SlideShare a Scribd company logo
Simplified Solutions of the
CLP and CCP Limiting Cases
of the Problem of Apollonius
via Vector Rotations using Geometric Algebra
1
Simplified Solutions of the “CLP” and “CCP”
Limiting Cases of the Problem of Apollonius via
Vector Rotations using Geometric Algebra
Jim Smith
QueLaMateNoTeMate.webs.com
email: nitac14b@yahoo.com
August 19, 2016
Contents
1 Introduction 4
2 Solution of the CLP Limiting Case 4
2.1 The First Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Second Solution: Learning From and Building Upon the First 6
3 Solution of the CCP Limiting Case 7
4 Literature Cited 10
2
ABSTRACT
The new solutions presented herein for the CLP and CCP limiting cases of the
Problem of Apollonius are much shorter and more easily understood than those
provided by the same author in [1]-[2]. These improvements result from (1) a
better selection of angle relationships as a starting point for the solution process;
and (2) better use of GA identities to avoid forming troublesome combinations
of terms within the resulting equations.
3
1 Introduction
This document shows how the CLP and CCP limiting cases can be solved more
efficiently than in the author’s previous work ( [1] - [2]). Because that work and
[3] discussed the necessary background in detail, the solutions presented here
are somewhat abbreviated.
2 Solution of the CLP Limiting Case
For detailed discussions of the ideas used in this solution, please see [1]. We’ll
show two ways of solving the problem; the second takes advantage of observa-
tions made during the first.
The CLP limiting case reads,
Given a circle C, a line L, and a point P, construct the circles that
are tangent to C and L, and pass through P.
Figure 2.1: The CLP Limiting Case of the Problem of Apollonius: Given a
circle C, a line L, and a point P, construct the circles that are tangent to C and
L, and pass through P.
The problem has two types of solutions:
• Circles that enclose C;
• Circles that do not enclose C.
There are two solution circles of each type. In this document, we’ll treat
only those that do not enclose the given circle.
4
2.1 The First Solution
Fig. 2.2 shows how we will capture the geometric content of the problem. An
important improvement, compared to the solution technique presented in [1], is
that we will use rotations with respect to the vector from the given point P to
the still-unidentified center point (c2) of the solution circle.
Figure 2.2: Elements used in the first solution of the CLP limiting case.
In deriving our solution, we’ll
use the same symbol —for
example, t —to denote both a
point and the vector to that
point from the origin. We’ll rely
upon context to tell the reader
whether the symbol is being
used to refer to the point, or to
the vector.
We’ll begin our solution by deriving an expression for r2 in terms of ˆt. We´ll
do so by equating two independent expressions for s, then “dotting” both sides
with ˆh, after which we’ll solve for r2:
(r1 + r2)ˆt + r2
ˆh = h + λˆhi
(r1 + r2)ˆt + r2
ˆh · ˆh = h + λˆhi · ˆh
(r1 + r2)ˆt · ˆh + r2
ˆh · ˆh = h · ˆh + λ ˆhi · ˆh
(r1 + r2)ˆt · ˆh + r2 = h + 0;
∴ r2 =
h − r1
ˆt · ˆh
1 + ˆt · ˆh
, and r1 + r2 =
h + r1
1 + ˆt · ˆh
. (2.1)
Next, we equate two expressions for the rotation ei2φ
:
t − p
t − p
c2 − p
c2 − p
=eiφ
t − p
t − p
c2 − p
c2 − p
=eiφ
= −ˆt
c2 − p
c2 − p
=ei2φ
,
from which
[t − p] [c2 − p] [t − p] ˆt = some scalar,
∴ [t − p] [c2 − p] [t − p] ˆt 2 = 0. (2.2)
5
Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.2 as
(2 [t − p] ∧ [c2 − p] + [c2 − p] [t − p]) [t − p] ˆt 2 = 0,
(2 [t − p] ∧ [c2 − p]) [t − p] ˆt + [t − p]
2
[c2 − p] ˆt 2 = 0, and
(2 [t − p] ∧ [c2 − p]) [t − p] ˆt 2 + [t − p]
2
[c2 − p] ˆt 2 = 0. (2.3)
Now, we note that
(2 [t − p] ∧ [c2 − p]) [t − p] ˆt 2 = 2 ([t − p] ∧ [c2 − p]) [t − p] · ˆt ,
and [t − p]
2
[c2 − p] ˆt 2 = [t − p]
2
[c2 − p] ∧ ˆt .
Note how the factor p ∧ ˆt
canceled out in Eq. (2.4). That
cancellation suggests an
improvement that we’ll see in
our second solution of the CLP
case.
Because t = r1
ˆt and c2 = (r1 + r2)ˆt, t ∧ c2 = 0. We can expand [t − p]
2
as
r1
2
− 2p · t + p2
. Using all of these ideas, (2.3) becomes (after simplification)
2r2 r1 − p · ˆt p ∧ ˆt + r1
2
− 2p · t + p2
p ∧ ˆt = 0. (2.4)
For p ∧ ˆt = 0, that equation becomes
2r2 r1 − p · ˆt + r1
2
− 2p · t + p2
= 0.
Substituting the expression that we derived for r2 in (2.1), then expanding and
simplifying,
2 ( h + r1) p · ˆt − p2
− r1
2 ˆh · ˆt = 2 h r1 + r1
2
+ p2
.
Finally, we rearrange that result and multiply both sides by r1 h , giving the
equation that we derived in [1]:
2 r1 h + h2
p − p2
− r1
2
h · t = 2h2
r1
2
+ r1 h r1
2
+ p2
. (2.5)
2.2 The Second Solution: Learning From and Building
Upon the First
In Eq. (2.4), we saw how the factor p∧ˆt canceled out. That cancellation suggests
that we might solve the problem more efficiently by expressing rotations with
respect to the unknown vector ˆt, rather than to a vector from P to c2 (Fig.
2.3).
For this new choice of vectors, our equation relating two expressions for
the rotation ei2φ
is:
ˆt
p − t
p − t
=eiφ
ˆt
p − t
p − t
=eiφ
= ˆt
p − c2
p − c2
=ei2φ
,
from which
[p − t] ˆt [p − t] [p − c2] = some scalar,
∴ [p − t] ˆt [p − t] [p − c2] 2 = 0. (2.6)
6
Figure 2.3: Elements used in the second solution of the CLP Limiting Case:
rotations are now expressed with respect to the unknown vector ˆt, rather than
to a vector from P to c2.
Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.6 as
2 [p − t] ∧ ˆt + ˆt [p − t] [p − t] [p − c2] 2 = 0, and
2 [p − t] ∧ ˆt [p − t] [p − c2] 2 + [p − t]
2 ˆt [p − c2] 2 = 0. (2.7)
Now, we note that
2 [p − t] ∧ ˆt [p − t] [p − c2] 2 = 2 [p − t] ∧ ˆt [p − t] · [p − c2] ,
and [p − t]
2 ˆt [p − c2] 2 = [p − t]
2 ˆt ∧ [p − c2] .
Because t = r1
ˆt and c2 = (r1 + r2)ˆt, t ∧ c2 = 0. We can expand [p − t]
2
as
p2
− 2p · t + r1
2
. Using all of these ideas, (2.7) becomes (after simplification)
2 ([p − t] · [p − c2]) p ∧ t − p2
− 2p · t + r1
2
p ∧ t = 0.
For p ∧ ˆt = 0, that equation becomes, after expanding [p − t] · [p − c2] and
further simplifications,
p2
− r1
2
− 2p · c2 + 2t · c2 = 0.
Now, recalling that c2 = (r1 + r2)ˆt, we substitute the expression that we
derived for r1 + r2 in (2.1), then expand and simplify to obtain (2.5). This
solution process has been a bit shorter than the first because (2.7) was so easy
to simplify.
3 Solution of the CCP Limiting Case
In this solution, we’ll follow the example of Section 2.2, and use rotations with
respect to the vector ˆt. For detailed discussions of the ideas used in this solution,
please see [2].
7
The CCP limiting case reads,
“Given two circles and a point P, all coplanar, construct the circles that
pass through P and are tangent, simultaneously, to the given circles.” (Fig. 3.1).
Figure 3.1: The CCP limiting case of the Problem of Apollonius: “Given two
circles (C1, C2) and a point P, all coplanar, construct the circles that pass
through P and are tangent, simultaneously, to the given circles.”
We´ll derive the solution for the solution circles that enclose either both
of the given ones, or neither. Fig. 3.2 shows how we’ll capture the geometric
content. As in the CLP case, we can find both solution circles of this type by
analyzing the diagram for just one of them.
Figure 3.2: Elements used in the solution of the CCP limiting case.
We begin the solution by deriving an expression for r3 in terms of ˆt and
the given quantities. From two independent equations for c3,
(r1 + r3)ˆt = c3 = c2 + (r2 + r3) ˆw,
8
we proceed as follows:
(r1 + r3)ˆt − c2 = (r2 + r3) ˆw
(r1 + r3)ˆt − c2
2
= [(r2 + r3) ˆw]
2
(r1 + r3)
2
− 2 (r1 + r3) c2 · ˆt + c2
2
= (r2 + r3)
2
∴ r3 =
c2
2
+ r1
2
− r2
2
− 2r1c2 · ˆt
2 r2 − r1 + c2 · ˆt
,
and r1 + r3 =
c2
2
− (r2 − r1)
2
2 r2 − r1 + c2 · ˆt
. (3.1)
Next, we equate two expressions for the rotation ei2θ
:
p − t
p − t
ˆt
=eiθ
p − t
p − t
ˆt
=eiθ
=
p − c3
p − c3
ˆt
=ei2θ
,
from which
[p − t] ˆt [p − t] [p − c3] = some scalar,
∴ [p − t] ˆt [p − t] [p − c3] 2 = 0. (3.2)
Using the identity ab ≡ 2a ∧ b + ba, we rewrite 3.2 as
2 [p − t] ∧ ˆt + ˆt [p − t] [p − t] [p − c3] 2 = 0, and
2 [p − t] ∧ ˆt [p − t] [p − c3] 2 + [p − t]
2 ˆt [p − c3] 2 = 0. (3.3)
Now, we note that
2 [p − t] ∧ ˆt [p − t] [p − c3] 2 = 2 [p − t] ∧ ˆt [p − t] · [p − c3]
and [p − t]
2 ˆt [p − c3] 2 = [p − t]
2 ˆt ∧ [p − c3] .
Because t = r1
ˆt and c3 = (r1 + r3)ˆt, t ∧ c3 = 0. We can expand [p − t]
2
as
p2
− 2p · t + r1
2
. Using all of these ideas, (3.3) becomes (after simplification)
2 ([p − t] · [p − c3]) p ∧ t − p2
− 2p · t + r1
2
p ∧ t = 0.
For p ∧ ˆt = 0, that equation becomes, after further simplification,
p2
− r1
2
− 2p · c3 + 2t · c3 = 0.
Recalling that c3 = (r1 + r[3])ˆt, and substituting the expression that we derived
for r1 + r3 in (3.1), then expanding and simplifying,
c2
2 − (r2 − r1)
2
p · ˆt − p2
− r1
2
c2 · ˆt = (r2 − r1) p2
− r2r1 + r1c2
2.
Finally, we rearrange that result and multiply both sides by r1, giving
c2
2 − (r2 − r1)
2
p − p2
− r1
2
c2 · t = r1 (r2 − r1) p2
− r2r1 + r1c2
2 . (3.4)
9
Defining u = c2
2 − (r2 − r1)
2
p − p2
− r1
2
c2, we can transform that result
into
P ˆu (t) =
r1 (r2 − r1) p2
− r2r1 + r1c2
2
u
, (3.5)
where P ˆu (t) is the projection of t upon ˆu . As described in detail in [2], there
are two vectors that fulfill that condition. Labeled ˆt and ˆt in Fig. 3.3, they are
the vectors from the center of C1 to the points of tangency with the two solution
circles shown. Readers are encouraged to derive this same solution using the
Figure 3.3: The solution circles that enclose both of the givens, and that enclose
neither. See text for definitions of u and P ˆu (t).
magenta circle as the starting point.
4 Literature Cited
References
[1] “Solution of the Special Case ‘CLP’ of the Problem of Apollo-
nius via Vector Rotations using Geometric Algebra”. Available at
http://vixra.org/abs/1605.0314.
[2] “The Problem of Apollonius as an Opportunity for Teaching Students to
Use Reflections and Rotations to Solve Geometry Problems via Geometric
(Clifford) Algebra”. Available at http://vixra.org/abs/1605.0233.
[3] J. Smith, “Rotations of Vectors Via Geometric Algebra: Explanation, and
Usage in Solving Classic Geometric ‘Construction’ Problems” (Version of
11 February 2016). Available at http://vixra.org/abs/1605.0232 .
10

More Related Content

What's hot

Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
HimadriBiswas10
 
Subquad multi ff
Subquad multi ffSubquad multi ff
Subquad multi ff
Fabian Velazquez
 
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
James Smith
 
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
James Smith
 
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
csandit
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
askiitians
 
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHSDISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
graphhoc
 
On Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space IIIOn Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space III
BRNSS Publication Hub
 
Recurrences
RecurrencesRecurrences
Recurrences
Ala' Mohammad
 
RECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEMRECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEM
Alpana Ingale
 
Recurrences
RecurrencesRecurrences
Algebra pythagorean powerpoint
Algebra pythagorean powerpointAlgebra pythagorean powerpoint
Algebra pythagorean powerpoint
syjones14
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
Abu Bakar Soomro
 
64 66
64 6664 66
2D Geometry QA.9
2D Geometry QA.92D Geometry QA.9
2D Geometry QA.9
Lakshmikanta Satapathy
 
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
TELKOMNIKA JOURNAL
 
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
James Smith
 
Lecture#9
Lecture#9Lecture#9
Lecture#9
Ali Shah
 
Trig overview
Trig overviewTrig overview
Trig overview
'Xgen Zeepee
 

What's hot (19)

Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Subquad multi ff
Subquad multi ffSubquad multi ff
Subquad multi ff
 
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
 
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
 
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
NEW NON-COPRIME CONJUGATE-PAIR BINARY TO RNS MULTI-MODULI FOR RESIDUE NUMBER ...
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
 
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHSDISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
 
On Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space IIIOn Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space III
 
Recurrences
RecurrencesRecurrences
Recurrences
 
RECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEMRECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEM
 
Recurrences
RecurrencesRecurrences
Recurrences
 
Algebra pythagorean powerpoint
Algebra pythagorean powerpointAlgebra pythagorean powerpoint
Algebra pythagorean powerpoint
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
64 66
64 6664 66
64 66
 
2D Geometry QA.9
2D Geometry QA.92D Geometry QA.9
2D Geometry QA.9
 
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
 
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
 
Lecture#9
Lecture#9Lecture#9
Lecture#9
 
Trig overview
Trig overviewTrig overview
Trig overview
 

Viewers also liked

Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicas
James Smith
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticas
James Smith
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
James Smith
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestas
James Smith
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de superviviencia
James Smith
 
Cómo resolver problemas con "triángulos rectángulos simultáneos"
Cómo resolver problemas  con "triángulos rectángulos simultáneos"Cómo resolver problemas  con "triángulos rectángulos simultáneos"
Cómo resolver problemas con "triángulos rectángulos simultáneos"
James Smith
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despeje
James Smith
 
El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones lineales
James Smith
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
James Smith
 
Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"
James Smith
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
James Smith
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
James Smith
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...
James Smith
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
James Smith
 
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) AlgebraHow to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
James Smith
 
Modelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libreModelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libre
James Smith
 
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticasConstrucciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
James Smith
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot Products
James Smith
 
Tú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas linealesTú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas lineales
James Smith
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicas
James Smith
 

Viewers also liked (20)

Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicas
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticas
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestas
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de superviviencia
 
Cómo resolver problemas con "triángulos rectángulos simultáneos"
Cómo resolver problemas  con "triángulos rectángulos simultáneos"Cómo resolver problemas  con "triángulos rectángulos simultáneos"
Cómo resolver problemas con "triángulos rectángulos simultáneos"
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despeje
 
El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones lineales
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
 
Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
 
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) AlgebraHow to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra
 
Modelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libreModelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libre
 
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticasConstrucciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot Products
 
Tú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas linealesTú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas lineales
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicas
 

Similar to Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apollonius via Vector Rotations using Geometric Algebra

matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
gandhinagar
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
James Smith
 
Ch03 5
Ch03 5Ch03 5
Ch03 5
Rendy Robert
 
Ch03 4
Ch03 4Ch03 4
Ch03 4
Rendy Robert
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
MichealMicheal11
 
Presentation - MA181 - Final
Presentation - MA181 - FinalPresentation - MA181 - Final
Presentation - MA181 - Final
Abraham Bedada
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
rushikumar17
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
SauravDash10
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
Stephan Chang
 
student-problem-solutions.pdf
student-problem-solutions.pdfstudent-problem-solutions.pdf
student-problem-solutions.pdf
ssuser4d4e5a
 
student-problem-solutions.PDF
student-problem-solutions.PDFstudent-problem-solutions.PDF
student-problem-solutions.PDF
KarminderSingh7
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
Pankaj Das
 
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
James Smith
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
INFOGAIN PUBLICATION
 
Question answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by KeiserQuestion answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by Keiser
blackdance1
 
Recurrence relation solutions
Recurrence relation solutionsRecurrence relation solutions
Recurrence relation solutions
subhashchandra197
 
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docxM210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
smile790243
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
inventionjournals
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Editor IJCATR
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
Sri Prasanna
 

Similar to Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apollonius via Vector Rotations using Geometric Algebra (20)

matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
 
Ch03 5
Ch03 5Ch03 5
Ch03 5
 
Ch03 4
Ch03 4Ch03 4
Ch03 4
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
Presentation - MA181 - Final
Presentation - MA181 - FinalPresentation - MA181 - Final
Presentation - MA181 - Final
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
 
student-problem-solutions.pdf
student-problem-solutions.pdfstudent-problem-solutions.pdf
student-problem-solutions.pdf
 
student-problem-solutions.PDF
student-problem-solutions.PDFstudent-problem-solutions.PDF
student-problem-solutions.PDF
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
 
Question answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by KeiserQuestion answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by Keiser
 
Recurrence relation solutions
Recurrence relation solutionsRecurrence relation solutions
Recurrence relation solutions
 
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docxM210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
M210 Songyue.pages__MACOSX._M210 Songyue.pagesM210-S16-.docx
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 

More from James Smith

Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
James Smith
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
James Smith
 
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
James Smith
 
Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matrices
James Smith
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
James Smith
 
Making Sense of Bivector Addition
Making Sense of Bivector AdditionMaking Sense of Bivector Addition
Making Sense of Bivector Addition
James Smith
 
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
James Smith
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
James Smith
 
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
James Smith
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
James Smith
 
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
James Smith
 
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
James Smith
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra
James Smith
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
James Smith
 

More from James Smith (14)

Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
Via Geometric Algebra: Direction and Distance between Two Points on a Spheric...
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
 
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
Via Geometric (Clifford) Algebra: Equation for Line of Intersection of Two Pl...
 
Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matrices
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
 
Making Sense of Bivector Addition
Making Sense of Bivector AdditionMaking Sense of Bivector Addition
Making Sense of Bivector Addition
 
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gn...
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
 
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
 
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (C...
 
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
 

Recently uploaded

Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
Kavitha Krishnan
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 

Recently uploaded (20)

Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 

Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apollonius via Vector Rotations using Geometric Algebra

  • 1. Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apollonius via Vector Rotations using Geometric Algebra 1
  • 2. Simplified Solutions of the “CLP” and “CCP” Limiting Cases of the Problem of Apollonius via Vector Rotations using Geometric Algebra Jim Smith QueLaMateNoTeMate.webs.com email: nitac14b@yahoo.com August 19, 2016 Contents 1 Introduction 4 2 Solution of the CLP Limiting Case 4 2.1 The First Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The Second Solution: Learning From and Building Upon the First 6 3 Solution of the CCP Limiting Case 7 4 Literature Cited 10 2
  • 3. ABSTRACT The new solutions presented herein for the CLP and CCP limiting cases of the Problem of Apollonius are much shorter and more easily understood than those provided by the same author in [1]-[2]. These improvements result from (1) a better selection of angle relationships as a starting point for the solution process; and (2) better use of GA identities to avoid forming troublesome combinations of terms within the resulting equations. 3
  • 4. 1 Introduction This document shows how the CLP and CCP limiting cases can be solved more efficiently than in the author’s previous work ( [1] - [2]). Because that work and [3] discussed the necessary background in detail, the solutions presented here are somewhat abbreviated. 2 Solution of the CLP Limiting Case For detailed discussions of the ideas used in this solution, please see [1]. We’ll show two ways of solving the problem; the second takes advantage of observa- tions made during the first. The CLP limiting case reads, Given a circle C, a line L, and a point P, construct the circles that are tangent to C and L, and pass through P. Figure 2.1: The CLP Limiting Case of the Problem of Apollonius: Given a circle C, a line L, and a point P, construct the circles that are tangent to C and L, and pass through P. The problem has two types of solutions: • Circles that enclose C; • Circles that do not enclose C. There are two solution circles of each type. In this document, we’ll treat only those that do not enclose the given circle. 4
  • 5. 2.1 The First Solution Fig. 2.2 shows how we will capture the geometric content of the problem. An important improvement, compared to the solution technique presented in [1], is that we will use rotations with respect to the vector from the given point P to the still-unidentified center point (c2) of the solution circle. Figure 2.2: Elements used in the first solution of the CLP limiting case. In deriving our solution, we’ll use the same symbol —for example, t —to denote both a point and the vector to that point from the origin. We’ll rely upon context to tell the reader whether the symbol is being used to refer to the point, or to the vector. We’ll begin our solution by deriving an expression for r2 in terms of ˆt. We´ll do so by equating two independent expressions for s, then “dotting” both sides with ˆh, after which we’ll solve for r2: (r1 + r2)ˆt + r2 ˆh = h + λˆhi (r1 + r2)ˆt + r2 ˆh · ˆh = h + λˆhi · ˆh (r1 + r2)ˆt · ˆh + r2 ˆh · ˆh = h · ˆh + λ ˆhi · ˆh (r1 + r2)ˆt · ˆh + r2 = h + 0; ∴ r2 = h − r1 ˆt · ˆh 1 + ˆt · ˆh , and r1 + r2 = h + r1 1 + ˆt · ˆh . (2.1) Next, we equate two expressions for the rotation ei2φ : t − p t − p c2 − p c2 − p =eiφ t − p t − p c2 − p c2 − p =eiφ = −ˆt c2 − p c2 − p =ei2φ , from which [t − p] [c2 − p] [t − p] ˆt = some scalar, ∴ [t − p] [c2 − p] [t − p] ˆt 2 = 0. (2.2) 5
  • 6. Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.2 as (2 [t − p] ∧ [c2 − p] + [c2 − p] [t − p]) [t − p] ˆt 2 = 0, (2 [t − p] ∧ [c2 − p]) [t − p] ˆt + [t − p] 2 [c2 − p] ˆt 2 = 0, and (2 [t − p] ∧ [c2 − p]) [t − p] ˆt 2 + [t − p] 2 [c2 − p] ˆt 2 = 0. (2.3) Now, we note that (2 [t − p] ∧ [c2 − p]) [t − p] ˆt 2 = 2 ([t − p] ∧ [c2 − p]) [t − p] · ˆt , and [t − p] 2 [c2 − p] ˆt 2 = [t − p] 2 [c2 − p] ∧ ˆt . Note how the factor p ∧ ˆt canceled out in Eq. (2.4). That cancellation suggests an improvement that we’ll see in our second solution of the CLP case. Because t = r1 ˆt and c2 = (r1 + r2)ˆt, t ∧ c2 = 0. We can expand [t − p] 2 as r1 2 − 2p · t + p2 . Using all of these ideas, (2.3) becomes (after simplification) 2r2 r1 − p · ˆt p ∧ ˆt + r1 2 − 2p · t + p2 p ∧ ˆt = 0. (2.4) For p ∧ ˆt = 0, that equation becomes 2r2 r1 − p · ˆt + r1 2 − 2p · t + p2 = 0. Substituting the expression that we derived for r2 in (2.1), then expanding and simplifying, 2 ( h + r1) p · ˆt − p2 − r1 2 ˆh · ˆt = 2 h r1 + r1 2 + p2 . Finally, we rearrange that result and multiply both sides by r1 h , giving the equation that we derived in [1]: 2 r1 h + h2 p − p2 − r1 2 h · t = 2h2 r1 2 + r1 h r1 2 + p2 . (2.5) 2.2 The Second Solution: Learning From and Building Upon the First In Eq. (2.4), we saw how the factor p∧ˆt canceled out. That cancellation suggests that we might solve the problem more efficiently by expressing rotations with respect to the unknown vector ˆt, rather than to a vector from P to c2 (Fig. 2.3). For this new choice of vectors, our equation relating two expressions for the rotation ei2φ is: ˆt p − t p − t =eiφ ˆt p − t p − t =eiφ = ˆt p − c2 p − c2 =ei2φ , from which [p − t] ˆt [p − t] [p − c2] = some scalar, ∴ [p − t] ˆt [p − t] [p − c2] 2 = 0. (2.6) 6
  • 7. Figure 2.3: Elements used in the second solution of the CLP Limiting Case: rotations are now expressed with respect to the unknown vector ˆt, rather than to a vector from P to c2. Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.6 as 2 [p − t] ∧ ˆt + ˆt [p − t] [p − t] [p − c2] 2 = 0, and 2 [p − t] ∧ ˆt [p − t] [p − c2] 2 + [p − t] 2 ˆt [p − c2] 2 = 0. (2.7) Now, we note that 2 [p − t] ∧ ˆt [p − t] [p − c2] 2 = 2 [p − t] ∧ ˆt [p − t] · [p − c2] , and [p − t] 2 ˆt [p − c2] 2 = [p − t] 2 ˆt ∧ [p − c2] . Because t = r1 ˆt and c2 = (r1 + r2)ˆt, t ∧ c2 = 0. We can expand [p − t] 2 as p2 − 2p · t + r1 2 . Using all of these ideas, (2.7) becomes (after simplification) 2 ([p − t] · [p − c2]) p ∧ t − p2 − 2p · t + r1 2 p ∧ t = 0. For p ∧ ˆt = 0, that equation becomes, after expanding [p − t] · [p − c2] and further simplifications, p2 − r1 2 − 2p · c2 + 2t · c2 = 0. Now, recalling that c2 = (r1 + r2)ˆt, we substitute the expression that we derived for r1 + r2 in (2.1), then expand and simplify to obtain (2.5). This solution process has been a bit shorter than the first because (2.7) was so easy to simplify. 3 Solution of the CCP Limiting Case In this solution, we’ll follow the example of Section 2.2, and use rotations with respect to the vector ˆt. For detailed discussions of the ideas used in this solution, please see [2]. 7
  • 8. The CCP limiting case reads, “Given two circles and a point P, all coplanar, construct the circles that pass through P and are tangent, simultaneously, to the given circles.” (Fig. 3.1). Figure 3.1: The CCP limiting case of the Problem of Apollonius: “Given two circles (C1, C2) and a point P, all coplanar, construct the circles that pass through P and are tangent, simultaneously, to the given circles.” We´ll derive the solution for the solution circles that enclose either both of the given ones, or neither. Fig. 3.2 shows how we’ll capture the geometric content. As in the CLP case, we can find both solution circles of this type by analyzing the diagram for just one of them. Figure 3.2: Elements used in the solution of the CCP limiting case. We begin the solution by deriving an expression for r3 in terms of ˆt and the given quantities. From two independent equations for c3, (r1 + r3)ˆt = c3 = c2 + (r2 + r3) ˆw, 8
  • 9. we proceed as follows: (r1 + r3)ˆt − c2 = (r2 + r3) ˆw (r1 + r3)ˆt − c2 2 = [(r2 + r3) ˆw] 2 (r1 + r3) 2 − 2 (r1 + r3) c2 · ˆt + c2 2 = (r2 + r3) 2 ∴ r3 = c2 2 + r1 2 − r2 2 − 2r1c2 · ˆt 2 r2 − r1 + c2 · ˆt , and r1 + r3 = c2 2 − (r2 − r1) 2 2 r2 − r1 + c2 · ˆt . (3.1) Next, we equate two expressions for the rotation ei2θ : p − t p − t ˆt =eiθ p − t p − t ˆt =eiθ = p − c3 p − c3 ˆt =ei2θ , from which [p − t] ˆt [p − t] [p − c3] = some scalar, ∴ [p − t] ˆt [p − t] [p − c3] 2 = 0. (3.2) Using the identity ab ≡ 2a ∧ b + ba, we rewrite 3.2 as 2 [p − t] ∧ ˆt + ˆt [p − t] [p − t] [p − c3] 2 = 0, and 2 [p − t] ∧ ˆt [p − t] [p − c3] 2 + [p − t] 2 ˆt [p − c3] 2 = 0. (3.3) Now, we note that 2 [p − t] ∧ ˆt [p − t] [p − c3] 2 = 2 [p − t] ∧ ˆt [p − t] · [p − c3] and [p − t] 2 ˆt [p − c3] 2 = [p − t] 2 ˆt ∧ [p − c3] . Because t = r1 ˆt and c3 = (r1 + r3)ˆt, t ∧ c3 = 0. We can expand [p − t] 2 as p2 − 2p · t + r1 2 . Using all of these ideas, (3.3) becomes (after simplification) 2 ([p − t] · [p − c3]) p ∧ t − p2 − 2p · t + r1 2 p ∧ t = 0. For p ∧ ˆt = 0, that equation becomes, after further simplification, p2 − r1 2 − 2p · c3 + 2t · c3 = 0. Recalling that c3 = (r1 + r[3])ˆt, and substituting the expression that we derived for r1 + r3 in (3.1), then expanding and simplifying, c2 2 − (r2 − r1) 2 p · ˆt − p2 − r1 2 c2 · ˆt = (r2 − r1) p2 − r2r1 + r1c2 2. Finally, we rearrange that result and multiply both sides by r1, giving c2 2 − (r2 − r1) 2 p − p2 − r1 2 c2 · t = r1 (r2 − r1) p2 − r2r1 + r1c2 2 . (3.4) 9
  • 10. Defining u = c2 2 − (r2 − r1) 2 p − p2 − r1 2 c2, we can transform that result into P ˆu (t) = r1 (r2 − r1) p2 − r2r1 + r1c2 2 u , (3.5) where P ˆu (t) is the projection of t upon ˆu . As described in detail in [2], there are two vectors that fulfill that condition. Labeled ˆt and ˆt in Fig. 3.3, they are the vectors from the center of C1 to the points of tangency with the two solution circles shown. Readers are encouraged to derive this same solution using the Figure 3.3: The solution circles that enclose both of the givens, and that enclose neither. See text for definitions of u and P ˆu (t). magenta circle as the starting point. 4 Literature Cited References [1] “Solution of the Special Case ‘CLP’ of the Problem of Apollo- nius via Vector Rotations using Geometric Algebra”. Available at http://vixra.org/abs/1605.0314. [2] “The Problem of Apollonius as an Opportunity for Teaching Students to Use Reflections and Rotations to Solve Geometry Problems via Geometric (Clifford) Algebra”. Available at http://vixra.org/abs/1605.0233. [3] J. Smith, “Rotations of Vectors Via Geometric Algebra: Explanation, and Usage in Solving Classic Geometric ‘Construction’ Problems” (Version of 11 February 2016). Available at http://vixra.org/abs/1605.0232 . 10