SlideShare a Scribd company logo
1 of 63
Company
LOGO
Video Lectures for MBA
By:
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Chapter 3 Steady-State Conduction Multiple Dimensions
CHAPER 3
Steady-State Conduction
Multiple Dimensions
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
In Chapter 2 steady-state heat transfer was calculated
in systems in which the temperature gradient and area
could be expressed in terms of one space coordinate. We
now wish to analyze the more general case of two-
dimensional heat flow. For steady state with no heat
generation, the Laplace equation applies.
2 2
2 2
0
T T
x y
∂ ∂
+ =
∂ ∂
The solution to this equation may be obtained by analytical,
numerical, or graphical techniques.
(3-1)
3-1 Introduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
The objective of any heat-transfer analysis is usually to
predict heat flow or the temperature that results from a
certain heat flow. The solution to Equation (3-1) will give
the temperature in a two-dimensional body as a function
of the two independent space coordinates x and y. Then
the heat flow in the x and y directions may be calculated
from the Fourier equations
3-1 Introduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Analytical solutions of temperature distribution can be obtained
for some simple geometry and boundary conditions. The
separation method is an important one to apply.
Consider a rectangular plate.
Three sides are maintained at
temperature T1, and the upper
side has some temperature
distribution impressed on it.
The distribution can be a constant
temperature or something more
complex, such as a sine-wave.
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Consider a sine-wave distribution on the upper edge, the
boundary conditions are:
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Substitute:
We obtain two ordinary differential equations in terms of
this constant,
2 2
2 2
1 1T T
X x Y y
∂ ∂
− =
∂ ∂
2
2
2
0
X
X
x
λ
∂
+ =
∂
2
2
2
0
Y
Y
y
λ
∂
− =
∂
where λ2
is called the separation constant.
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
We write down all possible solutions and then see which
one fits the problem under consideration.
( ) ( )
1 2
2
3 4
1 2 3 4
0:For X C C x
Y C C y
T C C x C C y
λ = = +
= +
= + +
This function cannot fit the sine-function boundary
condition, so that the solution may be excluded.2
0λ =
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
( )( )
2
5 6
7 8
5 6 7 8
0:
cos sin
cos sin
x x
x x
For X C e C e
Y C y C y
T C e C e C y C y
λ λ
λ λ
λ
λ λ
λ λ
−
−
< = +
= +
= + +
This function cannot fit the sine-function boundary condition,
so that the solution may be excluded.2
0λ <
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
( ) ( )
2
9 10
11 12
9 10 11 12
0: cos sin
cos sin
y y
y y
For X C x C x
C e C e
T C x C x C e C e
Y λ λ
λ λ
λ λ λ
λ λ
−
−
> = +
= +
= + +
It is possible to satisfy the sine-function boundary condition;
so we shall attempt to satisfy the other condition.
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Let
The equation becomes:
Apply the method of variable separation, let
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
And the boundary conditions become:
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Applying these conditions,we have:
( ) ( )9 10 11 120 cos sinC x C x C Cλ λ= + +
( )9 11 120 y y
C C e C eλ λ−
= +
( ) ( )9 10 11 120 cos sin y y
C W C W C e C eλ λ
λ λ −
= + +
( ) ( )9 10 11 12sin cos sin H H
m
x
T C x C x C e C e
W
λ λπ
λ λ − 
= + + ÷
 
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
accordingly,
and from (c),
This requires that
11 12C C= −
9 0C =
( )10 120 sin y y
C C W e eλ λ
λ −
= −
sin 0Wλ =
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
then
which requires that Cn =0 for n >1.
We get
n
W
π
λ =
1
1
sin sinhn
n
n x n y
T T C
W W
π π
θ
∞
=
= − = ∑
1
sin sin sinhm n
n
x n x n H
T C
W W W
π π π∞
=
= ∑
The final boundary condition may now be applied:
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
The final solution is therefore
( )
( ) 1
sinh /
sin
sinh /
m
y W x
T T T
H W W
π π
π
= +
The temperature field for this problem is shown. Note that the heat-
flow lines are perpendicular to the isotherms.
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Another set of boundary conditions
0 at 0
0 at 0
0 at
sin atm
y
x
x W
x
T y H
W
θ
θ
θ
π
θ
= =
= =
= =
 
= = ÷
 
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Using the first three boundary conditions, we obtain the
solution in the form of Equation:
1
1
sin sinhn
n
n x n y
T T C
W W
π π∞
=
− = ∑
Applying the fourth boundary condition gives
2 1
1
sin sinhn
n
n x n H
T T C
W W
π π∞
=
− = ∑
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
This series is
then
( )
( )
1
2 1 2 1
1
1 12
sin
n
n
n x
T T T T
n W
π
π
+
∞
=
− +
− = − ∑
( )
( )
( )
1
2 1
1 12 1
sinh /
n
nC T T
n H W nπ π
+
− +
= −
The final solution is expressed as
( ) ( )
( )
1
1
12 1
1 1 sinh /2
sin
sinh /
n
n
n y WT T n x
T T n W n H W
ππ
π π
+
∞
=
− +−
=
−
∑
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
0 at 0
0 at 0
0 at
sin atm
y
x
x W
x
T y H
W
θ
θ
θ
π
θ
= =
= =
= =
 
= = ÷
 
Transform the boundary condition:
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-3 Graphical Analysis
neglect
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Consider a general one dimensional heat conduct-
ion problem, from Fourier’s Law:
let
then
where : S is called shape factor.Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Note that the inverse hyperbolic cosine can be calculated from
( )1 2
cosh ln 1x x x−
= ± −
For a three-dimensional wall, as in a furnace, separate shape
factors are used to calculate the heat flow through the edge and
corner sections, with the dimensions shown in Figure 3-4. when all
the interior dimensions are greater than one fifth of the thickness,
wall
A
S
L
= edge 0.54S D= corner 0.15S L=
where A = area of wall, L = wall thickness, D = length of edge
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-4 The Conduction Shape Factor
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-1
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-2
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-3
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-4
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-5 Numerical Method of Analysis
The most fruitful approach to the heat conduction is one
based on finite-difference techniques, the basic principles
of which we shall outline in this section.
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
1 、 Discretization of the solving
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2 、 Discrete equation
Taylor series expansion
2 2 3 3
1, , 2 3
, , ,
( ) ( )
...
2 6
m n m n
m n m n m n
T x T x T
T T x
x x x
+
∂ ∆ ∂ ∆ ∂
= + ∆ + + +
∂ ∂ ∂
2 2 3 3
1, , 2 3
, , ,
( ) ( )
...
2 6
m n m n
m n m n m n
T x T x T
T T x
x x x
−
∂ ∆ ∂ ∆ ∂
= − ∆ + − +
∂ ∂ ∂
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2
2
1, 1, , 2
,
2 ( ) ...m n m n m n
m n
T
T T T x
x
+ −
∂
+ = + ∆ +
∂
2
1, , 1, 2
2 2
,
2
( )
( )
m n m n m n
m n
T T TT
o x
x x
+ −− +∂
= + ∆
∂ ∆
2
2
1,,1,
,
2
2
)(
)(
2
yo
y
TTT
y
T nmnmnm
nm
∆+
∆
+−
=
∂
∂ −+
2 、 Discrete equation
Differential equation for two-dimensional steady-state heat flow
2 2
2 2
0
T T q
x y k
•
∂ ∂
+ + =
∂ ∂
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2 、 Discrete equation
Discrete equation at nodal point (m,n)
1, , 1, , 1 , , 1
2 2
2 2
0m n m n m n m n m n m nT T T T T T q
x y k
•
+ − + −− + − +
+ + =
∆ ∆
1, , 1, , 1 , , 1
2 2
2 2
0m n m n m n m n m n m nT T T T T T
x y
+ − + −− + − +
+ =
∆ ∆
no heat generation
Δx= Δy
1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2 、 Discrete equation
Thermal balance
(1) Interior points
steady-state & no heat
generation
1, 1, , 1 , 1 0m n m n m n m nq q q q− + + −+ + + =
1, ,
1,
d
d
m n m n
m n
T TT
q kA k y
x x
−
−
−
= − = ∆
∆
x
TT
ykq nmnm
nm
∆
−
∆= +
+
,,1
,1
, 1 ,
, 1
m n m n
m n
T T
q k x
y
+
+
−
= ∆
∆
, 1 ,
, 1
m n m n
m n
T T
q k x
y
−
−
−
= ∆
∆
1, , 1, , , 1 , , 1 ,
0m n m n m n m n m n m n m n m nT T T T T T T T
k y k y k x k x
x x y y
− + + −− − − −
∆ + ∆ + ∆ + ∆ =
∆ ∆ ∆ ∆
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Thermal balance
Δx= Δy
1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =
genq q V q x y
• •
= × = ×∆ ∆
2
1, 1, , 1 , 1 ,4 ( ) 0m n m n m n m n m n
q
T T T T T x
k
•
+ − + −+ + + − + ∆ =
steady-state with heat generation
(1) Interior points
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2 、 Discrete equation
Thermal balance
(2) boundary
points
1, ,
1,
m n m n
m n
T T
q k y
x
−
−
−
= ∆
∆
, 1 ,
, 1
2
m n m n
m n
T Tx
q k
y
+
+
−∆
=
∆
, 1 ,
, 1
2
m n m n
m n
T Tx
q k
y
−
−
−∆
=
∆
,( )w m nq h y T T∞= ×∆ × −
1, , , 1 , , 1 ,
,( )
2 2
m n m n m n m n m n m n
m n
T T T T T Tx x
k y k k h y T T
x y y
− + −
∞
− − −∆ ∆
∆ + + = ×∆ × −
∆ ∆ ∆
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Thermal balance
Δx= Δy
(2) boundary
points
, 1, , 1 , 1
1
( 2) ( )
2
m n m n m n m n
h x h x
T T T T T
k k
− + − ∞
×∆ ×∆
+ = + + +
1, , , 1 ,
, ,( ) ( )
2 2 2 2
m n m n m n m n
m n m n
T T T Ty x x y
k k h T T h T T
x y
− −
∞ ∞
− −∆ ∆ ∆ ∆
+ = × × − + × × −
∆ ∆
, 1, , 1
1
( 1) ( )
2
m n m n m n
h x h x
T T T T
k k
− − ∞
×∆ ×∆
+ = + +
Δx= Δy
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Thermal balance
(2) boundary
points
Δx= Δy
1, , 1, , , 1 ,
, 1 ,
, ,
2 2
( ) ( )
2 2
m n m n m n m n m n m n
m n m n
m n m n
T T T T T Ty x
k y k k
x x y
T T x y
k x h T T h T T
y
− + −
+
∞ ∞
− − −∆ ∆
∆ + +
∆ ∆ ∆
− ∆ ∆
+ ∆ = × × − + × × −
∆
, 1, 1, , 1 , 1
1
( 3) (2 2 )
2
m n m n m n m n m n
h x h x
T T T T T T
k k
− + − + ∞
×∆ ×∆
+ = + + + +
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3 、 Algebraic equation
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
......
......
............................................
......
n n
n n
n n nn n n
a T a T a T C
a T a T a T C
a T a T a T C
+ + + =
+ + + =
+ + + =
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Matrix notation
[ ]
11 12 1
21 22 2
1 2
...
...
... ... ... ...
...
n
n
n n nn
a a a
a a a
A
a a a
 
 
 =
 
 
 
[ ]
1
2
...
n
T
T
T
T
 
 
 =
 
 
 
[ ]
1
2
...
n
C
C
C
C
 
 
 =
 
 
 
[ ][ ] [ ]A T C=
Iteration
Simple Iteration & Gauss-Seidel Iteration
3-5 Numerical Method of Analysis
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-5
Consider the square shown in the figure. The left face is
maintained at 100 and the top face at 500 , while the℃ ℃
other two faces are exposed to a environment at 100 .℃
h=10W/m2· and k=10W/m· . The block is 1 m square.℃ ℃
Compute the temperature of the various nodes as indicated
in the figure and heat flows at the boundaries.
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
[Solution]
The equations for nodes 1,2,4,5 are given by
2 4 1
1 3 5 2
1 5 7 4
2 4 6 8 5
500 100 4 0
500 4 0
100 4 0
4 0
T T T
T T T T
T T T T
T T T T T
+ + + − =
+ + + − =
+ + + − =
+ + + − =
Example 3-5
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
[Solution]
Equations for nodes 3,6,7,8 are
The equation for node 9 is
9 6 8
1 1 1
1 ( ) 100
3 2 3
T T T= + + ×
3 2 6
6 3 5 9
7 4 8
8 7 5 9
1 1 1
2 (500 2 ) 100
3 2 3
1 1 1
2 ( 2 ) 100
3 2 3
1 1 1
2 (100 2 ) 100
3 2 3
1 1 1
2 ( 2 ) 100
3 2 3
T T T
T T T T
T T T
T T T T
= + + + ×
= + + + ×
= + + + ×
= + + + ×
Example 3-5
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3 2 6
1 1 1
2 (500 2 ) 100
3 2 3
T T T= + + + ×
6 3 5 9
1 1 1
2 ( 2 ) 100
3 2 3
T T T T= + + + ×
7 4 8
1 1 1
2 (100 2 ) 100
3 2 3
T T T= + + + ×
8 7 5 9
1 1 1
2 ( 2 ) 100
3 2 3
T T T T= + + + ×
The equation for node 9 is
9 6 8
1 1 1
1 ( ) 100
3 2 3
T T T= + + ×
Example 3-5
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
We thus have nine equations and nine unknown nodal temperatures. So
the answer is
For the 500 face, the heat flow into the face is℃
31 2 (500 )(500 ) (500 )
10 [ ]
2
... 4843.4 /
in
TT TT x
q k A x x
y y y y
W m
−− −∆ ∆
= × × = × ∆ × + ∆ × + ×
∆ ∆ ∆ ∆
= =
∑
The heat flow out of the 100 face is℃
71 4
1
( 100)( 100) ( 100)
10 [ ]
2
... 3019 /
TT TT y
q k A y y
x x x x
W m
−− −∆ ∆
= × × = × ∆ × + ∆ × + ×
∆ ∆ ∆ ∆
= =
∑
Example 3-5
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
2
3 6 9
( )
10 [ ( 100) ( 100) ( 100)]
2
... 1214.6 /
q h A T T
y
y T y T T
W m
∞= × × −
∆
= × ∆ × − + ∆ × − + × −
= =
∑
The heat flow out the right face is
3
7 8 9
( )
10 [ ( 100) ( 100) ( 100)]
2
... 600.7 /
q h A T T
y
y T y T T
W m
∞= × × −
∆
= × ∆ × − + ∆ × − + × −
= =
∑
1 2 3 ... 4834.3 /outq q q q W m= + + = = 4843.4 /inq W m=<
The heat flow out the bottom face is
The total heat flow out is
Example 3-5
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-6 Numerical Formulation in Terms of Resistance Elements
Thermal balance — the net heat input to node i must be zero
0j i
i
j i j
T T
q
R
−
+ =∑
qi — heat generation, radiation, etc.
i — solving node
j — adjoining node
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
1, , 1, , , 1 , , 1 ,
0m n m n m n m n m n m n m n m n
m m n n
T T T T T T T T
R R R R
− + − +
− + − +
− − − −
+ + + =
x
R
kA
∆
=
1
m m n nR R R R
k
− + − += = = =
1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − =
0
j i
i
j i j
T T
q
R
−
+ =∑
so
3-6 Numerical Formulation in Terms of Resistance Elements
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-7 Gauss-Seidel Iteration
0
j i
i
j i j
T T
q
R
−
+ =∑
( / )
(1/ )
i j i j
j
i
i j
j
q T R
T
R
+
=
∑
∑
Steps
Assumed initial set of values for Ti ;
Calculated Ti according to the equation ;
—using the most recent values of the Ti
Repeated the process until converged.
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Convergence Criterion
( 1) ( )i n i nT T δ+ − ≤
( 1) ( )
( )
i n i n
i n
T T
T
ε+ −
≤
3 6
10 10ε − −
= ~
Biot number
h x
Bi
k
∆
=
3-7 Gauss-Seidel Iteration
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-6
1x
R
k y k
∆
= =
∆
Apply the Gauss-Seidel technique to obtain the nodal temperature
for the four nodes in the figure.
[Solution]
All the connection resistance between
the nodes are equal, that is
Therefore, we have
( / ) ( ) ( )
(1/ ) ( ) ( )
i j i j i j j j j
j j j
i
i j j j
j j j
q T R q k T k T
T
R k k
+ +
= = =
∑ ∑ ∑
∑ ∑ ∑Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Example 3-6
Because each node has four resistance connected to it and k is assumed
constant, so
4j
j
k k=∑
1
4
i j
j
T T∴ = ∑
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
3-8 Accuracy Consideration
Truncation Error — Influenced by difference scheme
Discrete Error — Influenced by truncation error & x△
Round-off Error — Influenced by x△
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Summary
(1)Numerical Method
Solving Zone
Nodal equations
thermal balance method — Interior & boundary point
Algebraic equations
Gauss-Seidel iteration
( / )
(1/ )
i j i j
j
i
i j
j
q T R
T
R
+
=
∑
∑Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Summary
(2)Resistance Forms
0j i
i
j i j
T T
q
R
−
+ =∑
(3)Convergence
Convergence Criterion
( 1) ( )i n i nT T δ+ − ≤
( 1) ( )i n i nT T δ+ − ≤
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Summary
(4)Accuracy
Truncation Error
Discrete Error
Round-off Error
Important conceptions
Nodal equations — thermal balance method
Calculated temperature & heat flow
Convergence criterion
How to improve accuracy
Video.edhole.com
CUMT
HEAT TRANSFER LECTURE
Exercises
Exercises: 3-16, 3-24, 3-48, 3-59
Video.edhole.com

More Related Content

What's hot

4 damped harmonicoscillator
4 damped harmonicoscillator4 damped harmonicoscillator
4 damped harmonicoscillatorSusanti santi
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsolziich
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12Pamela Paz
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineeringTalal Ashraf
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :DQuimm Lee
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reducedKyro Fitkry
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem Manthan Chavda
 
Question answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by KeiserQuestion answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by Keiserblackdance1
 
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...James Smith
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 

What's hot (19)

4 damped harmonicoscillator
4 damped harmonicoscillator4 damped harmonicoscillator
4 damped harmonicoscillator
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
bhandout
bhandoutbhandout
bhandout
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Ch06 4
Ch06 4Ch06 4
Ch06 4
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineering
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reduced
 
Stirling theorem
Stirling theoremStirling theorem
Stirling theorem
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Time complexity
Time complexityTime complexity
Time complexity
 
E33018021
E33018021E33018021
E33018021
 
Question answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by KeiserQuestion answers Optical Fiber Communications 4th Edition by Keiser
Question answers Optical Fiber Communications 4th Edition by Keiser
 
Math iecep
Math iecepMath iecep
Math iecep
 
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 

Similar to MBA HEAT TRANSFER LECTURE

Application of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferApplication of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferShivshambhu Kumar
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20Rahman Hakim
 
laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9P.L. Dhar
 
Tp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialesTp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialespapillontuba
 
Modeling and-simulating-of-gas-turbine-cooled-blades
Modeling and-simulating-of-gas-turbine-cooled-bladesModeling and-simulating-of-gas-turbine-cooled-blades
Modeling and-simulating-of-gas-turbine-cooled-bladesCemal Ardil
 
Numerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-enginesNumerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-enginesCemal Ardil
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
T2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptxT2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptxGadaFarhan
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
project presentation
project presentationproject presentation
project presentationVishesh Gupta
 

Similar to MBA HEAT TRANSFER LECTURE (20)

Application of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferApplication of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat Transfer
 
CN_slides.pdf
CN_slides.pdfCN_slides.pdf
CN_slides.pdf
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9laws of thermodynamics_ Lecture 6to9
laws of thermodynamics_ Lecture 6to9
 
Tp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialesTp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initiales
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
 
Modeling and-simulating-of-gas-turbine-cooled-blades
Modeling and-simulating-of-gas-turbine-cooled-bladesModeling and-simulating-of-gas-turbine-cooled-blades
Modeling and-simulating-of-gas-turbine-cooled-blades
 
Numerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-enginesNumerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-engines
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
T2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptxT2311 - Ch 4_Part1.pptx
T2311 - Ch 4_Part1.pptx
 
Ch03 5
Ch03 5Ch03 5
Ch03 5
 
wave_equation
wave_equationwave_equation
wave_equation
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Ch03 4
Ch03 4Ch03 4
Ch03 4
 
project presentation
project presentationproject presentation
project presentation
 
AJMS_384_22.pdf
AJMS_384_22.pdfAJMS_384_22.pdf
AJMS_384_22.pdf
 

More from Edhole.com

Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarkaEdhole.com
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarkaEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in suratEdhole.com
 
Website dsigning company in india
Website dsigning company in indiaWebsite dsigning company in india
Website dsigning company in indiaEdhole.com
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhiEdhole.com
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarkaEdhole.com
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarkaEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in suratEdhole.com
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in indiaEdhole.com
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhiEdhole.com
 
Website designing company in mumbai
Website designing company in mumbaiWebsite designing company in mumbai
Website designing company in mumbaiEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website desinging company in surat
Website desinging company in suratWebsite desinging company in surat
Website desinging company in suratEdhole.com
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in indiaEdhole.com
 

More from Edhole.com (20)

Ca in patna
Ca in patnaCa in patna
Ca in patna
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarka
 
Ca in dwarka
Ca in dwarkaCa in dwarka
Ca in dwarka
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarka
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in surat
 
Website dsigning company in india
Website dsigning company in indiaWebsite dsigning company in india
Website dsigning company in india
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhi
 
Ca in patna
Ca in patnaCa in patna
Ca in patna
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarka
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarka
 
Ca in dwarka
Ca in dwarkaCa in dwarka
Ca in dwarka
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in surat
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in india
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhi
 
Website designing company in mumbai
Website designing company in mumbaiWebsite designing company in mumbai
Website designing company in mumbai
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website desinging company in surat
Website desinging company in suratWebsite desinging company in surat
Website desinging company in surat
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in india
 

Recently uploaded

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 

Recently uploaded (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 

MBA HEAT TRANSFER LECTURE

  • 1. Company LOGO Video Lectures for MBA By: Video.edhole.com
  • 2. CUMT HEAT TRANSFER LECTURE Chapter 3 Steady-State Conduction Multiple Dimensions CHAPER 3 Steady-State Conduction Multiple Dimensions Video.edhole.com
  • 3. CUMT HEAT TRANSFER LECTURE In Chapter 2 steady-state heat transfer was calculated in systems in which the temperature gradient and area could be expressed in terms of one space coordinate. We now wish to analyze the more general case of two- dimensional heat flow. For steady state with no heat generation, the Laplace equation applies. 2 2 2 2 0 T T x y ∂ ∂ + = ∂ ∂ The solution to this equation may be obtained by analytical, numerical, or graphical techniques. (3-1) 3-1 Introduction Video.edhole.com
  • 4. CUMT HEAT TRANSFER LECTURE The objective of any heat-transfer analysis is usually to predict heat flow or the temperature that results from a certain heat flow. The solution to Equation (3-1) will give the temperature in a two-dimensional body as a function of the two independent space coordinates x and y. Then the heat flow in the x and y directions may be calculated from the Fourier equations 3-1 Introduction Video.edhole.com
  • 5. CUMT HEAT TRANSFER LECTURE 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Analytical solutions of temperature distribution can be obtained for some simple geometry and boundary conditions. The separation method is an important one to apply. Consider a rectangular plate. Three sides are maintained at temperature T1, and the upper side has some temperature distribution impressed on it. The distribution can be a constant temperature or something more complex, such as a sine-wave. Video.edhole.com
  • 6. CUMT HEAT TRANSFER LECTURE Consider a sine-wave distribution on the upper edge, the boundary conditions are: 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 7. CUMT HEAT TRANSFER LECTURE Substitute: We obtain two ordinary differential equations in terms of this constant, 2 2 2 2 1 1T T X x Y y ∂ ∂ − = ∂ ∂ 2 2 2 0 X X x λ ∂ + = ∂ 2 2 2 0 Y Y y λ ∂ − = ∂ where λ2 is called the separation constant. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 8. CUMT HEAT TRANSFER LECTURE We write down all possible solutions and then see which one fits the problem under consideration. ( ) ( ) 1 2 2 3 4 1 2 3 4 0:For X C C x Y C C y T C C x C C y λ = = + = + = + + This function cannot fit the sine-function boundary condition, so that the solution may be excluded.2 0λ = 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 9. CUMT HEAT TRANSFER LECTURE ( )( ) 2 5 6 7 8 5 6 7 8 0: cos sin cos sin x x x x For X C e C e Y C y C y T C e C e C y C y λ λ λ λ λ λ λ λ λ − − < = + = + = + + This function cannot fit the sine-function boundary condition, so that the solution may be excluded.2 0λ < 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 10. CUMT HEAT TRANSFER LECTURE ( ) ( ) 2 9 10 11 12 9 10 11 12 0: cos sin cos sin y y y y For X C x C x C e C e T C x C x C e C e Y λ λ λ λ λ λ λ λ λ − − > = + = + = + + It is possible to satisfy the sine-function boundary condition; so we shall attempt to satisfy the other condition. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 11. CUMT HEAT TRANSFER LECTURE Let The equation becomes: Apply the method of variable separation, let 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 12. CUMT HEAT TRANSFER LECTURE And the boundary conditions become: 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 13. CUMT HEAT TRANSFER LECTURE Applying these conditions,we have: ( ) ( )9 10 11 120 cos sinC x C x C Cλ λ= + + ( )9 11 120 y y C C e C eλ λ− = + ( ) ( )9 10 11 120 cos sin y y C W C W C e C eλ λ λ λ − = + + ( ) ( )9 10 11 12sin cos sin H H m x T C x C x C e C e W λ λπ λ λ −  = + + ÷   3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 14. CUMT HEAT TRANSFER LECTURE accordingly, and from (c), This requires that 11 12C C= − 9 0C = ( )10 120 sin y y C C W e eλ λ λ − = − sin 0Wλ = 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 15. CUMT HEAT TRANSFER LECTURE then which requires that Cn =0 for n >1. We get n W π λ = 1 1 sin sinhn n n x n y T T C W W π π θ ∞ = = − = ∑ 1 sin sin sinhm n n x n x n H T C W W W π π π∞ = = ∑ The final boundary condition may now be applied: 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 16. CUMT HEAT TRANSFER LECTURE The final solution is therefore ( ) ( ) 1 sinh / sin sinh / m y W x T T T H W W π π π = + The temperature field for this problem is shown. Note that the heat- flow lines are perpendicular to the isotherms. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 17. CUMT HEAT TRANSFER LECTURE Another set of boundary conditions 0 at 0 0 at 0 0 at sin atm y x x W x T y H W θ θ θ π θ = = = = = =   = = ÷   3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 18. CUMT HEAT TRANSFER LECTURE Using the first three boundary conditions, we obtain the solution in the form of Equation: 1 1 sin sinhn n n x n y T T C W W π π∞ = − = ∑ Applying the fourth boundary condition gives 2 1 1 sin sinhn n n x n H T T C W W π π∞ = − = ∑ 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 19. CUMT HEAT TRANSFER LECTURE This series is then ( ) ( ) 1 2 1 2 1 1 1 12 sin n n n x T T T T n W π π + ∞ = − + − = − ∑ ( ) ( ) ( ) 1 2 1 1 12 1 sinh / n nC T T n H W nπ π + − + = − The final solution is expressed as ( ) ( ) ( ) 1 1 12 1 1 1 sinh /2 sin sinh / n n n y WT T n x T T n W n H W ππ π π + ∞ = − +− = − ∑ 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 20. CUMT HEAT TRANSFER LECTURE 0 at 0 0 at 0 0 at sin atm y x x W x T y H W θ θ θ π θ = = = = = =   = = ÷   Transform the boundary condition: 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction Video.edhole.com
  • 21. CUMT HEAT TRANSFER LECTURE 3-3 Graphical Analysis neglect Video.edhole.com
  • 22. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Consider a general one dimensional heat conduct- ion problem, from Fourier’s Law: let then where : S is called shape factor.Video.edhole.com
  • 23. CUMT HEAT TRANSFER LECTURE Note that the inverse hyperbolic cosine can be calculated from ( )1 2 cosh ln 1x x x− = ± − For a three-dimensional wall, as in a furnace, separate shape factors are used to calculate the heat flow through the edge and corner sections, with the dimensions shown in Figure 3-4. when all the interior dimensions are greater than one fifth of the thickness, wall A S L = edge 0.54S D= corner 0.15S L= where A = area of wall, L = wall thickness, D = length of edge 3-4 The Conduction Shape Factor Video.edhole.com
  • 24. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 25. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 26. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 27. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 28. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 29. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 30. CUMT HEAT TRANSFER LECTURE 3-4 The Conduction Shape Factor Video.edhole.com
  • 31. CUMT HEAT TRANSFER LECTURE Example 3-1 Video.edhole.com
  • 32. CUMT HEAT TRANSFER LECTURE Example 3-2 Video.edhole.com
  • 33. CUMT HEAT TRANSFER LECTURE Example 3-3 Video.edhole.com
  • 34. CUMT HEAT TRANSFER LECTURE Example 3-4 Video.edhole.com
  • 35. CUMT HEAT TRANSFER LECTURE 3-5 Numerical Method of Analysis The most fruitful approach to the heat conduction is one based on finite-difference techniques, the basic principles of which we shall outline in this section. Video.edhole.com
  • 36. CUMT HEAT TRANSFER LECTURE 1 、 Discretization of the solving 3-5 Numerical Method of Analysis Video.edhole.com
  • 37. CUMT HEAT TRANSFER LECTURE 2 、 Discrete equation Taylor series expansion 2 2 3 3 1, , 2 3 , , , ( ) ( ) ... 2 6 m n m n m n m n m n T x T x T T T x x x x + ∂ ∆ ∂ ∆ ∂ = + ∆ + + + ∂ ∂ ∂ 2 2 3 3 1, , 2 3 , , , ( ) ( ) ... 2 6 m n m n m n m n m n T x T x T T T x x x x − ∂ ∆ ∂ ∆ ∂ = − ∆ + − + ∂ ∂ ∂ 3-5 Numerical Method of Analysis Video.edhole.com
  • 38. CUMT HEAT TRANSFER LECTURE 2 2 1, 1, , 2 , 2 ( ) ...m n m n m n m n T T T T x x + − ∂ + = + ∆ + ∂ 2 1, , 1, 2 2 2 , 2 ( ) ( ) m n m n m n m n T T TT o x x x + −− +∂ = + ∆ ∂ ∆ 2 2 1,,1, , 2 2 )( )( 2 yo y TTT y T nmnmnm nm ∆+ ∆ +− = ∂ ∂ −+ 2 、 Discrete equation Differential equation for two-dimensional steady-state heat flow 2 2 2 2 0 T T q x y k • ∂ ∂ + + = ∂ ∂ 3-5 Numerical Method of Analysis Video.edhole.com
  • 39. CUMT HEAT TRANSFER LECTURE 2 、 Discrete equation Discrete equation at nodal point (m,n) 1, , 1, , 1 , , 1 2 2 2 2 0m n m n m n m n m n m nT T T T T T q x y k • + − + −− + − + + + = ∆ ∆ 1, , 1, , 1 , , 1 2 2 2 2 0m n m n m n m n m n m nT T T T T T x y + − + −− + − + + = ∆ ∆ no heat generation Δx= Δy 1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − = 3-5 Numerical Method of Analysis Video.edhole.com
  • 40. CUMT HEAT TRANSFER LECTURE 2 、 Discrete equation Thermal balance (1) Interior points steady-state & no heat generation 1, 1, , 1 , 1 0m n m n m n m nq q q q− + + −+ + + = 1, , 1, d d m n m n m n T TT q kA k y x x − − − = − = ∆ ∆ x TT ykq nmnm nm ∆ − ∆= + + ,,1 ,1 , 1 , , 1 m n m n m n T T q k x y + + − = ∆ ∆ , 1 , , 1 m n m n m n T T q k x y − − − = ∆ ∆ 1, , 1, , , 1 , , 1 , 0m n m n m n m n m n m n m n m nT T T T T T T T k y k y k x k x x x y y − + + −− − − − ∆ + ∆ + ∆ + ∆ = ∆ ∆ ∆ ∆ 3-5 Numerical Method of Analysis Video.edhole.com
  • 41. CUMT HEAT TRANSFER LECTURE Thermal balance Δx= Δy 1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − = genq q V q x y • • = × = ×∆ ∆ 2 1, 1, , 1 , 1 ,4 ( ) 0m n m n m n m n m n q T T T T T x k • + − + −+ + + − + ∆ = steady-state with heat generation (1) Interior points 3-5 Numerical Method of Analysis Video.edhole.com
  • 42. CUMT HEAT TRANSFER LECTURE 2 、 Discrete equation Thermal balance (2) boundary points 1, , 1, m n m n m n T T q k y x − − − = ∆ ∆ , 1 , , 1 2 m n m n m n T Tx q k y + + −∆ = ∆ , 1 , , 1 2 m n m n m n T Tx q k y − − −∆ = ∆ ,( )w m nq h y T T∞= ×∆ × − 1, , , 1 , , 1 , ,( ) 2 2 m n m n m n m n m n m n m n T T T T T Tx x k y k k h y T T x y y − + − ∞ − − −∆ ∆ ∆ + + = ×∆ × − ∆ ∆ ∆ 3-5 Numerical Method of Analysis Video.edhole.com
  • 43. CUMT HEAT TRANSFER LECTURE Thermal balance Δx= Δy (2) boundary points , 1, , 1 , 1 1 ( 2) ( ) 2 m n m n m n m n h x h x T T T T T k k − + − ∞ ×∆ ×∆ + = + + + 1, , , 1 , , ,( ) ( ) 2 2 2 2 m n m n m n m n m n m n T T T Ty x x y k k h T T h T T x y − − ∞ ∞ − −∆ ∆ ∆ ∆ + = × × − + × × − ∆ ∆ , 1, , 1 1 ( 1) ( ) 2 m n m n m n h x h x T T T T k k − − ∞ ×∆ ×∆ + = + + Δx= Δy 3-5 Numerical Method of Analysis Video.edhole.com
  • 44. CUMT HEAT TRANSFER LECTURE Thermal balance (2) boundary points Δx= Δy 1, , 1, , , 1 , , 1 , , , 2 2 ( ) ( ) 2 2 m n m n m n m n m n m n m n m n m n m n T T T T T Ty x k y k k x x y T T x y k x h T T h T T y − + − + ∞ ∞ − − −∆ ∆ ∆ + + ∆ ∆ ∆ − ∆ ∆ + ∆ = × × − + × × − ∆ , 1, 1, , 1 , 1 1 ( 3) (2 2 ) 2 m n m n m n m n m n h x h x T T T T T T k k − + − + ∞ ×∆ ×∆ + = + + + + 3-5 Numerical Method of Analysis Video.edhole.com
  • 45. CUMT HEAT TRANSFER LECTURE 3 、 Algebraic equation 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 ...... ...... ............................................ ...... n n n n n n nn n n a T a T a T C a T a T a T C a T a T a T C + + + = + + + = + + + = 3-5 Numerical Method of Analysis Video.edhole.com
  • 46. CUMT HEAT TRANSFER LECTURE Matrix notation [ ] 11 12 1 21 22 2 1 2 ... ... ... ... ... ... ... n n n n nn a a a a a a A a a a      =       [ ] 1 2 ... n T T T T      =       [ ] 1 2 ... n C C C C      =       [ ][ ] [ ]A T C= Iteration Simple Iteration & Gauss-Seidel Iteration 3-5 Numerical Method of Analysis Video.edhole.com
  • 47. CUMT HEAT TRANSFER LECTURE Example 3-5 Consider the square shown in the figure. The left face is maintained at 100 and the top face at 500 , while the℃ ℃ other two faces are exposed to a environment at 100 .℃ h=10W/m2· and k=10W/m· . The block is 1 m square.℃ ℃ Compute the temperature of the various nodes as indicated in the figure and heat flows at the boundaries. Video.edhole.com
  • 48. CUMT HEAT TRANSFER LECTURE [Solution] The equations for nodes 1,2,4,5 are given by 2 4 1 1 3 5 2 1 5 7 4 2 4 6 8 5 500 100 4 0 500 4 0 100 4 0 4 0 T T T T T T T T T T T T T T T T + + + − = + + + − = + + + − = + + + − = Example 3-5 Video.edhole.com
  • 49. CUMT HEAT TRANSFER LECTURE [Solution] Equations for nodes 3,6,7,8 are The equation for node 9 is 9 6 8 1 1 1 1 ( ) 100 3 2 3 T T T= + + × 3 2 6 6 3 5 9 7 4 8 8 7 5 9 1 1 1 2 (500 2 ) 100 3 2 3 1 1 1 2 ( 2 ) 100 3 2 3 1 1 1 2 (100 2 ) 100 3 2 3 1 1 1 2 ( 2 ) 100 3 2 3 T T T T T T T T T T T T T T = + + + × = + + + × = + + + × = + + + × Example 3-5 Video.edhole.com
  • 50. CUMT HEAT TRANSFER LECTURE 3 2 6 1 1 1 2 (500 2 ) 100 3 2 3 T T T= + + + × 6 3 5 9 1 1 1 2 ( 2 ) 100 3 2 3 T T T T= + + + × 7 4 8 1 1 1 2 (100 2 ) 100 3 2 3 T T T= + + + × 8 7 5 9 1 1 1 2 ( 2 ) 100 3 2 3 T T T T= + + + × The equation for node 9 is 9 6 8 1 1 1 1 ( ) 100 3 2 3 T T T= + + × Example 3-5 Video.edhole.com
  • 51. CUMT HEAT TRANSFER LECTURE We thus have nine equations and nine unknown nodal temperatures. So the answer is For the 500 face, the heat flow into the face is℃ 31 2 (500 )(500 ) (500 ) 10 [ ] 2 ... 4843.4 / in TT TT x q k A x x y y y y W m −− −∆ ∆ = × × = × ∆ × + ∆ × + × ∆ ∆ ∆ ∆ = = ∑ The heat flow out of the 100 face is℃ 71 4 1 ( 100)( 100) ( 100) 10 [ ] 2 ... 3019 / TT TT y q k A y y x x x x W m −− −∆ ∆ = × × = × ∆ × + ∆ × + × ∆ ∆ ∆ ∆ = = ∑ Example 3-5 Video.edhole.com
  • 52. CUMT HEAT TRANSFER LECTURE 2 3 6 9 ( ) 10 [ ( 100) ( 100) ( 100)] 2 ... 1214.6 / q h A T T y y T y T T W m ∞= × × − ∆ = × ∆ × − + ∆ × − + × − = = ∑ The heat flow out the right face is 3 7 8 9 ( ) 10 [ ( 100) ( 100) ( 100)] 2 ... 600.7 / q h A T T y y T y T T W m ∞= × × − ∆ = × ∆ × − + ∆ × − + × − = = ∑ 1 2 3 ... 4834.3 /outq q q q W m= + + = = 4843.4 /inq W m=< The heat flow out the bottom face is The total heat flow out is Example 3-5 Video.edhole.com
  • 53. CUMT HEAT TRANSFER LECTURE 3-6 Numerical Formulation in Terms of Resistance Elements Thermal balance — the net heat input to node i must be zero 0j i i j i j T T q R − + =∑ qi — heat generation, radiation, etc. i — solving node j — adjoining node Video.edhole.com
  • 54. CUMT HEAT TRANSFER LECTURE 1, , 1, , , 1 , , 1 , 0m n m n m n m n m n m n m n m n m m n n T T T T T T T T R R R R − + − + − + − + − − − − + + + = x R kA ∆ = 1 m m n nR R R R k − + − += = = = 1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ − + −+ + + − = 0 j i i j i j T T q R − + =∑ so 3-6 Numerical Formulation in Terms of Resistance Elements Video.edhole.com
  • 55. CUMT HEAT TRANSFER LECTURE 3-7 Gauss-Seidel Iteration 0 j i i j i j T T q R − + =∑ ( / ) (1/ ) i j i j j i i j j q T R T R + = ∑ ∑ Steps Assumed initial set of values for Ti ; Calculated Ti according to the equation ; —using the most recent values of the Ti Repeated the process until converged. Video.edhole.com
  • 56. CUMT HEAT TRANSFER LECTURE Convergence Criterion ( 1) ( )i n i nT T δ+ − ≤ ( 1) ( ) ( ) i n i n i n T T T ε+ − ≤ 3 6 10 10ε − − = ~ Biot number h x Bi k ∆ = 3-7 Gauss-Seidel Iteration Video.edhole.com
  • 57. CUMT HEAT TRANSFER LECTURE Example 3-6 1x R k y k ∆ = = ∆ Apply the Gauss-Seidel technique to obtain the nodal temperature for the four nodes in the figure. [Solution] All the connection resistance between the nodes are equal, that is Therefore, we have ( / ) ( ) ( ) (1/ ) ( ) ( ) i j i j i j j j j j j j i i j j j j j j q T R q k T k T T R k k + + = = = ∑ ∑ ∑ ∑ ∑ ∑Video.edhole.com
  • 58. CUMT HEAT TRANSFER LECTURE Example 3-6 Because each node has four resistance connected to it and k is assumed constant, so 4j j k k=∑ 1 4 i j j T T∴ = ∑ Video.edhole.com
  • 59. CUMT HEAT TRANSFER LECTURE 3-8 Accuracy Consideration Truncation Error — Influenced by difference scheme Discrete Error — Influenced by truncation error & x△ Round-off Error — Influenced by x△ Video.edhole.com
  • 60. CUMT HEAT TRANSFER LECTURE Summary (1)Numerical Method Solving Zone Nodal equations thermal balance method — Interior & boundary point Algebraic equations Gauss-Seidel iteration ( / ) (1/ ) i j i j j i i j j q T R T R + = ∑ ∑Video.edhole.com
  • 61. CUMT HEAT TRANSFER LECTURE Summary (2)Resistance Forms 0j i i j i j T T q R − + =∑ (3)Convergence Convergence Criterion ( 1) ( )i n i nT T δ+ − ≤ ( 1) ( )i n i nT T δ+ − ≤ Video.edhole.com
  • 62. CUMT HEAT TRANSFER LECTURE Summary (4)Accuracy Truncation Error Discrete Error Round-off Error Important conceptions Nodal equations — thermal balance method Calculated temperature & heat flow Convergence criterion How to improve accuracy Video.edhole.com
  • 63. CUMT HEAT TRANSFER LECTURE Exercises Exercises: 3-16, 3-24, 3-48, 3-59 Video.edhole.com