PV Lead Acid Battery System Simulation

2,133 views

Published on

PV Lead Acid Battery System Simulation using PSpice or LTspice

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,133
On SlideShare
0
From Embeds
0
Number of Embeds
297
Actions
Shares
0
Downloads
80
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

PV Lead Acid Battery System Simulation

  1. 1. Design KitPV Lead-Acid Battery System All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
  2. 2. Contents Slide # 1. Lead-Acid Battery 1.1 Lead-Acid Battery Specification........................................................................... 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Charge Time Characteristics................................................................................ 5 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 6 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 7 3. Solar Cell Battery Charger......................................................................................... 8 3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit.............................. 9 3.2 PV Lead-Acid Battery Charger Circuit.................................................................. 10 3.3 Charging Time Characteristics vs. Weather Condition......................................... 11 3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant Current................................................................................................................. 12 3.5 Constant Current PV Lead-Acid Battery Charger Circuit...................................... 13 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 14 4. Simulation PV Lead-Acid Battery System in 24hr. 4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr.............................. 15 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 16 4.3 PV-Battery System Simulation Circuit.................................................................. 17 4.4 PV-Battery System Simulation Result.................................................................. 18-23 Simulations index............................................................................................................ 24 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  3. 3. 1.1 Lead-Acid battery Specification GS YUASA’s Lead-Acid : MSE-100-6 • Nominal Voltage................ 6.0 [Vdc] • Capacity............................ 100[Ah]@C10, 65[Ah]@C1 • Rated Charge.................... 0.1C10A • Input Voltage...................... 6.69 [Vdc] • Charging time..................... 24 [hours] @0.1C10A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  4. 4. 1.2 Discharge Time Characteristics 6.6V PARAMETERS: Idch = {Rate*CxAh} CxAh = 100 0.25C (25A) Rate = 0.1 Hi OUT+ IN+ 6.0V OUT- IN- 0.1C (10A) U1 PLUS G1 R3 C1 GVALUE MINUS limit(V(%IN+, %IN-)/1m,0,Idch) 1G 10n MSE-100-6 TSCALE = 3600 NS = 1 SOC1 = 1 5.4V TSCALE=3600 1C (100A) 0 0 0 0 means time Scale (Simulation time : Battery Model Parameters Real time) is 1:3600 0.6C (60A) NS (number of batteries in unit) = 1 cell 4.8V C (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%) TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.1C(10A), 0.25C(25A) , 0.6C(60A), and 1C(100A) 4.2V 10ms 100ms 1.0s 10s 100s V(HI) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4
  5. 5. 1.3 Charge Time CharacteristicsSOC [%] Vbatt [V] C10A 140V 7.8V 210mA PARAMETERS:1 2 3 CxAh = 100 Ich = {0.1*CxAh} 120V 7.5V 180mA Hi IN- OUT- IN+ OUT+ U1 G1 GVALUE PLUS 100V 7.2V 150mA R3 C1 limit(V(%IN+, %IN-)/0.1m,0,Ich) MINUS 10n 1G V2 MSE-100-6 6.69 TSCALE = 3600 80V 6.9V 120mA NS = 1 SOC1 = 0 60V 6.6V 90mA 0 0 0 0 Battery Model Parameters 40V 6.3V 60mA NS (number of batteries in series) = 1 cell C (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%) 20V 6.0V 30mA TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h >> 0V 5.7V 0A 0s 4s 8s 12s 16s 20s 24s Charging Time 1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100 Time Input Voltage = 6.69 Vdc Input Current = 10 A @0.1C10 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5
  6. 6. 2.1 Solar Cells Specification BP Solar’s photovoltaic module : BP365TS 456mm • Maximum power (Pmax)..............65[W] • Voltage at Pmax (Vmp)...............8.7[V] • Current at Pmax (Imp)................7.5[A] • Short-circuit current (Isc)............8.1[A] 1513mm • Open-circuit voltage(Voc)...........11.0[V] All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6
  7. 7. 2.2 Output Characteristics vs. Incident Solar Radiation BP365TS Output Characteristics vs. Incident Solar Radiation 10A SOL=1 8A Current (A) 6A SOL=0.5 4A + U2 2A SOL=0.16 BP365TS SOL = 1 0A I(sense) BP365TS 100W 80W Power (W) SOL=1 60W Parameter, SOL is added as 40W normalized incident radiation, SOL=0.5 where SOL=1 for AM1.5 20W conditions SOL=0.16 SEL>> 0W 0V 2V 4V 6V 8V 10V 12V 14V I(sense)* V(sense:+) V_V1 Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7
  8. 8. 3. Solar Cell Battery Charger• Solar Cell charges the Lead-Acid Battery (MSE-100-6) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the battery charging voltage.• MSE-100-6 – Charging time is approximately 24 hours with charging rate 0.1C or 10A – Voltage during charging with 0.1C is between 5.93 to 6.69 V 140V 7.8V 210mA 1 2 3 0.1C or 10A 120V 7.5V 180mA 100V 7.2V 150mA 80V 6.9V 120mA 6.69 V 60V 6.6V 90mA 40V 6.3V 60mA 20V 6.0V 5.93 V >> 0V 5.7V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100 Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8
  9. 9. 3.1 Concept of Simulation PV Lead-Acid BatteryCharger Circuit Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 7.29V Clamp Circuit Photovoltaic Lead-Acid Module Battery BP 365TS (BP Solar)*3panels MSE-100-6 (GS YUASA) Vmp(system)=Vmp(panel)=8.7V DC6.0V Imp=22.5A (7.5A3) 100[Ah]@C10, 65[Ah]@C1 Pmax=195W (65W  3) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9
  10. 10. 3.2 PV Lead-Acid Battery Charger Circuit D1 DMOD Voch 7.29Vdc pv 0 pv Hi PARAMETERS: sol = 1 C1 0 pv pv pv 1n U1 PLUS MINUS MSE-100-6 + U2 + U3 + U4 BP365TS BP365TS BP365TS 0 SOL = {sol} SOL = {sol} SOL = {sol} TSCALE = 3600 BP365TS BP365TS BP365TS SOC1 = 0 0 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10
  11. 11. 3.3 Charging Time Characteristics vs. Weather Condition 100V 80V 60V 40V 20V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 4s 8s 12s 16s 20s 24s V(X_U1.1)*100 Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11
  12. 12. 3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit+ Constant Current Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 7.29V Clamp Circuit Constant Photovoltaic Current Lead-Acid Module Control Battery CircuitBP 365TS (BP Solar)*3panels Icharge=0.1C (10A) MSE-100-6 (GS YUASA)Vmp(system)=Vmp(panel)=8.7V DC6.0VImp=22.5A (7.5A3) 100[Ah]@C10, 65[Ah]@C1Pmax=195W (65W  3) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12
  13. 13. 3.5 Constant Current PV Lead-Acid Battery Charger Circuit PARAMETERS: CxAh = 100 D1 Ich = {0.1*CxAh} DMOD Voch 7.29Vdc pv 0 pv Hi PARAMETERS: OUT+ OUT- sol = 1 C1 0 pv pv pv 1n U1 PLUS MINUS MSE-100-6 IN+ IN- + U2 + U3 + U4 BP365TS BP365TS BP365TS 0 SOL = {sol} SOL = {sol} SOL = {sol} G1 TSCALE = 3600 BP365TS BP365TS BP365TS GVALUE SOC1 = 0 0 0 0 Vmp(system)=Vmp(panel)=8.7V Imp=22.5A Pmax=195W • Input the battery capacity (Ah) and charging current rate (e.g. 0.1*CxAh) in the • “PARAMETERS: CxAh = 100 and rate = 0.1 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13
  14. 14. 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) 100V 80V 60V 40V 20V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s V(X_U1.1)*100 Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.1), battery can be fully charged in about 9.364 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14
  15. 15. 4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr. Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 7.29V Clamp Circuit Photovoltaic Lead-Acid Module Battery Low-Voltage MSE-100-6 (GS YUASA)BP 365TS (BP Solar)*3panels Shutdown DC6.0VVmp(system)=Vmp(panel)=8.7V Circuit 100[Ah]@C10, 65[Ah]@C1Imp=22.5A (7.5A3)Pmax=195W (65W  3) Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=4.5~9.0V VLOAD = 3.3V VOUT=3.3V ILOAD  18A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15
  16. 16. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 25A 24hr. solar power data (example). 20A pv 15A pv pv pv + U2 + U3 + U4 10A BP365TS BP365TS BP365TS 5A 0 0 0 0A BP365TS_24H_TS3600 0s 4s 8s 12s 16s 20s 24s I(sense) Time • Short-circuit current vs. time characteristics of photovoltaic module BP365TS for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16
  17. 17. 4.3 PV-Battery System Simulation Circuit D1 Solar cell model with 24hr. solar DMOD Voch power data. 7.29Vdc pv 0 D2 batt DMOD + U4 + U3 + U2 C1 0 BP365TS_24H_TS3600 Low-Voltage Shutdown Circuit 0.1n U1 PLUS MINUS MSE-100-6 VON = 0.7 0 TSCALE = 3600 E1 SOC1 = 0.7 RON = 10m Ronoff EVALUE 0 0 0 ROFF = 10MEG Ronoff1 Lctrl batt1 + + OUT+ IN+ - - OUT- IN- Conoff dchth SOC1 value is initial S2 1n 0 OUT+ IN+ State Of Charge of S IC = 5 Conoff1 OUT- IN- PARAMETERS: E2 the battery, is set as Lopen = 5.55 EVALUE 70% of full voltage. Lclose = 6.35 0 DC/DC Converter 60W Load Lopen value is load (3.3Vx18.181A). shutdown voltage. PARAMETERS: n=1 out_dc Lclose value is load IN OUT reconnect voltage G1 Iomax E3 I1 IN+ OUT+ IN+ OUT+ OUT- IN+ OUT+ OUT- 60W 18.181A IN- OUT- IN- IN- GVALUE ecal_Iomax EVALUE EVALUE 0 0 0  Simulation at 100W load, change I1 from 18.181A to 30.303A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17
  18. 18. 4.3.1 Simulation Result (SOC1=100, IL=18.18A or 60W load) 20APV generated current 10A 0A I(pv) PV module charge the battery 1 2 15A 7.0VBattery voltage 5A 6.0V SEL>>Battery current -15A 1 V(batt) 2 I(U1:PLUS) 100VBattery SOC 50V SOC1=100% 0V V(X_U1.1)*100 5.0V 30A 1 2DC output voltage 20A 2.5VDC/DC input current >> 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18
  19. 19. 4.3.2 Simulation Result (SOC1=70, IL=18.18A or 60W load) 20APV generated current 10A 0A I(pv) PV module charge the battery V=Lopen 7.0V 1 2 20A (6.9550,5.5528)Battery voltage 6.0V V=LcloseBattery current SEL>> (9.584,6.3500) 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V (100.000m,69.972) Fully charged,Battery SOC 50V stop charging SOC1=70% 0V V(X_U1.1)*100 5.0V 30A Shutdown 1 2DC output voltage 20A 2.5VDC/DC input current >> Reconnect 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging Time time • Run to time: 24s (24hours in real world) • .Options ITL4=30 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19
  20. 20. 4.3.3 Simulation Result (SOC1=30, IL=18.18A or 60W load) 20APV generated current 10A 0A I(pv) PV module charge the battery 7.0V 1 2 20ABattery voltage (2.4428,5.5551) 6.0V V=LcloseBattery current SEL>> (9.1927,6.3500) V=Lopen 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V (100.000m,30.192) Fully charged,Battery SOC 50V stop charging SOC1=30 0V V(X_U1.1)*100 5.0V 30A 1 2DC output voltage 20A Shutdown 2.5V ReconnectDC/DC input current >> 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 20
  21. 21. 4.3.4 Simulation Result (SOC1=10, IL=18.18A or 60W load) 20APV generated current 10A 0A I(pv) PV module charge the battery V=Lopen 7.0V 1 2 20ABattery voltage (1.1208,5.5500) 6.0VBattery current V=Lclose (9.4924,6.3500) SEL>> 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V SOC1=10Battery SOC 50V Fully charged, (100.000u,10.999) stop charging 0V V(X_U1.1)*100 5.0V 30A 1 2 ShutdownDC output voltage 20A 2.5V ReconnectDC/DC input current >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 21
  22. 22. 4.3.5 Simulation Result (SOC1=100, IL=30.30A or 100W load) 20APV generated current 10A 0A I(pv) PV module charge the battery V=Lclose 7.0V 1 2 20ABattery voltage (4.8471,5.5500) (19.118,5.5500) 6.0VBattery current (7.7024,6.3500) SEL>> V=Lopen 5.0V -20A 1 V(batt) 2 I(U1:PLUS) V=Lopen 100V (10.000m,100.000)Battery SOC 50V SOC1=100 0V V(X_U1.1)*100 5.0V 30A 1 2 ShutdownDC output voltage 20A Shutdown 2.5VDC/DC input current >> Reconnect 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • .Options ITL4=30 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 22
  23. 23. 4.4 Simulation Result (Example of Conclusion)The simulation start from midnight(time=0). The system supplies DC load 60W.• If initial SOC is 100%, – this system will never shutdown.• If initial SOC is 70%, – this system will shutdown after 6.955 hours (about 6:57AM.). – system load will reconnect again at 9:35AM (Morning). – With the PV Panel generated current profile, battery will fully charged in about 4.36 hours.• If initial SOC is 30%, – this system will shutdown after 2.443 hours (about 2:27AM.). – system load will reconnect again at 9:12AM (Morning). – With the PV Panel generated current profile, battery will fully charged in about 4.20 hours.• If initial SOC is 10%, – this system will shutdown after 1.121 hours (about 1:07AM.). – this system will reconnect again at 9:30AM (Morning).• With the PV Panel generated current profile, battery will fully charged in about 4.14 hours.The simulation start from midnight(time=0). The system supplies DC load 100W.• If initial SOC is 100%, – this system will shutdown after 4.847 hours (about 4:51AM.). – system load will reconnect again at 7:42AM (Morning). – this system will shutdown again at 7:07PM (Night). All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 23
  24. 24. Simulations index Simulations Folder name 1. PV Lead-Acid Battery Charger Circuit............................................ charge-sol 2. Constant Current PV Lead-Acid Battery Charger Circuit............... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=100, 60W)............. sol_24h_soc100_60W 4. PV-Battery System Simulation Circuit (SOC1=70, 60W)............... sol_24h_soc70_60W 5. PV-Battery System Simulation Circuit (SOC1=30, 60W)............... sol_24h_soc30_60W 6. PV-Battery System Simulation Circuit (SOC1=10, 60W)............... sol_24h_soc10_60W 7. PV-Battery System Simulation Circuit (SOC1=100, 100W)........... sol_24h_soc100_100W All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 24

×