Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Spiceを活用したモーター駆動制御シミュレーションセミナー資料

1,564 views

Published on

  • Be the first to comment

  • Be the first to like this

Spiceを活用したモーター駆動制御シミュレーションセミナー資料

  1. 1. 1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例1.2シンプルモデルを活用して自分の必要なSPICEモデルを作成する2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路4.モーター駆動制御関連のデバイスモデリングサービスのご案内5.質疑応答SPICEを活用したモーター駆動制御シミュレーションセミナー2013年4月19日1Copyright (C) Bee Technologies2013
  2. 2. マルツエレックのサービス様々なシチュエーションでお客様の【ものづくり】をサポート致します回路設計の技術サポート回路シミュレーションのアプローチで御社の回路設計をサポートいたします。部品調達大量調達、中止品調達お任せ下さい!WebShopと12店舗のネットワークで、部品調達を徹底サポート致します。基板設計・製造・実装試作から量産まで承ります。実装だけでなく調達もお任せ下さい。ケース、ハーネス加工穴あけ、切削、シルク印刷など指示書一枚で様々な加工が可能です。2Copyright (C) Bee Technologies2013
  3. 3. Motenergy, Inc (ME0913)Motor Electrical Parameters• Operating Voltage Range..........................0 – 72 VMAX• Rated Continuous Current........................140 Arms• Peak Stalled Current.................................400 Arms• Voltage Constant.......................................50 RPM/V• Phase Resistance (L-L).............................0.0125 Ω• Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz• Maximum Continuous Power Rating……..17KW at 102VDC Battery Voltage14.3KW at 84VDC Battery Voltage12KW at 72VDC Battery VoltageMotor Mechanical Parameters• Rated Speed.............................................3000 RPM• Maximum Speed.......................................5000 RPM• Rated Torque............................................288 Lb-in• Torque Constant.......................................1.6 Lb-in/ACopyright (C) Bee Technologies2013 31.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  4. 4. • The Torque are defined by :At 140Arms (Rated Continuous Current)KT = 1.6 Lb-in/ATphe = 1.6  140 = 224Lb-inTe = 224*3= 672Lb-in• The Back-EMF are defined by :At 5000 RPM (Maximum Speed)Ephe ≈ VBAT (In an ideal motor, R and L are zero)Ephe = 102VKE = Ephe /ωm = 102 / 5000KE ≈ 0.02V/RPMTorque and Back-EMFCopyright (C) Bee Technologies2013 4wTwvTvuTuIKTIKTIKTmEwmEvmEuKEKEKEphe: u, v, wVphe : Phase voltage applied from inverter tomotorVAC : Operating voltage range (Maximumvoltage)VBAT : DC Voltage applied from batteryIphe : Phase currentTphe : Electric torque produced by u, v, w phaseTe : Electric torque produced by motorEphe : Phase Back-EMFKE : Back-EMF constantKT : Torque constantωm : Angular speed of rotor 1 Pound Inch equals 0.11 NmTwTvTueT (1)(2)(3)1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  5. 5. Copyright (C) Bee Technologies2013 5L11 2BEMF1R1L21 2BEMF2R2L31 2BEMF3R3N0UVWPhase Resistance (L-L) : 0.0125ΩPhase Inductance : 105uH: 110uHFrequency Response105uH110uHFig.2 Phase-to-GroundFig. 1 Scheme of the 3-Phase Model1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  6. 6. PARAMETERS:KT = 1.6KE = 0.02LL = 105URLL = 0.0125PARAMETERS:LOAD = 140U3LM = {LL}IL = {LOAD}KT0 = {KT}RM = {RLL*0.5}12SPTQemf _u0IN+IN-OUT+OUT-EMF_Veu0IN+IN-OUT+OUT-EMF_W0IN+IN-OUT+OUT-ELIM_V0lim_vIN+IN-OUT+OUT-ESP00IN+IN-OUT+OUT-ELIM_Wlim_w0emf _vevemf _u-++-E20emf _vemf _wew-++-E3emf _w0n1tu0tv0twN0n2Un3WVVuspeedU4AND3AMBIN+IN-OUT+OUT-ETQ0mulVvtorqueVw-++-E100IN+IN-OUT+OUT-EMF_U0IN+IN-OUT+OUT-ELIM_U0lim_usp_vsp_usp_usp_wsp_wsp_vU1LM = {LL}IL = {LOAD}KT0 = {KT}RM = {RLL*0.5}12SPTQU2LM = {LL}IL = {LOAD}KT0 = {KT}RM = {RLL*0.5}12SPTQThe 3-Phase AC Motor Equivalent Circuit• This figure shows the equivalent circuit of AC motor model that includes the |Z|-frequency part ,Back-EMF voltage part ,and Mechanical part.• The Back-EMF voltage is the voltage generated across the motors terminals as thewindings move through the motors magnetic field.Copyright (C) Bee Technologies2013 6|Z| - Frequency Back-EMF VoltageMechanical partFig. 3 Three-Phase AC Motor Equivalent Circuit1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  7. 7. Parameters SettingsCopyright (C) Bee Technologies2013 7LOAD : Load current each phase of motor [Arms]– e.g. LL = 125Arms, 140Arms, or 400ArmsLL : Phase inductance [H]– e.g. LL = 10mH, 100mH, or 1HRLL : Phase resistance (Phase-to-phase) [Ω]– e.g. RLL = 10mΩ, 100mΩ, or 1ΩKE : Back-EMF constant [V/RPM]– e.g. KE= 0.01, 0.05, or 0.1KT : Torque constant [Lb-in/A]– e.g. KT= 0.1, 0.5, or 1 1 Pound Inch equals 0.11 NmModel Parameters:Fig. 4 Symbol of 3-Phase Induction Motor• From the 3-Phase Induction Motor specification, the model is characterized by setting parametersLL, RLL, KE, KT and LOAD.M N0U1ME0913LL = 105ULOAD = 140KT = 1.6KE = 0.02RLL = 0.012512341.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  8. 8. Simulation Circuit of 3-Phase AC Motor ModelCopyright (C) Bee Technologies2013 8• Fig.5 Analysis of motor operation powered byalternating voltage variation involves using themodel of three-phase induction motor.N0N0RURVRWU2GDRVUDUPVDVPWDWPRU, RV, RW: 173.75mUP UD VDVP WP WDV1102V +-+-S1 D1DMOD_01+-+-S2 D2DMOD_01UPUD00+-+-S3M N0U1ME0913LL = 105ULOAD = 140KT = 1.6KE = 0.02RLL = 0.01251234D3DMOD_01+-+-S4 D4DMOD_01VPVD00+-+-S5 D5DMOD_01+-+-S6 D6DMOD_01WPWD00U0VWV2102V1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  9. 9. Phase Current Characteristics Under Load Variation- Simulation ResultsCopyright (C) Bee Technologies2013 9Fig. 6 Current Characteristics under load ConditionTime0s 500msI(RU)/SQRT(2)-500A0A500ATime0s 500msI(RU)/SQRT(2)-500A0A500ATime0s 500msI(RU)/SQRT(2)-500A0A500ALoad 50ArmsLoad 140ArmsLoad 200Arms Reference of Phase U1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  10. 10. Time0s 500msV(X_U1.EU)-200V-100V0V100V200VTime0s 500msV(X_U1.EU)-200V-100V0V100V200VTime0s 500msV(X_U1.EU)-200V-100V0V100V200VBack-EMF Characteristics Under Load Condition- Simulation ResultsCopyright (C) Bee Technologies2013 10Fig. 7 Back-EMF Characteristics under load ConditionLoad 50ArmsLoad 140ArmsLoad 200Arms Reference of Phase U1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  11. 11. Time0s 500msV(X_U1.tu)0V0.5KV1.0KV(446.486m,223.728)V(X_U1.speed)0V1.0KV2.0KV3.0KV4.0KVSEL>>(464.146m,3.2311K)Speed and Torque Characteristics At 140Arms- Simulation ResultsCopyright (C) Bee Technologies2013 11Fig. 8 Speed and Torque Characteristics at Load=140ArmsThe Load 140(Arms) is Rated Continuous CurrentTphe: Electric torque produced by each phaseRPMLb-in Reference of Phase U1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  12. 12. Time0.5s 1.0s100*( (RMS(V(U,N0))*RMS(I(RU))) / (RMS(V(RU:1,N0))*RMS(I(RU))) )050100(962.500m,81.941)RMS(V(RU:1,N0))*RMS(I(RU))0W10KW20KWSEL>>(960.616m,13.662K)Power Output and Efficiency Characteristics At 140Arms- Simulation ResultsCopyright (C) Bee Technologies2013 12Fig. 9 Power Output and Efficiency Characteristics at Load=140ArmsAt Load=140Arms, Power Output ≈ 13.7 [KW]At Load=140Arms, Efficiency ≈ 82 [%]Watt[%] Reference of Phase U1.ACモーター駆動制御シミュレーション1.1コンセプトキットを活用した事例
  13. 13. Parameter Settings If there is no measurement data, the default value will beused:Rm: motor winding resistance []Lm: motor winding inductance [H]Data is given by D.C. motor spec-sheet:V_norm: normal voltage [V]mNm: normal load [mNm]kRPM_norm: speed at normal load [kr/min]I_norm: current at normal load [A]Load Condition:IL: load current [A]Copyright (C) Bee Technologies2013 13Model Parameters:D.C. Motor model and Parameters with Default Value-+U1SMPL_DC_MOTORRm = 0.1Lm = 100uI_norm = 6.1mNm = 19.6V_norm = 7.2kRPM_norm = 14.4IL = 6.12.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  14. 14. D.C. Motor Specification (Example)Copyright (C) Bee Technologies2013 14-+U1SMPL_DC_MOTORRm = 0.1Lm = 100uI_norm = 6.1mNm = 19.6V_norm = 7.2kRPM_norm = 14.4IL = 6.1 D.C. Motor SpecificationParameters are input2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  15. 15. 00VMVIMV1V2 = {VOUT}T2 = 0.01mPARAMETERS:VOUT = 10.25Rs = 0.5RS{Rs}-+U1SMPL_DC_MOTORRm = 0.1Lm = 100uI_norm = 6.1mNm = 19.6V_norm = 7.2kRPM_norm = 14.4IL = 6.1• *Analysis directives:• .TRAN 0 400m 0 0.1m• .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))Copyright (C) Bee Technologies2013 15Current SensingSimplified D.C. Motor withRS-540SH Spec.Input the Supply NoLoad Voltage* andSeries ResistanceSimulation Circuit and Setting*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_normMotor Start Up Simulation at Normal Load (1/3)2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  16. 16. Motor Start Up Simulation at Normal Load (2/3)Copyright (C) Bee Technologies2013 16Select “All” for the Voltagesand Currents DataCollection Options.2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  17. 17. Motor Start Up Simulation at Normal Load (3/3)Copyright (C) Bee Technologies2013 17Time0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400msI(VIM)0A10A20AV(VM)0V5V10VSEL>>I(X_U1.V_kRPM)0A10A20AV(X_U1.TRQ)0V40V80VD.C. Motor Current = 6.1AD.C. Motor Voltage = 7.2VD.C. Motor Speed = 14.4krpmTorque Load= 19.6mNm2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  18. 18. • *Analysis directives:• .TRAN 0 400m 0 0.1m• .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))Copyright (C) Bee Technologies2013 18Current SensingSimplified D.C. Motor withRS-540SH Spec.Input the Supply NoLoad Voltage* andSeries ResistanceSimulation Circuit and Setting*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_normMotor Start Up Simulation at Half of Normal Load (1/2)00VMVIMV1V2 = {VOUT}T2 = 0.01mPARAMETERS:VOUT = 10.25Rs = 0.5RS{Rs}-+U1SMPL_DC_MOTORRm = 0.1Lm = 100uI_norm = 6.1mNm = 19.6V_norm = 7.2kRPM_norm = 14.4IL = 3.052.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  19. 19. Time0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400msI(VIM)0A10A20AV(VM)0V5V10VI(X_U1.V_kRPM)0A10A20ASEL>>V(X_U1.TRQ)0V40V80VMotor Start Up Simulation at Half of Normal Load (2/2)Copyright (C) Bee Technologies2013 19D.C. Motor Current = 3.05AD.C. Motor Voltage = 8.725VD.C. Motor Speed = 18.4krpmTorque Load= 9.8mNm2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  20. 20. -+U2SMPL_DC_MOTORRm = 0.576Lm = 165uI_norm = 2.9mNm = 9.8V_norm = 7.2kRPM_norm = 14.2IL = 0.6NCNCNCAKVCCVOGNDU1TLP350V1TD = 0TF = 10nPW = 199.99uPER = 400uV1 = 0TR = 10nV2 = 1.80R11u0Vcc15V0VCCVDD0RG1200DGT10J321_sD3VCCVdd15VVDD0D4001D2U3GT10J321Copyright (C) Bee Technologies2013 20Simplified D.C. Motor with RS-380PH Spec at No load.Simulation Circuit and SettingNo load IL=0.6Application Example (1/3)2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  21. 21. Time-100ms 0s 100ms 300ms 500ms 700ms 900ms1 I(U2:1) 2 V(U2:1,U2:2)-2A0A2A4A6A8A10A12A14A1-60V-50V-40V-30V-20V-10V0V10V20V2>>Application Example (2/3)Copyright (C) Bee Technologies2013 21Measurement SimulationMotor Current (2A/Div)Motor Voltage (10V/Div)2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  22. 22. Time898.0ms 898.4ms 898.8ms 899.2ms 899.6ms1 I(U3:C) 2 V(U3:C) 3 V(U3:G)-2A0A2A4A6A8A10A12A14A1>>-30V-20V-10V0V10V20V30V40V50V2-60V-50V-40V-30V-20V-10V0V10V20V3Application Example (3/3)Copyright (C) Bee Technologies2013 22Measurement SimulationIGBT: VGEIGBT: VCEIGBT: ICIGBT: VGE (10V/Div)IGBT: VCE (10V/Div)IGBT: IC (2A/Div)2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  23. 23. Time898.0ms 898.4ms 898.8ms 899.2ms 899.6ms1 I(U3:C) 2 V(U3:C) 3 V(U3:G)-2A0A2A4A6A8A10A12A14A1-30V-20V-10V0V10V20V30V40V50V2-60V-50V-40V-30V-20V-10V0V10V20V3>>Winding Characteristic Parameters: LmCopyright (C) Bee Technologies2013 23-+U2SMPL_DC_MOTORRm = 0.576Lm = 165uI_norm = 2.9mNm = 9.8V_norm = 7.2kRPM_norm = 14.2IL = 0.6Winding Characteristic: LmMotor Spec.Load ConditionLm=165uLm=100uThe Motor Current Waveform is changedby the Lm values.Lm=165uLm=100u2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  24. 24. Winding Characteristic Parameters: RmCopyright (C) Bee Technologies2013 24-+U2SMPL_DC_MOTORRm = 0.576Lm = 165uI_norm = 2.9mNm = 9.8V_norm = 7.2kRPM_norm = 14.2IL = 0.6Winding Characteristic: RmMotor Spec.Load ConditionRm=0.576Rm=0.1The Motor Start-up is Current changedby the Rm values.2.DCモーター駆動制御シミュレーション2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  25. 25. Copyright (C) Bee Technologies2013 25BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m0U101-PHASEPPS = 100CLKFA/FAFB/FB00U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7ANDUnipolar Stepping Motor Drive Circuit SimulationPSpice Version3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  26. 26. Contents1. Concept of Simulation2. Unipolar Stepping Motor Drive Circuit3. Unipolar Stepping Motor4. Switches5. Signal Generator6. Hysteresis-Based Current Controller7. Unipolar Stepping Motor Drive Circuit (Example)7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A8. Drive Circuit EfficiencyCopyright (C) Bee Technologies2013 263.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  27. 27. Copyright (C) Bee Technologies2013 27Driver Unit:(e.g. Hysteresis-Based Controller)Parameter:• I_SET• HYSSwitches(e.g. FET,Diode)Parameter:• RonSteppingMotorParameter:• L• RControl Unit(e.g. Microcontroller)Sequence:• One-Phase• Two-Phase• Half-StepU?1-PHASEPPS = 100CLKFA/FAFB/FBU?2-PHASEPPS = 100CLKFA/FAFB/FBU?HALF-STEPPPS = 100CLKFA/FAFB/FBBBcomA/BAcom/AU?UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2Models:Block Diagram:DIODED10+-+-S1SRON = 10mVCCCtrl_A AConcept of SimulationU2AND+-REF-+FB.U1HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}Ctrl_AFA3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  28. 28. 2.Unipolar Stepping Motor Drive CircuitCopyright (C) Bee Technologies2013 28Signal generator Hysteresis Based CurrentControllerSwitches Unipolar Stepping Motor Supply VoltageBBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m0U101-PHASEPPS = 100CLKFA/FAFB/FB00U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7AND3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  29. 29. Unipolar Stepping MotorCopyright (C) Bee Technologies2013 29• The electrical equivalent circuit of each phase consists ofan inductance of the phase winding series with resistance.• The inductance is ideal (without saturation characteristicsand the mutual inductance between phases)• The motor back EMF is set as zero to simplified the modelparameters extraction.BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2Input the inductance and resistance values (parameter: L, R) of thestepping motor, that are usually provided by the manufacturer datasheet,to generally model the phase winding.3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  30. 30. SwitchesCopyright (C) Bee Technologies2013 30• A near-ideal DIODE can be modeled by using spiceprimitive model (D), which parameter: N=0.01 RS=0.• A near-ideal MOSFET can be modeled by using PSpiceVSWITCH that is voltage controlled switch.DIODED10+-+-S1SRON = 10mVCCCtrl_A AThe parameter RON represents Rds(on) characteristics ofMOSFET, that are usually provide by the manufacturer datasheet.The value could be about 10m to 10 ohm.3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  31. 31. Signal GeneratorThe signal generators are used as a microcontroller capable of generating step pulses anddirection signals for the driver.There are 3 useful stepping sequences to control unipolar stepping motorCopyright (C) Bee Technologies2013 31One-Phase (Wave Drive)• Consumes the least power.• Assures the accuracy regardless of the winding imbalance.Two-Phase (Hi-Torque)• Energizes 2 phases at the same time.• Offers an improved torque-speed result and greater holding torque.U?1-PHASEPPS = 100CLKFA/FAFB/FBU?2-PHASEPPS = 100CLKFA/FAFB/FBU?HALF-STEPPPS = 100CLKFA/FAFB/FBHalf-Step• Doubles the stepping resolution of the motor.• Reduces motor resonance which could cause a motor to stall at a resonant frequency.• Please note that this sequence is 8 steps.Input PPS (Pulse Per Second) as a clock pulse speed(frequency).3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  32. 32. One-Phase SequenceCopyright (C) Bee Technologies2013 32Time0s 40ms 80msV(/FB)0V5.0VSEL>>V(FB)0V2.5V5.0VV(/FA)0V2.5V5.0VV(FA)0V2.5V5.0VV(CLK)0V2.5V5.0VONONONONClockPhase APhase /APhase BPhase /B1 Sequence3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  33. 33. Time0s 40ms 80msV(/FB)0V5.0VSEL>>V(FB)0V2.5V5.0VV(/FA)0V2.5V5.0VV(FA)0V2.5V5.0VV(CLK)0V2.5V5.0VTwo-Phase SequenceCopyright (C) Bee Technologies2013 33ONONONON1 SequenceClockPhase APhase /APhase BPhase /BON3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  34. 34. Time0s 80ms 160msV(/FB)0V5.0VSEL>>V(FB)0V2.5V5.0VV(/FA)0V2.5V5.0VV(FA)0V2.5V5.0VV(CLK)0V2.0V4.0VHalf-Step SequenceCopyright (C) Bee Technologies2013 34ONONON1 SequenceClockPhase APhase /APhase BPhase /BON3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  35. 35. 6.Hysteresis-Based Current ControllerCopyright (C) Bee Technologies2013 35• Controlled by the signal from themicrocontroller.• Generate the switch (MOSFET) drive signal bycomparing the measured phase current withtheir references.Input the reference value at the I_SET (e.g. I_SET=0.5A)to set the regulated current level. The hysteresiscurrent value is set at the VHYS (e.g. VHYS=0.1A).U2AND+-REF-+FB.U1HYS_I-CTRLI_SET = 0.5VHYS = 0.1Ctrl_AFA
  36. 36. BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m0U101-PHASEPPS = 100CLKFA/FAFB/FB00U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7ANDOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 36*Analysis directives:.TRAN 0 40ms 0 10uOne-Phase StepSequenceGenerator (100pps)3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  37. 37. Time0s 10ms 20ms 30ms 40ms1 V(/FB) 2 -I(U1:/B)0V2.5V5.0V10A0.5A1.0A2SEL>>SEL>>1 V(FB) 2 -I(U1:B)0V2.5V5.0V10A0.5A1.0A2>>1 V(/FA) 2 -I(U1:/A)0V2.5V5.0V10A0.5A1.0A2>>1 V(FA) 2 -I(U1:A)0V2.5V5.0V10A0.5A1.0A2>>V(CLK)0V2.5V5.0VOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 37ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  38. 38. BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m000U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7ANDU102-PHASEPPS = 100CLKFA/FAFB/FBTwo-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 38*Analysis directives:.TRAN 0 40ms 0 10u SKIPBP.OPTIONS ITL4= 40Two-Phase StepSequenceGenerator (100pps)3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  39. 39. Time0s 10ms 20ms 30ms 40ms1 V(/FB) 2 -I(U1:/B)0V2.5V5.0V10A0.5A1.0A2SEL>>SEL>>1 V(FB) 2 -I(U1:B)0V2.5V5.0V10A0.5A1.0A2>>1 V(/FA) 2 -I(U1:/A)0V2.5V5.0V10A0.5A1.0A2>>1 V(FA) 2 -I(U1:A)0V2.5V5.0V10A0.5A1.0A2>>V(CLK)0V2.5V5.0VTwo-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 39ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  40. 40. BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m000U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7ANDU10HALF-STEPPPS = 100CLKFA/FAFB/FBHalf-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 40*Analysis directives:.TRAN 0 80ms 0 10u SKIPBP.OPTIONS ITL4= 40Half-Phase StepSequenceGenerator (100pps)3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  41. 41. Time0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms1 V(/FB) 2 -I(U1:/B)0V2.5V5.0V10A0.5A1.0A2SEL>>SEL>>1 V(FB) 2 -I(U1:B)0V2.5V5.0V10A0.5A1.0A2>>1 V(/FA) 2 -I(U1:/A)0V2.5V5.0V10A0.5A1.0A2>>1 V(FA) 2 -I(U1:A)0V2.5V5.0V10A0.5A1.0A2>>V(CLK)0V2.5V5.0VHalf-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 41ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  42. 42. BBcomA/BAcom/AU1UNI-POLAR_STEP_MOTRL = 2.5MR = 4.2U8ANDU9ANDR11k0FBDIODED1DIODED2DIODED3DIODED4PARAMETERS:I_SET = 0.5VHYS = 0.1B0PARAMETERS:RON = 10m0U101-PHASEPPS = 100CLKFA/FAFB/FB00U6ANDFA+-REF-+FB.U2HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FA/FBVCC+-REF-+FB.U3HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-REF-+FB.U4HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/B/A+-+-S4SRON = {RON}A+-REF-+FB.U5HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}CLK+-+-S1SRON = {RON}+-+-S2SRON = {RON}+-+-S3SRON = {RON}VCCVCC VCC0VCCVcc12VCCVCCU7ANDWWDrive Circuit Efficiency (%)Copyright (C) Bee Technologies2013 42*Analysis directives:.TRAN 0 40ms 0ms 10u SKIPBP.STEP PARAM RON LIST 10m, 100m, 1.OPTIONS ITL4= 40Half-Phase StepSequenceGenerator (100pps)3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  43. 43. Time10ms 15ms 20ms 25ms 30ms 35ms 40ms100* AVG(W(U1))/(-AVG(W(Vcc)))949698100Drive Circuit Efficiency (%)Copyright (C) Bee Technologies2013 43at switches Ron = 10m, (99.6%)at switches Ron = 100m, (99.3%)at switches Ron = 1, (95.9%)Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.3.ステッピングモーター駆動制御シミュレーション3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  44. 44. Copyright (C) Bee Technologies2013 44Bipolar Stepping Motor Drive Circuit SimulationPSpice VersionVCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED6BL0PARAMETERS:RON = 10m+-+-S1SVCCPARAMETERS:I_SET = 0.5VHYS = 0.10+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2ALA0+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kFBCLK0OUIOLU4GDRV/A/BU151-PHASEPPS = 100CLKFA/FAFB/FB3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  45. 45. Unipolar Stepping Motor Drive CircuitContents1. Concept of Simulation2. Unipolar Stepping Motor Drive Circuit3. Unipolar Stepping Motor4. Switches5. Unipolar Stepping Motor Drive Circuit (Example)7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A6. Drive Circuit EfficiencyCopyright (C) Bee Technologies2013 453.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  46. 46. Copyright (C) Bee Technologies2013 46Driver Unit:(e.g. Hysteresis-Based Controller)Parameter:• I_SET• HYSSwitches(e.g. FET,Diode)Parameter:• RonSteppingMotorParameter:• L• RControl Unit(e.g. Microcontroller)Sequence:• One-Phase• Two-Phase• Half-StepU?1-PHASEPPS = 100CLKFA/FAFB/FBU?2-PHASEPPS = 100CLKFA/FAFB/FBU?HALF-STEPPPS = 100CLKFA/FAFB/FBModels:Block Diagram:DIODED10+-+-S1SRON = 10mVCCCtrl_A AConcept of SimulationU2AND+-REF-+FB.U1HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}Ctrl_AFAA/AB/BU?BI-POLAR_STEP_MOTRL = 10mR = 8.43.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  47. 47. Signal generator Hysteresis BasedCurrent Controller VCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED6BL0PARAMETERS:RON = 10m+-+-S1SVCCPARAMETERS:I_SET = 0.5VHYS = 0.10+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2ALA0+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kFBCLK0OUIOLU4GDRV/A/BU151-PHASEPPS = 100CLKFA/FAFB/FBBipolar Stepping Motor Drive CircuitCopyright (C) Bee Technologies2013 47Bipolar Stepping Motor Supply VoltageH-Bridge Switches (Driver)3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  48. 48. Bipolar Stepping MotorCopyright (C) Bee Technologies2013 48• The electrical equivalent circuit of each phase consists of aninductance of the phase winding series with resistance.• The inductance is ideal (without saturation characteristicsand the mutual inductance between phases)• The motor back EMF is set as zero to simplified the modelparameters extraction.Input the inductance and resistance values (parameter: L, R) of thestepping motor, that are usually provided by the manufacturer datasheet,to generally model the phase winding.A/AB/BU?BI-POLAR_STEP_MOTRL = 10mR = 8.43.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  49. 49. SwitchesCopyright (C) Bee Technologies2013 49• A near-ideal DIODE can be modeled by using spiceprimitive model (D), which parameter: N=0.01RS=0.• A near-ideal MOSFET can be modeled by using PSpiceVSWITCH that is voltage controlled switch.• MOSFETs are used as a H-Bridge.The parameter RON represents Rds(on)characteristics of MOSFET, that are usuallyprovide by the manufacturer datasheet. Thevalue could be about 10m to 10 ohm.OUIOLU2GDRVOUIOLU3GDRV+-+-S1S0VCCDIODED1AU+-+-S2SRON = 10mDIODED2AL0+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0Ctrl_ACtrl_/AA/A3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  50. 50. VCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED60BLPARAMETERS:RON = 10m+-+-S1S0VCCPARAMETERS:I_SET = 0.5VHYS = 0.1+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2AL0A+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kCLK0FBOUIOLU4GDRV/A/BU151-PHASEPPS = 100CLKFA/FAFB/FBOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 50*Analysis directives:.TRAN 0 80ms 0 10u SKIPBP.OPTIONS ITL4= 40One-Phase StepSequence Generator(100 pps)3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  51. 51. Time0s 20ms 40ms 60ms 80ms1 V(/FB) 2 I(U1:/B)0V2.5V5.0V10A500mA2SEL>>SEL>>1 V(FB) 2 I(U1:B)0V2.5V5.0V10A500mA2>>1 V(/FA) 2 I(U1:/A)0V2.5V5.0V10A500mA2>>1 V(FA) 2 I(U1:A)0V2.5V5.0V10A500mA2>>V(CLK)0V2.5V5.0VOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 51ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  52. 52. Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 52*Analysis directives:.TRAN 0 80ms 0 10u SKIPBP.OPTIONS ITL4= 40VCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED60BLPARAMETERS:RON = 10m+-+-S1S0VCCPARAMETERS:I_SET = 0.5VHYS = 0.1+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2AL0A+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kCLK0FBOUIOLU4GDRV/A/BU152-PHASEPPS = 100CLKFA/FAFB/FBOne-Phase StepSequence Generator(100 pps)3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  53. 53. Time0s 20ms 40ms 60ms 80ms1 V(/FB) 2 I(U1:/B)0V2.5V5.0V10A500mA2SEL>>SEL>>1 V(FB) 2 I(U1:B)0V2.5V5.0V10A500mA2>>1 V(/FA) 2 I(U1:/A)0V2.5V5.0V10A500mA2>>1 V(FA) 2 I(U1:A)0V2.5V5.0V10A500mA2>>V(CLK)0V2.5V5.0VOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 53ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  54. 54. VCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7U15HALF-STEPPPS = 100CLKFA/FAFB/FB/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED60BLPARAMETERS:RON = 10m+-+-S1S0VCCPARAMETERS:I_SET = 0.5VHYS = 0.1+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2AL0A+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kCLK0FBOUIOLU4GDRV/A/BHalf-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 54*Analysis directives:.TRAN 0 160ms 0 10u SKIPBP.OPTIONS ITL4= 40One-Phase StepSequence Generator(100 pps)3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  55. 55. Time0s 40ms 80ms 120ms 160ms1 V(/FB) 2 I(U1:/B)0V2.5V5.0V10A500mA2SEL>>SEL>>1 V(FB) 2 I(U1:B)0V2.5V5.0V10A500mA2>>1 V(/FA) 2 I(U1:/A)0V2.5V5.0V10A500mA2>>1 V(FA) 2 I(U1:A)0V2.5V5.0V10A500mA2>>V(CLK)0V2.5V5.0VOne-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1ACopyright (C) Bee Technologies2013 55ClockPhase A CurrentI_SET=0.5AI_HYS=0.1APhase /A CurrentPhase B CurrentPhase /B Current3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  56. 56. VCC0Vcc12A/AB/BU1BI-POLAR_STEP_MOTRL = 10mR = 8.4OUIOLU2GDRV+-+-S7SVCC0DIODED7/BU+-+-S8SDIODED8/BL0OUIOLU3GDRVOUIOLU5GDRVB+-REF-+FB.U11HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}/FB+-REF-+FB.U7HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}FA+-+-S5SVCC0DIODED5BU+-+-S6SDIODED60BLPARAMETERS:RON = 10m+-+-S1S0VCCPARAMETERS:I_SET = 0.5VHYS = 0.1+-REF-+FB.U13HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}DIODED1AU+-+-S2SDIODED2AL0A+-REF-+FB.U9HYS_I-CTRLI_SET = {I_SET}VHYS = {VHYS}+-+-S3SVCC0DIODED3/AU+-+-S4SDIODED4/AL0U8ANDU10ANDU12ANDU14AND/FAR11kCLK0FBOUIOLU4GDRV/A/BU152-PHASEPPS = 100CLKFA/FAFB/FBDrive Circuit Efficiency (%)Copyright (C) Bee Technologies2013 56*Analysis directives:.TRAN 0 80ms 0 10u SKIPBP.STEP PARAM RON LIST 10m, 100m, 1.OPTIONS ITL4= 40One-Phase StepSequence Generator(100 pps)3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  57. 57. Time10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms100*AVG(W(U1))/(-AVG(W(Vcc)))859095100Drive Circuit Efficiency (%)Copyright (C) Bee Technologies2013 57at switches Ron = 10m, (99.7%)at switches Ron = 100m, (99.8%)at switches Ron = 1, (86%)Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.3.ステッピングモーター駆動制御シミュレーション3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  58. 58. Copyright (C) Bee Technologies2013 584.モーター駆動制御関連のデバイスモデリングサービスのご案内http://ow.ly/kbfi2http://ow.ly/kbftShttp://ow.ly/kbfCy
  59. 59. Copyright (C) Bee Technologies2013 59質疑応答

×