Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources 
Characterization of shales 
with low field NMR. 
M. Fleury 
Energies nouvelles, Rueil-Malmaison, France SCA symposium, 8-11 September 2014, Avignon, France
Energies nouvelles, Rueil-Malmaison, France 
Low permeability media and nanoporous 
materials 
From characterisation to modelling: 
can we do it better? 
Rueil-Malmaison, France, 9-11 June 2015 
2 
http://www.rs-lowperm2015.com/ 
End of Call For Papers: 28 Nov. 2014 
LowPerm2015: platform for exchange and interaction between research and 
industry players from a variety of different disciplines such as geological 
formations (shale, tight sandstone or carbonates, etc.), concrete engineering, 
polymer sheaths for pipelines, nanofiltration for produced water treatment, 
heterogeneous catalysis, etc. 
These very different applications all face the same challenges: the 
characterisation and modelling of these media and materials and the 
associated transport mechanisms at different scales and potentially enhanced 
by the confinement.
Energies nouvelles, Rueil-Malmaison, France 
Characterization issues 
 Pore sizes down to 1 nanometer 
 Medium to low porosity (5-15%) 
 Presence of organic matter and associated 
porosity 
 Liquid permeability down to 1nD, gas flow 
dominated by Klinkenberg effect 
 Simple measurements such as porosity or 
cementation exponent m difficult 
M. Fleury et al., Caprock and gas shale characterization: appropriate 3 petrophyscial methods
Energies nouvelles, Rueil-Malmaison, France 
NMR issues 
 Does NMR measure total porosity ? 
Typical relaxation time of nanopores ? 
 Does T2 distribution indicate pore size 
distribution ? 
Pore coupling effect 
 Fluid typing 
Methane signature: adsorbed / free gas 
Organic matter signature 
T2 distribution alone insufficient 
 2 approaches: 
Use diffusion contrast: T2-D maps 
Use T1-T2 contrast: T1-T2 map 
4
Energies nouvelles, Rueil-Malmaison, France 
5 
NMR logging examples: caprock 
Callovo-Oxfordian formation 
Ketzin caprock
Energies nouvelles, Rueil-Malmaison, France 
6 
NMR logging examples: gas shales 
Ramirez et al., 2011, SPE144062
Energies nouvelles, Rueil-Malmaison, France 
NMR conventionnal approach 
M. Fleury, Characterization of shales 7 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Fluid typing ? 
From Glorioso et al. SPE 167785, 2014 
Advanced techniques needed ! 
NMR signal 
M. Fleury, Characterization of shales 8 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Outline 
 Relaxation of water in nanopores 
 Diffusion properties (cementation exponent 
m) 
 Relaxation of methane in porous media 
 Relaxation of solid or pseudo-solid 
components 
 Conclusion: fluid typing from T1-T2 map 
9
Energies nouvelles, Rueil-Malmaison, France 
10 
102 
101 
100 
10-1 
10-2 
10-3 
10-4 
Fast diffusion limit 4r2V/S << D 
r2=10 mm/s 
r2=1 mm/s 
10-1 100 101 102 103 104 
Pore size V/S (micron) 
Measured T2 (ms) 
T2b 
Relaxation in nanopores 
S 
1 = r ´ + 1 
T 2 
V T Bulk 
2 
2 
1 nm pore sizes 
between 
0.1 and 1ms
Energies nouvelles, Rueil-Malmaison, France 
11 
Example: caprock sample (COx) 
T2 (ms) 
(ms) 
T 
1 
101 
100 
10-1 
10-2 
Hydroxyls 
1 
12 
2 
Mobile water 
10-2 10-1 100 101 
(23 MHz NMR instrument 
18 mm probe)
Study of nanopores in clays 
Energies nouvelles, Rueil-Malmaison, France M. Fleury et al., Characterization of interlayer water in clays using low field relaxation and nutation 12 experiments 
from Porion et al. J. Phys. Chem. 2007 
interlayer spacing 
<1nm 
Cristal with 
hydroxyls 
Counter-ions 
and water 
d001 
(SAXS)
Energies nouvelles, Rueil-Malmaison, France 
13 
Example: smectite powder at RH=50% 
101 
T2 below 0.1 ms should not 
be included in porosity 
T1 (ms) 10-2 10-1 100 101 
T2 (ms) 
100 
10-1 
T1/T2=1 
2.5 
10 
Hydroxyls 
Mobile water 
Mobile water 
(23 MHz NMR instrument 
10 mm probe) 
Fleury et al., J. Phys. Chem. 2013
Energies nouvelles, Rueil-Malmaison, France 
T2 in nanopores (smectite powders) 
Fleury et al., J. Phys. Chem. 2013 
M. Fleury, Characterization of shales 14 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Results: gas shale sample at Sw=1 
M. Fleury, Characterization of shales 15 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Measurement of cementation m 
 Tortuosity from 
resistivity (Archie) 
diffusivity 
16 
= Fm-1 
eff 
D 
m 
D 
m 
R0 = F 
w R 
Classical method 
Need knowledge of 
water salinity 
From NMR diffusion 
Experiments at Sw=1 
No specific knowledge 
Some potential issues related to 
clay conductivity
Energies nouvelles, Rueil-Malmaison, France 
17 
NMR method: deuterium diffusion 
Example: Kw=50 nD, f: 6.4 %, size: D=L=15mm 
100 
80 
60 
40 
20 
0 
t=0 
2.6 hr 
H2 outside 
sample 
10-2 10-1 100 101 102 103 
T2 (ms) 
A(T2) (a.u.) 
16 hr 
H2 not exchanged with D2 
D2O 
ö 
æ 
C C 
* 6 1 exp 
= - 
2 2 
k D t 
H2O saturated 
sample at t=0 
å¥ 
= 
- 
f 
0 5 10 15 20 
0.8 
0.6 
0.4 
0.2 
0 
-0.2 
Time (hr) 
C* 
Dp=2.48e-006 cm2/s 
Diffusion coefficient 
m=1.87 
÷ ÷ 
ø 
ç ç 
è 
- 
= 
1 
2 
2 2 
k 
p 
i f 
r 
C C k 
C 
p 
p 
Fleury et al., Energy Procedia 2009 
Berne et al. , OGST, 2009
Energies nouvelles, Rueil-Malmaison, France 
Example: gas shale samples 
18 
0.12 
0.1 
0.08 
0.06 
0.04 
0.02 
0 
0 0.02 0.04 0.06 0.08 0.1 0.12 
Porosity 
Deff/Dm 
m=2 
m=2.5 
RM9-14 D=0.62 10-10 m2/s 
2 nD 
0 20 40 60 80 100 120 140 160 180 
1.2 
1 
0.8 
0.6 
0.4 
0.2 
0 
-0.2 
Time (hr) 
(C-Ci)/(Cf-Ci) 
RM3-14 D=1.1 10-10 m2/s 
The less porous sample has the highest Deff !! 
Measurements 
Results 
100% water saturated 
0.12 nD 
m=2.45, 2 nD 
m=1.9, 0.12 nD
Energies nouvelles, Rueil-Malmaison, France 
Water diffusivity: consequences 
 Diffusion length much larger than pore size : 
D~ 10-10 m2/s, LD=(6Dt)1/2 ~800 nm at t=1ms 
Pore sizes <500 nm are in a pore coupling 
regime 
19 
MICP 
Difficult to reconcile MICP and NMR !!
Energies nouvelles, Rueil-Malmaison, France 
Relaxation of methane in porous media 
 Fundamental mechanisms known 
 Bulk properties (Oosting et al. 1971): spin rotation 
 Riehl et al. 1972, NMR relaxation of adsorbed 
methane: anisotropic rotationnal motions at the 
solid surface 
 large T1/T2 ratio 
 Existing work in petroleum sciences 
 Straley, 1997 T1/T2 ratio >> 1 even in partially 
saturated samples 
 Recent work: Kausik et al. 2011, Rylander et al. 
2013, Tinni et al. 2014…. 
20
Energies nouvelles, Rueil-Malmaison, France 
Results for methane 
Bulk CH4 
200 bar 
CH4 in 
Shale 
Sand 
M. Fleury, Characterization of shales 21 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Results for methane in organic matter 
100 bar 200 bar 
M. Fleury, Characterization of shales 22 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Relaxation of solids or pseudo-solid 
components 
BPP theory 
23 
ù 
úû 
C t 
1 2 é 
2 
t 
= 2 2 2 2 
1 1 4 
êë 
+ 
+ 
+ 
8 
1 
w t 
w t 
T 
ù 
úû 
C t t 
1 é 
6 10 
t 
= + 2 2 2 2 
2 1 4 
êë 
+ 
+ 
+ 
4 
1 
w t 
w t 
T 
Liquids 
Example: 
Ice: T2=0.008 ms 
T1=70 s at 30 MHz
Amplitude (a.u.) 
Energies nouvelles, Rueil-Malmaison, France 
Détection and quantification of hydroxyls 
300 
250 
200 
150 
100 
50 
0 
-50 
Smectite 200°C 
Cristal with 
hydroxyls 
Water 
(removed 
at 200°C) 
10-2 10-1 100 
Time (ms) 
86% hydroxyls compared to XRD formulae: 
Fleury et al., J. Phys. Chem. 2013 
M. Fleury, Characterization of shales 24 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Detection of organic matter in coal 
British coal 
Anthracite 
Vitrinite reflectance: 2.41 
Specific density: 1.35 
German coal 
High volatile bituminous 
Vitrinite reflectance: 0.79 
Specific density: 1.71 
M. Fleury, Characterization of shales 25 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Results: organic matter from shales (1/2) 
Immature Oil window Gas window 
Hydrogen content: 
59 mg/g 30 mg/g 21 mg/g 
M. Fleury, Characterization of shales 26 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
Results: organic matter in shales (2/2) 
« Dry » samples 
Oil window Gas window 
? 
M. Fleury, Characterization of shales 27 with low field NMR
Principle of T1-T2 maps 
103 
102 
101 
100 
10-1 
T1/T2~2 
liquids in porous media 
T1/T2=1 
bulk liquid 
T1/T2~100 
solid protons 
Energies nouvelles, Rueil-Malmaison, France Réunion 28 du 15 novembre 2012 
limit of confinement effect 
T2 (ms) 
T1 (ms) 
resolution 
limit 
10-2 
10-2 10-1 100 101 102 103 
Pore size 
protons mobility 
low 
high 
small (1 nm) large
Energies nouvelles, Rueil-Malmaison, France 
Fluids typing from T1-T2 map 
M. Fleury, Characterization of shales 29 with low field NMR
Energies nouvelles, Rueil-Malmaison, France 
30 
Conclusions 
 Fluid typing from T1-T2 maps 
 T2 not smaller than 0.1 ms for water in nanopores 
 Hydroxyls are below 0.1 ms, should be removed for 
porosity calculation 
 Methane has a large T1 signature (1s) 
 Weak overlapping of the different protons 
populations in a T1-T2 map 
 T1-T2 signatures well understood from existing 
work and NMR theory

Shale eera fleury

  • 1.
    Renewable energies |Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Characterization of shales with low field NMR. M. Fleury Energies nouvelles, Rueil-Malmaison, France SCA symposium, 8-11 September 2014, Avignon, France
  • 2.
    Energies nouvelles, Rueil-Malmaison,France Low permeability media and nanoporous materials From characterisation to modelling: can we do it better? Rueil-Malmaison, France, 9-11 June 2015 2 http://www.rs-lowperm2015.com/ End of Call For Papers: 28 Nov. 2014 LowPerm2015: platform for exchange and interaction between research and industry players from a variety of different disciplines such as geological formations (shale, tight sandstone or carbonates, etc.), concrete engineering, polymer sheaths for pipelines, nanofiltration for produced water treatment, heterogeneous catalysis, etc. These very different applications all face the same challenges: the characterisation and modelling of these media and materials and the associated transport mechanisms at different scales and potentially enhanced by the confinement.
  • 3.
    Energies nouvelles, Rueil-Malmaison,France Characterization issues  Pore sizes down to 1 nanometer  Medium to low porosity (5-15%)  Presence of organic matter and associated porosity  Liquid permeability down to 1nD, gas flow dominated by Klinkenberg effect  Simple measurements such as porosity or cementation exponent m difficult M. Fleury et al., Caprock and gas shale characterization: appropriate 3 petrophyscial methods
  • 4.
    Energies nouvelles, Rueil-Malmaison,France NMR issues  Does NMR measure total porosity ? Typical relaxation time of nanopores ?  Does T2 distribution indicate pore size distribution ? Pore coupling effect  Fluid typing Methane signature: adsorbed / free gas Organic matter signature T2 distribution alone insufficient  2 approaches: Use diffusion contrast: T2-D maps Use T1-T2 contrast: T1-T2 map 4
  • 5.
    Energies nouvelles, Rueil-Malmaison,France 5 NMR logging examples: caprock Callovo-Oxfordian formation Ketzin caprock
  • 6.
    Energies nouvelles, Rueil-Malmaison,France 6 NMR logging examples: gas shales Ramirez et al., 2011, SPE144062
  • 7.
    Energies nouvelles, Rueil-Malmaison,France NMR conventionnal approach M. Fleury, Characterization of shales 7 with low field NMR
  • 8.
    Energies nouvelles, Rueil-Malmaison,France Fluid typing ? From Glorioso et al. SPE 167785, 2014 Advanced techniques needed ! NMR signal M. Fleury, Characterization of shales 8 with low field NMR
  • 9.
    Energies nouvelles, Rueil-Malmaison,France Outline  Relaxation of water in nanopores  Diffusion properties (cementation exponent m)  Relaxation of methane in porous media  Relaxation of solid or pseudo-solid components  Conclusion: fluid typing from T1-T2 map 9
  • 10.
    Energies nouvelles, Rueil-Malmaison,France 10 102 101 100 10-1 10-2 10-3 10-4 Fast diffusion limit 4r2V/S << D r2=10 mm/s r2=1 mm/s 10-1 100 101 102 103 104 Pore size V/S (micron) Measured T2 (ms) T2b Relaxation in nanopores S 1 = r ´ + 1 T 2 V T Bulk 2 2 1 nm pore sizes between 0.1 and 1ms
  • 11.
    Energies nouvelles, Rueil-Malmaison,France 11 Example: caprock sample (COx) T2 (ms) (ms) T 1 101 100 10-1 10-2 Hydroxyls 1 12 2 Mobile water 10-2 10-1 100 101 (23 MHz NMR instrument 18 mm probe)
  • 12.
    Study of nanoporesin clays Energies nouvelles, Rueil-Malmaison, France M. Fleury et al., Characterization of interlayer water in clays using low field relaxation and nutation 12 experiments from Porion et al. J. Phys. Chem. 2007 interlayer spacing <1nm Cristal with hydroxyls Counter-ions and water d001 (SAXS)
  • 13.
    Energies nouvelles, Rueil-Malmaison,France 13 Example: smectite powder at RH=50% 101 T2 below 0.1 ms should not be included in porosity T1 (ms) 10-2 10-1 100 101 T2 (ms) 100 10-1 T1/T2=1 2.5 10 Hydroxyls Mobile water Mobile water (23 MHz NMR instrument 10 mm probe) Fleury et al., J. Phys. Chem. 2013
  • 14.
    Energies nouvelles, Rueil-Malmaison,France T2 in nanopores (smectite powders) Fleury et al., J. Phys. Chem. 2013 M. Fleury, Characterization of shales 14 with low field NMR
  • 15.
    Energies nouvelles, Rueil-Malmaison,France Results: gas shale sample at Sw=1 M. Fleury, Characterization of shales 15 with low field NMR
  • 16.
    Energies nouvelles, Rueil-Malmaison,France Measurement of cementation m  Tortuosity from resistivity (Archie) diffusivity 16 = Fm-1 eff D m D m R0 = F w R Classical method Need knowledge of water salinity From NMR diffusion Experiments at Sw=1 No specific knowledge Some potential issues related to clay conductivity
  • 17.
    Energies nouvelles, Rueil-Malmaison,France 17 NMR method: deuterium diffusion Example: Kw=50 nD, f: 6.4 %, size: D=L=15mm 100 80 60 40 20 0 t=0 2.6 hr H2 outside sample 10-2 10-1 100 101 102 103 T2 (ms) A(T2) (a.u.) 16 hr H2 not exchanged with D2 D2O ö æ C C * 6 1 exp = - 2 2 k D t H2O saturated sample at t=0 å¥ = - f 0 5 10 15 20 0.8 0.6 0.4 0.2 0 -0.2 Time (hr) C* Dp=2.48e-006 cm2/s Diffusion coefficient m=1.87 ÷ ÷ ø ç ç è - = 1 2 2 2 k p i f r C C k C p p Fleury et al., Energy Procedia 2009 Berne et al. , OGST, 2009
  • 18.
    Energies nouvelles, Rueil-Malmaison,France Example: gas shale samples 18 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.02 0.04 0.06 0.08 0.1 0.12 Porosity Deff/Dm m=2 m=2.5 RM9-14 D=0.62 10-10 m2/s 2 nD 0 20 40 60 80 100 120 140 160 180 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 Time (hr) (C-Ci)/(Cf-Ci) RM3-14 D=1.1 10-10 m2/s The less porous sample has the highest Deff !! Measurements Results 100% water saturated 0.12 nD m=2.45, 2 nD m=1.9, 0.12 nD
  • 19.
    Energies nouvelles, Rueil-Malmaison,France Water diffusivity: consequences  Diffusion length much larger than pore size : D~ 10-10 m2/s, LD=(6Dt)1/2 ~800 nm at t=1ms Pore sizes <500 nm are in a pore coupling regime 19 MICP Difficult to reconcile MICP and NMR !!
  • 20.
    Energies nouvelles, Rueil-Malmaison,France Relaxation of methane in porous media  Fundamental mechanisms known  Bulk properties (Oosting et al. 1971): spin rotation  Riehl et al. 1972, NMR relaxation of adsorbed methane: anisotropic rotationnal motions at the solid surface  large T1/T2 ratio  Existing work in petroleum sciences  Straley, 1997 T1/T2 ratio >> 1 even in partially saturated samples  Recent work: Kausik et al. 2011, Rylander et al. 2013, Tinni et al. 2014…. 20
  • 21.
    Energies nouvelles, Rueil-Malmaison,France Results for methane Bulk CH4 200 bar CH4 in Shale Sand M. Fleury, Characterization of shales 21 with low field NMR
  • 22.
    Energies nouvelles, Rueil-Malmaison,France Results for methane in organic matter 100 bar 200 bar M. Fleury, Characterization of shales 22 with low field NMR
  • 23.
    Energies nouvelles, Rueil-Malmaison,France Relaxation of solids or pseudo-solid components BPP theory 23 ù úû C t 1 2 é 2 t = 2 2 2 2 1 1 4 êë + + + 8 1 w t w t T ù úû C t t 1 é 6 10 t = + 2 2 2 2 2 1 4 êë + + + 4 1 w t w t T Liquids Example: Ice: T2=0.008 ms T1=70 s at 30 MHz
  • 24.
    Amplitude (a.u.) Energiesnouvelles, Rueil-Malmaison, France Détection and quantification of hydroxyls 300 250 200 150 100 50 0 -50 Smectite 200°C Cristal with hydroxyls Water (removed at 200°C) 10-2 10-1 100 Time (ms) 86% hydroxyls compared to XRD formulae: Fleury et al., J. Phys. Chem. 2013 M. Fleury, Characterization of shales 24 with low field NMR
  • 25.
    Energies nouvelles, Rueil-Malmaison,France Detection of organic matter in coal British coal Anthracite Vitrinite reflectance: 2.41 Specific density: 1.35 German coal High volatile bituminous Vitrinite reflectance: 0.79 Specific density: 1.71 M. Fleury, Characterization of shales 25 with low field NMR
  • 26.
    Energies nouvelles, Rueil-Malmaison,France Results: organic matter from shales (1/2) Immature Oil window Gas window Hydrogen content: 59 mg/g 30 mg/g 21 mg/g M. Fleury, Characterization of shales 26 with low field NMR
  • 27.
    Energies nouvelles, Rueil-Malmaison,France Results: organic matter in shales (2/2) « Dry » samples Oil window Gas window ? M. Fleury, Characterization of shales 27 with low field NMR
  • 28.
    Principle of T1-T2maps 103 102 101 100 10-1 T1/T2~2 liquids in porous media T1/T2=1 bulk liquid T1/T2~100 solid protons Energies nouvelles, Rueil-Malmaison, France Réunion 28 du 15 novembre 2012 limit of confinement effect T2 (ms) T1 (ms) resolution limit 10-2 10-2 10-1 100 101 102 103 Pore size protons mobility low high small (1 nm) large
  • 29.
    Energies nouvelles, Rueil-Malmaison,France Fluids typing from T1-T2 map M. Fleury, Characterization of shales 29 with low field NMR
  • 30.
    Energies nouvelles, Rueil-Malmaison,France 30 Conclusions  Fluid typing from T1-T2 maps  T2 not smaller than 0.1 ms for water in nanopores  Hydroxyls are below 0.1 ms, should be removed for porosity calculation  Methane has a large T1 signature (1s)  Weak overlapping of the different protons populations in a T1-T2 map  T1-T2 signatures well understood from existing work and NMR theory