Solved Examples
in
Fluid Mechanics
2016 -2019
Valve
A B
Sections “A” and “B” in pipeline (shown schematically in the figure given
below) are at the same elevation of 2.50 m above datum. A valve lies in-
between “A” and “B”. The flow parameters at “A” are:
Velocity head = 0.50 m
Pressure head = 2.50 m, and
Valve loss is 0.20 m
The Piezometric head at “B” is:
(a) 5.50 m (b) 5.30 m
(c) 5.00 m (d) 4.80 m
Water is pumped from a reservoir through 150 mm diameter pipe and is delivered
at a height of 15 m from center line of the pump through a 100 mm nozzle
connected to a 150 mm discharge line (see the attached figure). If the pressure at
pump inlet is 210 kN/ m2 absolute, inlet velocity of 6 m/s and the jet is discharged
into atmosphere, determine:
The energy supplied by the pump,
(Assume atmospheric pressure as 101.3 kN/m2 and no friction)
The suction and delivery pipe diameters of a pump are 200 mm and 100 mm
respectively. If the inlet and outlet pressures are 70 kN/m2 and 210 kN/m2
respectively and pump delivers 40 kw power to the fluid, find:
The discharge of water flowing through the pump.
(Assume exit to be 0.5 m above the inlet)
Fig ( ) shows a Venturi-meter with its axis vertical and arranged as suction
device. The throat and outlet areas of the Venturi- are 0.00025 m2 and
0.001 m2 respectively. If the Venturi discharges into atmosphere,
determine:
 The minimum discharge in the Venturi-meter at which flow will occur up
the suction pipe.
Water
1.0 m
2.0 m
1.9 m
1
3
Water
2
Apply Bernoulli’s equation between sections “2” and “3”
𝑍2 +
𝑃2
𝜌 𝑔
+
𝑉2
2
2 𝑔
= 𝑍3 +
𝑃3
𝜌 𝑔
+
𝑉3
2
2 𝑔
…………………. (1)
However according to continuity equation,
𝐴2 ∙ 𝑉2= 𝐴3 ∙ 𝑉3 or 0.00025 × 𝑉2= 0.001 × 𝑉3
i.e. 𝑉2= 4 𝑉3
and since pressure at “3” is atmospheric, take 𝑃3 = 𝑃𝑎𝑡𝑚. = o, and Eq. (1)
gives
2.0 ? .90 0
𝑍2 +
𝑃2
𝜌 𝑔
+
𝑉2
2
2 𝑔
= 𝑍3 +
𝑃3
𝜌 𝑔
+
𝑉3
2
2 𝑔
16−1 𝑉2
2
2 𝑔
=
15 𝑉2
2
2 𝑔
= − 0.10 −
𝑃2
𝜌 𝑔
…………………. (2)
Further, since water will rise to section “2”
𝑍1 +
𝑃1
𝜌 𝑔
+
𝑉1
2
2 𝑔
= 𝑍2 +
𝑃2
𝜌 𝑔
+
𝑉2
2
2 𝑔
or,
𝑃2
𝜌 𝑔
= − 𝑍2 − 𝑍1 = −1.0 …………………. (2)
From Eqs. “2” & “3”
15 𝑉2
2
2 𝑔
= − 0.10 −
𝑃2
𝜌 𝑔
= − 0.10 − +1.0 = 0.90
∴ 𝑉2 =
2×9.81×0.90
15
= 1.85 𝑚 𝑠
The minimum discharge in the Venturi—meter
𝑄 = 𝐴 ∙ 𝑉 = 0.001 × 1.085 = 1.85 × 10−3
𝑚3
𝐿𝑠 = 1.085 𝐿 𝑠
= 0
= 0 = 0
Fig. 4.25
ُ
‫قررت‬
‫ن‬‫أ‬
‫تكون‬
‫لكمىت‬
‫ان‬‫و‬‫بعن‬
«
» «Have a Dream
ُ
‫دلي‬
ُ‫م‬‫ل‬‫ح‬
»
.
‫حكيت‬
‫للطالب‬
،‫الكنديني‬
‫من‬
‫صول‬‫أ‬
‫كثرية‬
‫من‬
‫بيهنم‬
،‫يون‬‫رص‬‫م‬
‫حاكيتني‬
‫يفتني‬‫ر‬‫ط‬
.
‫احلاكية‬
‫وىل‬‫ال‬
‫عن‬
«
‫سطورة‬‫أ‬
‫الكهف‬
»
‫كام‬
‫تصورها‬
ُ
‫يلسوف‬‫لف‬‫ا‬
‫يقى‬‫ر‬‫إغ‬‫ل‬‫ا‬
‫ف‬‫أ‬
‫الطون‬
.
‫حني‬
‫تصور‬
‫ن‬‫أ‬
‫بعض‬
‫شخاص‬‫ال‬
‫حمبوسون‬
‫داخل‬
‫كهف‬
‫منذ‬
‫مودلمه‬
.
‫مقيدون‬
‫ابلسالس‬
‫ل‬
‫وجوههم‬
ُ‫م‬‫ة‬‫ب‬‫مصو‬
‫حنو‬
‫حائط‬
‫ل‬
‫يرون‬
،‫اه‬‫و‬‫س‬
‫تنعكس‬
‫عليه‬
ُ
‫ظالل‬
‫ن‬َ‫م‬
ُ
‫ري‬‫يس‬
‫ون‬
‫ابخلارج‬
‫من‬
‫رش‬‫ب‬
‫اانت‬‫و‬‫وحي‬
.
‫يتصور‬‫ف‬
‫لئك‬‫و‬‫أ‬
ُ
‫شخاص‬‫ال‬
‫ابلكهف‬
‫ن‬‫أ‬
‫تكل‬
‫الظالل‬
‫ىه‬
ُ
‫ل‬‫ا‬
ُ
‫رش‬‫ب‬
‫ليس‬‫و‬
‫ظاللها‬
.
‫فلو‬
‫تصوران‬
‫ن‬‫أ‬
‫ا‬ ً
‫خشص‬
‫من‬
‫لئك‬‫و‬‫أ‬
‫شخاص‬‫ال‬
‫جنح‬
‫ىف‬
‫رس‬‫ك‬
‫القيود‬
ُ
‫و‬
‫السالسل‬
‫وخرج‬
‫من‬
‫الكهف‬
،‫املظل‬
‫وشاهد‬
‫ضوء‬
‫الشمس‬
‫ول‬‫ل‬
‫مرة‬
‫ىف‬
‫حياته‬
.
‫سوف‬
‫تشف‬‫يك‬
‫ب‬
‫عد‬
‫برهة‬
‫ن‬‫أ‬
‫ما‬
‫ظل‬
‫اه‬‫ر‬‫ي‬
‫هو‬
‫ورفاقه‬
‫ال‬‫و‬‫ط‬
‫عامرمه‬‫أ‬
‫ليس‬
‫إل‬‫ا‬
،‫ظالل‬
‫ن‬‫أ‬‫و‬
‫احلقيقة‬
ُ‫م‬‫ء‬‫يش‬
ُ
‫خر‬‫أ‬
‫مت‬
‫ا‬ً‫م‬‫ا‬
.
‫ذكل‬
‫هو‬
«
‫التفكري‬
‫خارج‬
‫الصندوق‬
»
،
‫وعدم‬
‫تسالم‬‫س‬‫الا‬
‫للفرضيات‬
‫املغلوطة‬
‫همام‬
ُ
‫ع‬
‫شت‬‫ش‬
‫داخلنا‬
‫ات‬‫و‬‫ن‬‫س‬
‫وعهود‬
.
‫ذكل‬
‫هو‬
‫ادلرس‬
‫ول‬‫ال‬
‫اذلى‬
‫عىل‬
‫بنائنا‬‫أ‬
‫مه‬‫تعل‬
‫ىف‬
‫مقب‬
‫ل‬
‫ايهمم‬‫أ‬
.
‫احلاكية‬
‫نية‬‫ا‬‫الث‬
‫عن‬
‫الفيل‬
‫الصغري‬
‫اذلى‬
‫اكن‬
‫ه‬‫صاحب‬
‫بط‬‫ر‬‫ي‬
‫ه‬َ‫ق‬‫سا‬
‫حبب‬
‫ل‬
‫صغري‬
‫ار‬‫و‬‫ج‬
‫ابب‬
‫بيت‬‫ل‬‫ا‬
‫حىت‬
‫ل‬
‫ميىش‬
‫ا‬ً‫بعيد‬
.
‫لك‬
‫عام‬
‫يكرب‬
،‫الفيل‬
ُ
‫احلبل‬‫و‬
‫هو‬
ُ
‫احلبل‬
ُ
‫الصغري‬
‫ل‬
‫يتغري‬
‫ول‬
‫ظ‬‫يغل‬
.
‫بوسع‬
،‫الفيل‬
‫حني‬
‫كرب‬
‫وصار‬
،‫ا‬‫قواي‬
‫ن‬‫أ‬
‫يقطع‬
‫احلبل‬
‫لكة‬‫ر‬‫ب‬
ُ
‫و‬
‫احدة‬
،‫صغرية‬
‫وهيرب‬
.
‫لكنه‬
‫ل‬
،‫يفعل‬
‫بل‬
‫يظل‬
‫ا‬ً‫ف‬‫اق‬‫و‬
‫ار‬‫و‬‫ج‬
‫الباب‬
..
‫ملاذا؟‬
‫ن‬‫ل‬
‫الفيل‬
‫حيمل‬
‫من‬
‫ذك‬
‫رايت‬
‫ملاىض‬‫ا‬
‫نه‬‫أ‬
‫حاول‬
،‫ا‬ً‫كثري‬
‫حني‬
‫اكن‬
،‫طفال‬
‫ن‬‫أ‬
‫يقطع‬
‫احلبل‬
‫يركض‬‫و‬
‫ىف‬
‫احلقول‬
‫اع‬‫ر‬‫امل‬‫و‬
‫ى‬
.
‫لكنه‬
‫خفق‬‫أ‬
ًُ‫ة‬‫مر‬
‫تلو‬
،‫مرة‬
‫ن‬‫ل‬
‫احلبل‬
‫اكن‬
‫قوى‬‫أ‬
‫من‬
‫قدامه‬‫أ‬
‫الصغرية‬
‫نذاك‬‫أ‬
.
‫تقر‬‫فاس‬
‫ىف‬
‫وعيه‬
ُ
‫أ‬
‫نه‬
ُ
‫ضعف‬‫أ‬
‫من‬
،‫احلبل‬
ُ
‫فكف‬
‫عن‬
،‫احملاوةل‬
‫غافال‬
‫ن‬‫أ‬
‫جحمه‬
‫اته‬‫ر‬‫وقد‬
‫اليوم‬
‫صارت‬
‫كرب‬‫أ‬
‫كث‬
‫ا‬ً‫ري‬
‫من‬
‫احلبل‬
‫الصغري‬
‫نحيل‬‫ل‬‫ا‬
.
‫ذكل‬
‫هو‬
ُ
‫فقدان‬
‫مل‬‫ال‬
‫الزهد‬‫و‬
‫ىف‬
‫ار‬‫ر‬‫تك‬
‫احملاوةل‬
‫ىف‬
‫حل‬
‫مش‬
‫الكنا‬
.
‫وهو‬
‫ما‬
‫عىل‬
‫بنائنا‬‫أ‬
‫ن‬‫أ‬
‫بوه‬‫تجن‬‫ي‬
‫ىف‬
‫مقبل‬
‫ايهمم‬‫أ‬
.
‫ذكل‬
‫هو‬
‫ادلرس‬
‫الثاىن‬
‫ل‬‫أ‬
‫يك‬
‫ا‬‫و‬‫ف‬
‫عن‬
‫حماوةل‬
‫حل‬
‫املشالكت‬
‫الىت‬
‫اهجهتم‬‫و‬
‫ا‬‫و‬‫خفق‬‫أ‬‫و‬
‫ىف‬
‫ها‬‫حل‬
.
‫هذان‬
‫هام‬
‫ادلرسان‬
‫لذلان‬‫ا‬
ُ
‫نيت‬‫مت‬
‫ن‬‫أ‬
‫يدركهام‬
‫التالميذ‬
،‫الكنديون‬
‫وهام‬
‫ذاهتام‬
ُ
‫ر‬‫ادل‬
‫سان‬
‫لذلان‬‫ا‬
‫حكهيام‬‫أ‬
‫للتالميذ‬
‫يني‬‫رص‬‫امل‬
‫اليوم‬
‫عىل‬
‫مشارف‬
‫اجلامعة‬
‫ا‬ ً‫يض‬‫أ‬
.
ُ‫يللوُىفُرواية‬‫و‬‫لوُك‬‫و‬‫مهُهوُماُقاهلُاب‬‫ال‬‫و‬ُ‫ماُادلرسُالثالث‬‫أ‬‫و‬
«
‫ميياىئ‬‫خل‬‫ا‬
»
.
ُ
‫إنسان‬‫ل‬‫إنُحلُا‬‫ا‬
ُ‫ا‬ً‫م‬‫ُحل‬
‫جلُحتقيقهُمعه‬‫ُباكمهلُمنُأ‬‫مرُالكون‬‫ُتآ‬،‫ُعىلُحتقيقه‬‫رص‬‫أ‬‫و‬ُ‫اا‬‫د‬‫منُبهُج‬‫أ‬‫و‬ُ،‫ما‬
. ُ‫مك‬‫ر‬‫ذك‬‫أ‬‫و‬
ُ‫نية‬‫غ‬‫بآ‬ I
«Have a Dream» ُ‫يق‬‫ر‬‫لف‬ ABBA ُ‫الىت‬
‫تقول‬
:
«
ُ
‫دلي‬
ُ‫م‬‫ل‬‫ح‬
/
ُ‫م‬‫ة‬‫ني‬‫غ‬‫أ‬
‫غنهيا‬‫أ‬
/
‫ىك‬
‫تساعدىن‬
‫عىل‬
‫ن‬‫أ‬
‫اجه‬‫و‬‫أ‬
‫ى‬‫أ‬
‫ىشء‬
.
‫إذا‬‫ا‬
َُ
‫شاهدت‬
‫ال‬
‫عجائب‬
‫ىف‬
‫حاكايت‬
‫ات‬‫ني‬‫جل‬‫ا‬
/
‫سوف‬
‫تطيع‬‫تس‬
‫ن‬‫أ‬
‫تصنع‬
‫تقبل‬‫ملس‬‫ا‬
/
‫حىت‬
‫لو‬
‫خفقت‬‫أ‬
‫م‬
ًُ‫ة‬‫ر‬
/
‫ان‬‫أ‬
‫ؤمن‬‫أ‬
‫ملالئكة‬‫اب‬
/
ُ
‫اليشء‬
ُ
‫الطيب‬
‫ىف‬
‫لك‬
‫يشء‬
‫اه‬‫ر‬‫أ‬
/
‫ان‬‫أ‬
‫ؤمن‬‫أ‬
‫ابملالئكة‬
/
‫حيامن‬
ُ
‫عرف‬‫أ‬
‫ن‬‫أ‬
‫الوقت‬
‫ىف‬
‫صاحلى‬
/
‫سوف‬
ُ
‫عرب‬‫أ‬
‫الشالل‬
ُ
‫جتاز‬‫أ‬‫و‬
‫الهنر‬
/
‫ن‬‫ل‬
ُ
‫دلي‬
‫ا‬ً‫م‬‫حل‬
»
.
A rectangular tank is filled to the brim with water «
‫مملوء‬
‫حيت‬
‫احلافة‬
‫ابملاء‬
» . When a
hole at its bottom is unplugged, the tank is emptied in time T.
 How long will it take to empty the tank if it is half filled?
Now let us consider that at certain moment the height of water level be ”h” and the
velocity of water emerging through the orifice of cross sectional area ”a” at the
bottom of the tank be “V”. As the surface of water and the orifice are in open
atmosphere, then by Bernoulli's theorem we have:
𝑉 = 2 𝑔 ℎ .
Let ”dh” represents decrease in water level during infinitesimally small time
interval ”dt” when the water level is at height ”h”. So the rate of decrease in
volume of water will be − A (dh/ dt).
Again the rate of flow of water at this moment through the orifice is given by 𝑎 ×
𝑉 = 𝑎 ∙ 2 𝑔 ℎ.
These two rate must be same by the principle of continuity.
Hence 𝑎 ∙ 2 𝑔 ℎ = − 𝐴 𝑑ℎ 𝑑𝑡
→ 𝑑𝑡 =
𝐴
𝑎 ∙ 2 𝑔
ℎ− 0.5 𝑑ℎ
If the tank is filled to the brim then height of water level will be ”H” and
time required to empty the tank “T” can be obtained by integrating the
above relation.
𝑇 = 𝑜
𝑇
𝑑𝑡 =
− 𝐴
𝑎 ∙ 2 𝑔
∙ 0
𝑇
ℎ− 0.5 𝑑ℎ
𝑇 =
𝐴
𝑎 ∙ 2 𝑔
∙
ℎ0.5
0.5 0
ℎ
𝑇 =
𝐴
𝑎
∙
2
𝑔
∙ ℎ0.5
If the tank be half filled with water and the time to empty it be 𝑇′ then
So
𝑇′
𝑇
=
1
2
∴ 𝑇′ = 𝑇/ 2
𝑇′ =
𝐴
𝑎
∙
2
𝑔
∙
ℎ
2
0.5

Solved Examples in fluid mechanics final