5V15.0V17.5V1-2.0A0A2.0A2SEL>>SEL>>(7.6163,15.200)I(pv)0A1.0ASimulation Result (SOC1=10)C1: IC=14.4Run to time: 24s (24hours in real world)Step size: 0.01sSKIPBPCopyright (C) Bee Technologies 2013 35PV generated currentBattery currentBattery voltageBattery SOCDC/DC input currentDC output voltage• .Options RELTOL=0.01• .Options ITL4=1000SOC1=10V=LcloseShutdownReconnectFully charged, stopchargingBattery supplies current when solarpower drops.PV module charge the batteryCharging time5.太陽光発電システム全体シミュレーション
  36. 36. Time0s 4s 8s 12s 16s 20s 24s1 V(out_dc) 2 I(IN)0V2.5V5.0V7.5V10A1.0A2.0A2>>V(X_U1.SOC)0V25V50V75V100V1 V(batt) 2 I(U1:PLUS)12.5V15.0V17.5V1-2.0A0A2.0A2SEL>>SEL>>(20.473,14.003)(7.6086,15.200)(3.8973,14.000)I(pv)0A1.0ASimulation Result (SOC1=100, IL=3A or 15W load)C1: IC=16.4Run to time: 24s (24hours in real world)Step size: 0.001sCopyright (C) Bee Technologies 2013 36PV generated currentBattery currentBattery voltageBattery SOCDC/DC input currentDC output voltage• .Options ITL4=1000SOC1=100 Fully charged, stopchargingBattery supplies current when solarpower drops.PV module charge the batteryCharging timeV=LopenShutdownV=LopenShutdown5.太陽光発電システム全体シミュレーション
  37. 37. 6.環境発電のシミュレーションLTC3105は、225mVの低い入力電圧で動作可能な高効率の昇圧DC/DCコンバータです。250mVでの起動が可能で、最大電力点コントローラ (MPPC)を搭載しているので、光起電力電池、TEG (熱電発電機)、燃料電池といった低電圧で高インピーダンスの代替電力源で直接動作可能です。MPPCの設定値をユーザーがプログラム可能なので、あらゆる電力源から最大限のエネルギーを抽出できます。Output Voltage≈ 4.1VRLOAD= 500Ω*Analysis directives:• .tran 0 5m 0 startupInput Voltage= 0.5VVmppc= 0.4V37Copyright (C) Bee Technologies 2013
  38. 38. Case1: Voltage Source(v1) with LTC3105 Simulation Result • Total elapsed time: 410.938sec. ≈ 7min.Input VoltageOutput VoltageVMPPC=0.4VInput Current38Copyright (C) Bee Technologies 20136.環境発電のシミュレーション
  39. 39. Solar Cell Specification• The information refer to a part number 19_12_93 of CONRAD ELECTRONIC.PARAMETER VALUEPmax (W) 0.400Vmp (V) 0.500Imp (A) 0.800Isc (A) 0.872Voc (V) 0.58039Copyright (C) Bee Technologies 20136.環境発電のシミュレーション
  40. 40. Copyright (C) Bee Technologies 2013 40Case2: MPPC Response to Input Source (SOL=100%) Simulation Circuit and SettingOutput Voltage≈ 4.1VIOUT≈ 8.2mA*Analysis directives:• .tran 0 5m 0 startup• .lib 19_12_93.libPmax= 400mWVoc= 0.58VIsc= 0.872AVmppc= Vmp= 0.5V[SOL=100%]6.環境発電のシミュレーション
  41. 41. Copyright (C) Bee Technologies 2013 41Case2: MPPC Response to Input Source (SOL=100%) Simulation Result• Total elapsed time: 786.766sec. ≈ 13min.Input VoltageOutput VoltageVMPPC=0.5VInput Current6.環境発電のシミュレーション
  42. 42. Copyright (C) Bee Technologies 2013 42Case3: MPPC Response to Input Source (SOL=50%) Simulation Circuit and SettingOutput Voltage≈ 4.1VIOUT≈ 8.2mA*Analysis directives:• .tran 0 5m 0 startup• .lib 19_12_93.libPmax= 400mWVoc= 0.58VIsc= 0.872AVmppc= Vmp= 0.5V[SOL=50%]6.環境発電のシミュレーション
  43. 43. Copyright (C) Bee Technologies 2013 43Case3: MPPC Response to Input Source (SOL=50%) Simulation Result • Total elapsed time: 387.219sec. ≈ 7min.Input VoltageOutput VoltageVMPPC=0.5VInput Current6.環境発電のシミュレーション
  44. 44. Copyright (C) Bee Technologies 2013 44Case4: Maximum power point tracking (SOL=30%) Simulation Circuit and SettingOutput Voltage≈ 4.1VIOUT≈ 8.2mA*Analysis directives:• .tran 0 10m 0 startup• .lib 19_12_93.libPmax= 400mWVoc= 0.58VIsc= 0.872AVmppc= 0.5V, 0.475V(Ref.2)[SOL=30%]• Parametric Sweep Rmppc: 50kΩ(0.5V), 47.5kΩ(0.475V)• Rmppc= Vm/10uA6.環境発電のシミュレーション
  45. 45. Copyright (C) Bee Technologies 2013 45Case4: Maximum power point tracking (SOL=30%) Simulation Result • Total elapsed time: 2082.5sec. ≈ 35min.Input VoltageVMPPC =0.500V ---VMPPC =0.475V ---Output VoltageInput Current6.環境発電のシミュレーション
  46. 46. Copyright (C) Bee Technologies 2013 467.1 電気二重層キャパシタMeasurementBattery VoltageCharging CurrentSimulation7.2 リチウムイオンキャパシタ当日説明電気二重層キャパシタとリチウムイオンキャパシタは、現在、デバイスモデリングサービスにてご提供中です。
  47. 47. Copyright (C) Bee Technologies 2013 47今後のシンプルモデルのご提供予定【近日中】パワー・コンディショナー【開発中】電気二重層キャパシタリチウムイオンキャパシタ
  48. 48. Copyright (C) Bee Technologies 2013 48質疑応答

×