Design KitPV Ni-MH Battery System (DC Out)         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   1
Contents                                                                                                                  ...
1.1 Ni-MH Battery Specification  KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180)  • Rated Voltage ..................12 [V] ...
1.2 Discharge Time Characteristics17V                                                                                  PAR...
1.3 Battery Voltage vs. SOC Discharge Characteristics                                                                     ...
1.4 Charge Time Characteristics                                                                                  PARAMETER...
1.5 Battery Voltage vs. SOC Charge Characteristics     Measurement                                                        ...
2.1 Solar Cells Specification  Suntech’s photovoltaic module : STP140D-12/TEA  • Maximum power (Pmax)............140[W]  •...
2.2 Output Characteristics vs. Incident Solar Radiation                                              STP140D-12/TEA Output...
3. Solar Cell Battery Charger•   Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect    techniq...
3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit                                                                ...
3.2 PV Ni-MH Battery Charger Circuit                                                                                      ...
3.3 Charging Time Characteristics vs. Weather Condition       1.00V       0.75V       0.50V       0.25V                   ...
3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit+ Constant Current                                              ...
3.5 Constant Current PV Ni-MH Battery Charger Circuit                                                                     ...
3.6 Charging Time Characteristics vs. Weather Condition(Constant Current)       1.00V       0.75V       0.50V       0.25V ...
4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.                                                                ...
4.2 Short-Circuit Current vs. Time (24hr.)                                                                                ...
4.3 PV-Battery System Simulation Circuit    Solar cell model    with 24hr. solar     power data.                          ...
4.3.1 Simulation Result (SOC1=1, IL=50A or 250W load)                                    150APV generated current         ...
4.3.2 Simulation Result (SOC1=0.7, IL=50A or 250W load)                              150APV generated current          100...
4.3.3 Simulation Result (SOC1=0.3, IL=50A or 250W load)                              150APV generated current          100...
4.3.4 Simulation Result (SOC1=0.07, IL=50A or 250W load)                                  150APV generated current        ...
4.3.5 Simulation Result (SOC1=1, IL=100A or 500W load)                                       150APV generated current     ...
4.3.4 Simulation Result (Example of Conclusion)The simulation start from midnight(time=0). The system supplies DC load 250...
Simulations index Simulations                                                                                 Folder name ...
Upcoming SlideShare
Loading in …5
×

PV Ni-MH Battery System (Output is DC)

852 views

Published on

PV Ni-MH Battery System (Output is DC)
By Bee Technologies

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
852
On SlideShare
0
From Embeds
0
Number of Embeds
166
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

PV Ni-MH Battery System (Output is DC)

  1. 1. Design KitPV Ni-MH Battery System (DC Out) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 1
  2. 2. Contents Slide # 1. Nickel - Metal Hydride Battery 1.1 Ni-MH Battery Specification................................................................................. 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Battery Voltage vs. SOC Discharge Characteristics............................................. 5 1.4 Charge Time Characteristics................................................................................ 6 1.5 Battery Voltage vs. SOC Charge Characteristics................................................. 7 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 8 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 9 3. Solar Cell Battery Charger......................................................................................... 10 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit.................................... 11 3.2 PV Ni-MH Battery Charger Circuit........................................................................ 12 3.3 Charging Time Characteristics vs. Weather Condition......................................... 13 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current..... 14 3.5 Constant Current PV Ni-MH Battery Charger Circuit............................................ 15 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 16 4. Simulation PV Ni-MH Battery System in 24hr. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.................................... 17 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 18 4.3 PV-Battery System Simulation Circuit.................................................................. 19 4.3 PV-Battery System Simulation Result.................................................................. 20-25 Simulations index............................................................................................................ 26 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 2
  3. 3. 1.1 Ni-MH Battery Specification KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180) • Rated Voltage ..................12 [V] • Capacity............................177 [Ah] (Approximately) • Energy Capacity................2.1 [kWh] • Max Output........................48 [kW] 10 Ni-MH cells are in series. • Rated Charge................ 0.2C5 [A] ( SoC=100% ) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 3
  4. 4. 1.2 Discharge Time Characteristics17V PARAMETERS: rate = 0.2 CAh = 17716V Hi15V C1 U1 0 1C ( 177A ) IN+ OUT+ 1n + - GIGACELL_10-18014V 2C ( 354A ) IN- OUT- TSCALE = 3600 G1 0 NS = 1 GVALUE SOC1 = 113V 0.2C ( 35.4A ) limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) TSCALE=360012V 0 0.5C ( 88.5A ) means “Time Scale”11V (Simulation time : Real time) is 1:360010V Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) C (capacity) = 177 Ah 8V SOC1 (initial state of charge) = 1 (100%) TSCALE (time scale) , simulation : real time 7V 1 : 3600s or 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 1s : 1h V(HI) Time Discharge Rate : 0.2C(35.4A), 0.5C(88.5A), 1C(177A) and 2C(354A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 4
  5. 5. 1.3 Battery Voltage vs. SOC Discharge Characteristics 10 Ni-MH cells are in series for total rated current 12V (Each cell have 1.2V rated voltage). Measurement Simulation 0.2C, Dch 2.0C, Dch 5.0C, Dch 8.0C, Dch 11C, Dch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%)• VBAT vs. SOC Discharge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 5
  6. 6. 1.4 Charge Time Characteristics PARAMETERS: rate = 0.2 CAh = 17717V G1 GVALUE Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )16V Hi OUT+ OUT-15V 1C ( 177A ) C1 U1 0 1n + - GIGACELL_10-180 IN+ IN-14V TSCALE = 3600 0 NS = 1 SOC1 = 013V 0.2C ( 35.4A ) Vin 18Vdc12V 0.5C ( 88.5A ) TSCALE=3600 0 means “Time Scale”11V (Simulation time :10V Real time) is 1:3600 Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) 8V C (capacity) = 177 Ah SOC1 (initial state of charge) = 1 (100%) 7V TSCALE (time scale) , simulation : real time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 1 : 3600s or V(HI) 1s : 1h Time Charge Rate : 0.2C(35.4A), 0.5C(88.5A), and 1C(177A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 6
  7. 7. 1.5 Battery Voltage vs. SOC Charge Characteristics Measurement Simulation 0.2C, Ch 2.0C, Ch 3.0C, Ch 5.0C, Ch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%)• VBAT vs. SOC Charge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 7
  8. 8. 2.1 Solar Cells Specification Suntech’s photovoltaic module : STP140D-12/TEA • Maximum power (Pmax)............140[W] • Voltage at Pmax (Vmp).............17.6[V] • Current at Pmax (Imp)...............7.95[A] • Short-circuit current (Isc)...........8.33[A] • Open-circuit voltage(Voc)..........22.4[V] 1482mm All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 8
  9. 9. 2.2 Output Characteristics vs. Incident Solar Radiation STP140D-12/TEA Output Characteristics vs. Incident Solar Radiation 10A SOL=1 8A Current (A) 6A SOL=0.5 4A + U1 2A SOL=0.16 STP140D-12TEA 0A SOL = 1 I(Isense) 150W SOL=1 Power (W) 100W Parameter, SOL is added as SOL=0.5 normalized incident radiation, 50W where SOL=1 for AM1.5 SOL=0.16 conditions SEL>> 0W 0V 5V 10V 15V 20V 25V V(V1:+)*I(Isense) V_V1 Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 9
  10. 10. 3. Solar Cell Battery Charger• Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage.• Gigacell 10-180 (Ni-MH Battery) – Charging time is approximately 5 hours with charging rate 0.2C or 35.4A – Voltage during charging with 0.2C is between 11.8 to 14.2 V 17V 16V 15V 14V 14.2 V 13V 0.2C or 35.4A 12V 11.8 V 11V 10V 9V 8V 7V 0s 1.0s 2.0s 3.0s 4.0s 5.0s V(HI) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 10
  11. 11. 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module STP140D-12/TEA (Suntech) Gigacell 10-180 (Kawasaki) 10 panels (parallel) DC12V (10 cells) Vmp=17.6V 177Ah Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 11
  12. 12. 3.2 PV Ni-MH Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 14.01dc pv 0 Hi + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} 0 0 0 0 0 0 U1 GIGACELL_10-180 TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 12
  13. 13. 3.3 Charging Time Characteristics vs. Weather Condition 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 13
  14. 14. 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit+ Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Constant Photovoltaic Current Ni-MH Battery Module Control Circuit STP140D-12/TEA Icharge=0.2C (35.4A) Gigacell 10-180 (Kawasaki) (Suntech) DC12V (10 cells) 10 panels (parallel) 177Ah Vmp=17.6V Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 14
  15. 15. 3.5 Constant Current PV Ni-MH Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD rate = 0.2 sol = 1 CAh = 177 Voch 14.01dc pv 0 Hi OUT+ OUT- + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} IN+ IN- 0 0 0 0 0 0 G1 U1 GVALUE GIGACELL_10-180 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 177 and rate = 0.2 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 15
  16. 16. 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2C), battery can be fully charged in about 5 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 16
  17. 17. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr. Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module Low-Voltage Gigacell 10-180 (Kawasaki) STP140D-12/TEA Shutdown DC12V (10 cells) (Suntech) Circuit Vopen=11. 6(V) 177Ah 10 panels (parallel) Vclose= 13.8(V) Vmp=17.6V Pmax=1.4kW DC/DC DC Load Converter VIN=10~18V VL = 5V VOUT=5V IL = 50A All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 17
  18. 18. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 15A 10A U1 + STP140D-12TEA_24H_TS3600 5A 0A 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 12s 14s 16s 18s 20s 22s 24s I(Isense) Time • Short-circuit current vs. time characteristics of photovoltaic module STP140D-12/TEA for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 18
  19. 19. 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery D1 voltage, IC=13.7, for DMOD convergence aid. Voch 14.01Vdc pv 0 D2 batt DMOD+ U6 + U5 + U4 + U3 + U2 C1 0 Low-Voltage Shutdown Circuit 10n + - STP140D-12TEA_24H_TS3600 IC = 13.7 VON = 0.7 0 0 0 0 0 0 VOFF = 0.3 E1 RON = 0.01m Ronof f EVALUE ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 U1 + Lctrl batt1 GIGACELL_10-180 + OUT+ IN++ U11 + U10 + U9 + U8 + U7 C3 TSCALE = 3600 - - OUT- IN- dchth 100 100n Conof f NS = 1 S2 1n SOC1 = 1 0 OUT+ IN+ S IC = 5 Conof f 1 OUT- IN- 100n PARAMETERS: E2 0 0 0 0 0 EVALUE Lopen = 11.6 IF( V(lctrl) > 0.25 ,Lopen ,Lclose) SOC1 value is initial Lclose = 13.8 0 State Of Charge of the battery, is set as DC/DC Converter Lopen value is load 70% of full voltage. shutdown voltage. PARAMETERS: out_dc n=1 Lclose value is load IN OUT Iomax reconnect voltage G1 E3 I1 IN+ OUT+ IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- 50Adc GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 250W Load 0 (5Vx50A). 0  Simulation at 500W load, change I1 from 50A to 100A All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 19
  20. 20. 4.3.1 Simulation Result (SOC1=1, IL=50A or 250W load) 150APV generated current 100A 50A 0A I(pv) PV module charge the battery 16V 100A 1 2Battery voltage 14V 0ABattery current  >> 12V -100A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V Fully charged,Battery SOC SOC1=1 (100%) stop charging SEL>> 0V V(X_U1.SOC) 7.5V 50ADC output voltage 1 2 5.0VDC/DC input current 2.5V >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time  When battery is discharging , current I(U1:PLUS) is minus and when the battery is charging, the current is plus. • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 20
  21. 21. 4.3.2 Simulation Result (SOC1=0.7, IL=50A or 250W load) 150APV generated current 100A 50A 0A I(pv) 15V 1 2 50A V=LopenBattery voltage 0A (8.3138,13.797)Battery current >> -50A V=Lclose (5.7490,11.595) 10V Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V SOC1=0.7Battery SOC Fully charged, stop charging SEL>> 699.201m) 0V V(X_U1.SOC) 7.5V 50A ShutdownDC output voltage 1 2 5.0V 38ADC/DC input current 25A 2.5V Reconnect >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 21
  22. 22. 4.3.3 Simulation Result (SOC1=0.3, IL=50A or 250W load) 150APV generated current 100A 50A 0A I(pv) 15V 75A 1 2Battery voltage 25A (2.0552,11.595) (8.2938,13.798)Battery current >> V=Lclose 10V -75A V=Lopen Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0V Fully charged, ,299.176m)Battery SOC stop charging SEL>> SOC1=0.3 0V V(X_U1.SOC) 7.5V 50ADC output voltage 1 2 5.0V 38A ShutdownDC/DC input current 25A 2.5V >> Reconnect 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging time Time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 22
  23. 23. 4.3.4 Simulation Result (SOC1=0.07, IL=50A or 250W load) 150APV generated current 100A 50A 0A I(pv) 15V 100A 1 2Battery voltage 0ABattery current SEL>> (8.2938,13.798) 10V -100A V=Lclose Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 1.0VBattery SOC Fully charged, SOC1=0.07 stop charging 0V V(X_U1.SOC) 7.5V 50ADC output voltage 1 2 5.0V 38A ShutdownDC/DC input current 25A Reconnect >> 13A 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Time Charging time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 23
  24. 24. 4.3.5 Simulation Result (SOC1=1, IL=100A or 500W load) 150APV generated current 100A 50A 0A I(pv) V=Lclose V=Lopen 15.0V 100A 1 2 (4.2247,11.627) V=Lopen (21.778,11.600)Battery voltage 12.5V 0ABattery current (8.2850,13.799) SEL>> 10.0V -100A 1 V(batt) 2 I(U1:PLUS) Battery supplies current when solar 1.0V power drops.Battery SOC Fully charged, SOC1=100 stop charging 0V V(X_U1.SOC) 7.5V 50ADC output voltage 1 2 Shutdown Shutdown 5.0VDC/DC input current 2.5V Reconnected >> 0V 0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_dc) 2 I(IN) Charging Time time • .Options • C1: IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.01s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 24
  25. 25. 4.3.4 Simulation Result (Example of Conclusion)The simulation start from midnight(time=0). The system supplies DC load 250W.• If initial SOC is 100%, – this system will never shutdown.• If initial SOC is 70%, – this system will shutdown after 5.749 hours (about 5:45AM.). – system load will reconnect again at 8:19AM.• If initial SOC is 30%, – this system will shutdown after 2.055 hours (about 2:03AM.). – system load will reconnect again at 8:18AM.• If initial SOC is 7%, – this system will start shutdown. – this system will reconnect again at 8:18AM (Morning).• With the PV generated current profile, battery will fully charged in about 5.7 hours.The simulation start from midnight(time=0). The system supplies DC load 500W.• If initial SOC is 100%, – this system will shutdown after 4.225 hours (about 4:14AM.). – system load will reconnect again at 8:17AM. – this system will shutdown again at 9:47PM.• With the PV generated current profile, battery will fully charged in about 6.7 hours. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 25
  26. 26. Simulations index Simulations Folder name 1. PV Ni-MH Battery Charger Circuit.................................................. charge-sol 2. Constant Current PV Ni-MH Battery Charger Circuit..................... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=1, 250W)............... sol_24h_soc100 4. PV-Battery System Simulation Circuit (SOC1=0.7, 250W)............ sol_24h_soc70 5. PV-Battery System Simulation Circuit (SOC1=0.3, 250W)............ sol_24h_soc30 6. PV-Battery System Simulation Circuit (SOC1=0.07, 250W).......... sol_24h_soc7 7. PV-Battery System Simulation Circuit (SOC1=1, 500W)............... sol_24h_soc100_500W All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 26

×