SlideShare a Scribd company logo
ERA Shale Gas Joint Programme 
Technical seminar 
Modelling of fluid flow in shales 
Faculty of Drilling, Oil and Gas 
Department of Natural Gas Engineering 
Gdańsk, 8-9.10.2014 
wwwwww..aagghh..eedduu..ppll
shale gas = unconventional gas (why?) 
shale gas - natural gas that is trapped within fine-grained 
sedimentary rocks (called shale or mudstone), that can be source 
rocks for hydrocarbons 
„unconventional reservoirs” are those that cannot be produced 
at economic flow rates without massive stimulation treatments or 
special recovery processes and technologies 
the term „unconventional” reflects current level of techniques 
and technologies, the knowledge and experience applied to 
recover hydrocarbons from such type of reservoirs 
wwwwww..aagghh..eedduu..ppll
shale gas resources 
• important contribution to the U.S. „energy cocktail” 
• shale gas resources are of high interest; expected to be future 
source of hydrocarbons 
• economically efficient development achieved by 
intensive multi-stage hydraulic fracturing 
World shale gas in place ~690 Tcm 
Technically recoverable resources ~ 190 Tcm 
Conventional natural gas proved reserves ~210 Tcm 
According to Energy Information Agency (EIA, 2013) 
wwwwww..aagghh..eedduu..ppll
shale rock properties 
• variety of shale rock types => different types of shale gas 
reservoirs 
• four important characteristics : 
1. maturity of organic matter 
(vitrinite reflectance [%Ro]; > 1% Ro) 
2. type of gas generated and stored in the reservoir 
(thermogenic or biogenic) 
3. TOC content of the strata (min. 1.0 wt%) 
4. permeability of the reservoir 
(0.00001-0.001mD = 10-1000 nD) 
www.agh.edu.pl
modelling „problems” 
• complex porous system and 
interaction between its elements 
• multiple gas storage and 
transport mechanisms 
www.agh.edu.pl
4-porosity system 
• three different natural porous systems: 
1. gas-wet organic porosity 
2. water-wet (primarly) inorganic porosity 
3. system of natural fractures 
• one human-made pore system – hydraulicaly induced 
fractures 
www.agh.edu.pl
tank representation 
of the quad-porosity model 
www.agh.edu.pl 
Hudson, 2011 
•the solid tanks represent four different porosity systems 
•the dashed small tanks represent internal physical phenomena 
•the valves represent the connectivity between each system
quad-porosity model in parallel 
with cross-flow 
www.agh.edu.pl
quad-porosity model in parallel 
without cross-flow 
www.agh.edu.pl
quad-porosity model in series 
www.agh.edu.pl
how do we model naturally fractured rocks? 
• Dual Porosity model (DP) 
• Dual Permeability model (DK) 
• Multi INteracting Continua 
(MINC) 
• fractures orthogonal in three directions (fracture spacing in i,j,k), 
act as boundaries for matrix elements 
www.agh.edu.pl
standard Dual Porosity model 
• two porosity systems: matrix and fracture porosity 
• own porosity, permeability and other properties 
(e.g. water saturation) values for each porosity system 
• matrix connected only to the fracture in the same grid 
block 
• fluid flows through the fracture network; matrix blocks 
act as source and sink terms 
• no direct matrix-matrix flow 
www.agh.edu.pl
Dual Permeability model 
• main difference – each matrix block is connected to both 
the fracture blocks and the surrounding matrix blocks 
• fluid flows both through the fracture network as well as 
through the matrix 
• where to use? 
– in cases where there is capillary continuity 
– when vertical (K direction) matrix-matrix mass 
transfer is important 
– matrix-matrix flow can be controlled (or even set to 
zero) by matrix transmissibility multipliers 
www.agh.edu.pl
• one-dimensional nested 
discretization of matrix 
blocks – allows for better 
representation of matrix-fracture 
transfer 
• very efficient 
representation of the 
transient fluid regime 
• can represent the 
pressure, viscous and 
capillary forces; the 
gravity force is not 
considered in this nested, 
one-dimensional matrix 
refinement 
www.agh.edu.pl
DK vs MINC – what to choose? 
• DK – normally used when simulating naturally fractured 
reservoirs 
• MINC – accounts for transient flow from matrix to 
fracture; useful for low permeability systems where 
pressure drop between fracture and shale is very large 
www.agh.edu.pl
solution: LS-LR-DK model 
(Logarithmically Spaced – Locally Refined – Dual Permeability) 
simple local grid refinement (LGR) based model gridded similarly to 
MINC but without its limitations of lack of matrix-matrix flow 
MINC LS-LR-DK 
www.agh.edu.pl
hydraulic fracures/SRV 
www.agh.edu.pl
shale rock modelling - coclusions 
• the standard Dual Perm model is unable to properly 
model very low permeable fractured shales 
• the MINC model is able to approximately reproduce the 
flow in very low permeability fractured shales, but 
cannot be used in higher permeability shale gas models 
• the LGR based logarithmically spaced dual permeability 
(LS-LR-DK) grid overcomes limitations of both DK and 
MINC grids 
• together with non-Darcy flow permeability based 
correction factor (Kcorr) non-Darcy flow effects can be 
accurately modelled in hydraulic fracture blocks as wide 
as 2 ft 
www.agh.edu.pl
gas storage mechanisms 
three types of gas storing mechanisms: 
1. free gas – gas stored in matrix pore volume (pores and 
natural fractures) 
2. adsorbed gas – gas adsorbed onto surface of the shale 
formation and solid organic material 
3. gas dissolved in organic material 
www.agh.edu.pl
adsorbed gas 
• amount of adsorbed gas varies between reservoirs - from 
15% up to 60% (even 85%), of gas initially in place 
• sufficient pressure decrease necessary to liberate the 
adsorbed gas 
• modeled with use of Langmuir isoterm, which relates the 
volume of adsorbed gas (Vads) to reservoir pressure (P) 
= ´ 
ads L 
• VL and PL – Langmuir’s characteristic volume and pressure; 
depend on TOC 
www.agh.edu.pl 
L 
V V P 
P + 
P
pressure drop/desorption extent 
www.agh.edu.pl
adsorbed gas contribution 
www.agh.edu.pl
Knudsen diffusion number and flow regimes 
• viscous flow Kn ≤ 0.001 
(the mean free path of gas molecules 
is negligible compared to pore throat size) 
• slip flow 0.001 ≤ Kn ≤ 0.1 
p m l 
´ ´ ´ ´ 
(flow velocity at pore boundary is not zero; mean free 
path becomes significant compared with pore throat size 
and collisions with pore walls start to become important) 
• transition flow regime 0.1 ≤ Kn ≤ 10 
(most difficult; most of shales fall in this region) 
• free molecular regime Kn > 10 
(modelled using Knudsen diffusion) 
www.agh.edu.pl 
1 
2 
2.82 
n 
pore 
R T 
K P M 
r k 
f 
= =
Klinkenberg effect 
= æ + ö çè ø¸ 
( ) 
www.agh.edu.pl 
1 
1 1 4 1 
1 
a 
n 
n 
n 
k k b 
P 
b a 
K K 
P K 
¥ 
æ ´ ö = - ´ ´ç + ¸- è + ø
how do we model gas flow in shales? 
• gas flow through the shale matrix 
• viscous flow (Darcy flow) 
• diffusion 
▪ gas flow in fractures 
• Darcy flow 
• non-Darcy flow 
www.agh.edu.pl
Thank you! 
stanislaw.nagy@agh.edu.pl 
lukasz.klimkowski@agh.edu.pl 
www.agh.edu.pl
natural fracture spacing effect 
www.agh.edu.pl
primary fracture conductivity effect 
www.agh.edu.pl
primary fracture permeability gradient effect 
www.agh.edu.pl
primary fracture permeability gradient effect 
www.agh.edu.pl
SRV extent effect 
www.agh.edu.pl

More Related Content

What's hot

00 multiphase flows - intorduction
00 multiphase flows - intorduction00 multiphase flows - intorduction
00 multiphase flows - intorduction
Mohammad Jadidi
 
CFD Lecture (8/8): CFD in Chemical Systems
CFD Lecture (8/8): CFD in Chemical SystemsCFD Lecture (8/8): CFD in Chemical Systems
CFD Lecture (8/8): CFD in Chemical Systems
Abhishek Jain
 
Bubble Column Reactors
Bubble Column ReactorsBubble Column Reactors
Bubble Column Reactors
Quak Foo Lee ,MASc, LBBP, PM-LPC
 
Economic Dispatch by Water Cycle Algorithm
Economic Dispatch by Water Cycle AlgorithmEconomic Dispatch by Water Cycle Algorithm
Economic Dispatch by Water Cycle Algorithm
Mohammad Abdullah
 
Ijmet 06 10_018
Ijmet 06 10_018Ijmet 06 10_018
Ijmet 06 10_018
IAEME Publication
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability Test
Gaurang Kakadiya
 
Dr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homeworkDr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homework
Mohammad Jadidi
 
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
ohamza
 
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
Deltares
 

What's hot (10)

00 multiphase flows - intorduction
00 multiphase flows - intorduction00 multiphase flows - intorduction
00 multiphase flows - intorduction
 
CFD Lecture (8/8): CFD in Chemical Systems
CFD Lecture (8/8): CFD in Chemical SystemsCFD Lecture (8/8): CFD in Chemical Systems
CFD Lecture (8/8): CFD in Chemical Systems
 
Bubble Column Reactors
Bubble Column ReactorsBubble Column Reactors
Bubble Column Reactors
 
Economic Dispatch by Water Cycle Algorithm
Economic Dispatch by Water Cycle AlgorithmEconomic Dispatch by Water Cycle Algorithm
Economic Dispatch by Water Cycle Algorithm
 
Ijmet 06 10_018
Ijmet 06 10_018Ijmet 06 10_018
Ijmet 06 10_018
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Gabriele Baroni
 
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability Test
 
Dr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homeworkDr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homework
 
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
 
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
DSD-INT 2016 Investigation of sediment transport processes in mine pit lakes ...
 

Similar to Agh eera 8-9.10.2014

Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Salman Sadeg Deumah
 
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
UK Carbon Capture and Storage Research Centre
 
GROUNDWATER MODELING SYSTEM
GROUNDWATER MODELING SYSTEMGROUNDWATER MODELING SYSTEM
GROUNDWATER MODELING SYSTEM
Shyam Mohan Chaudhary
 
Mmae 513 a survey of turbulent pipe flow with particles
Mmae 513 a survey of turbulent pipe flow with particlesMmae 513 a survey of turbulent pipe flow with particles
Mmae 513 a survey of turbulent pipe flow with particlesDenis Vasilescu
 
Cfd analysis of natural
Cfd analysis of naturalCfd analysis of natural
Cfd analysis of natural
moh rohmatulloh
 
Simulation and validation of turbulent gas flow in a cyclone using Caelus
Simulation and validation of turbulent gas flow in a cyclone using CaelusSimulation and validation of turbulent gas flow in a cyclone using Caelus
Simulation and validation of turbulent gas flow in a cyclone using Caelus
Applied CCM Pty Ltd
 
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
Deltares
 
Fundamentals of CFD for Beginners/starters.pptx
Fundamentals of CFD for Beginners/starters.pptxFundamentals of CFD for Beginners/starters.pptx
Fundamentals of CFD for Beginners/starters.pptx
ssuser018a52
 
Current advancement in different gas liquid operations
Current advancement in different gas liquid operationsCurrent advancement in different gas liquid operations
Current advancement in different gas liquid operations
Sunny Chauhan
 
Modelling of Seawater Intrusion
Modelling of Seawater IntrusionModelling of Seawater Intrusion
Modelling of Seawater IntrusionC. P. Kumar
 
Claude Mugler
Claude MuglerClaude Mugler
Nano liquid chromatography Dr.A S Charan
Nano liquid chromatography Dr.A S CharanNano liquid chromatography Dr.A S Charan
Nano liquid chromatography Dr.A S Charan
Charan Archakam
 
01 intro
01 intro01 intro
01 intro
Dương Phúc
 
Sigve Hamilton Aspelund: Coiled tubing underbalanced drilling
Sigve Hamilton Aspelund: Coiled tubing underbalanced drillingSigve Hamilton Aspelund: Coiled tubing underbalanced drilling
Sigve Hamilton Aspelund: Coiled tubing underbalanced drilling
Sigve Hamilton Aspelund
 
Bakker 01 intro
Bakker 01 introBakker 01 intro
Bakker 01 intro
Shamoon Jamshed
 
01-intro_Bakker.pdf
01-intro_Bakker.pdf01-intro_Bakker.pdf
01-intro_Bakker.pdf
ssusercf6d0e
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanics
Vishu Sharma
 
Solvents and fuel multiphase flow webinar
Solvents and fuel multiphase flow webinarSolvents and fuel multiphase flow webinar
Solvents and fuel multiphase flow webinar
Walt McNab
 
mathematical model.pptx
mathematical model.pptxmathematical model.pptx
mathematical model.pptx
VandanaAgrawa1
 

Similar to Agh eera 8-9.10.2014 (20)

Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...Survey on Declining Curves of Unconventional Wells  and Correlation with Key ...
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
 
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
PANACEA & TRUST Projects Status update - Auli Niemi at at EC FP7 Projects: Le...
 
GROUNDWATER MODELING SYSTEM
GROUNDWATER MODELING SYSTEMGROUNDWATER MODELING SYSTEM
GROUNDWATER MODELING SYSTEM
 
Mmae 513 a survey of turbulent pipe flow with particles
Mmae 513 a survey of turbulent pipe flow with particlesMmae 513 a survey of turbulent pipe flow with particles
Mmae 513 a survey of turbulent pipe flow with particles
 
Cfd analysis of natural
Cfd analysis of naturalCfd analysis of natural
Cfd analysis of natural
 
Simulation and validation of turbulent gas flow in a cyclone using Caelus
Simulation and validation of turbulent gas flow in a cyclone using CaelusSimulation and validation of turbulent gas flow in a cyclone using Caelus
Simulation and validation of turbulent gas flow in a cyclone using Caelus
 
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
DSD-INT 2014 - OpenMI Symposium - Integrated Environmental Modelling, Andrew ...
 
Fundamentals of CFD for Beginners/starters.pptx
Fundamentals of CFD for Beginners/starters.pptxFundamentals of CFD for Beginners/starters.pptx
Fundamentals of CFD for Beginners/starters.pptx
 
10 rans
10 rans10 rans
10 rans
 
Current advancement in different gas liquid operations
Current advancement in different gas liquid operationsCurrent advancement in different gas liquid operations
Current advancement in different gas liquid operations
 
Modelling of Seawater Intrusion
Modelling of Seawater IntrusionModelling of Seawater Intrusion
Modelling of Seawater Intrusion
 
Claude Mugler
Claude MuglerClaude Mugler
Claude Mugler
 
Nano liquid chromatography Dr.A S Charan
Nano liquid chromatography Dr.A S CharanNano liquid chromatography Dr.A S Charan
Nano liquid chromatography Dr.A S Charan
 
01 intro
01 intro01 intro
01 intro
 
Sigve Hamilton Aspelund: Coiled tubing underbalanced drilling
Sigve Hamilton Aspelund: Coiled tubing underbalanced drillingSigve Hamilton Aspelund: Coiled tubing underbalanced drilling
Sigve Hamilton Aspelund: Coiled tubing underbalanced drilling
 
Bakker 01 intro
Bakker 01 introBakker 01 intro
Bakker 01 intro
 
01-intro_Bakker.pdf
01-intro_Bakker.pdf01-intro_Bakker.pdf
01-intro_Bakker.pdf
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanics
 
Solvents and fuel multiphase flow webinar
Solvents and fuel multiphase flow webinarSolvents and fuel multiphase flow webinar
Solvents and fuel multiphase flow webinar
 
mathematical model.pptx
mathematical model.pptxmathematical model.pptx
mathematical model.pptx
 

More from Pomcert

Baruwa Prezentacja Wrocław
Baruwa Prezentacja WrocławBaruwa Prezentacja Wrocław
Baruwa Prezentacja Wrocław
Pomcert
 
Baruwa Prezentacja Rzeszów
Baruwa Prezentacja RzeszówBaruwa Prezentacja Rzeszów
Baruwa Prezentacja Rzeszów
Pomcert
 
Baruwa Prezentacja Szczecin
Baruwa Prezentacja SzczecinBaruwa Prezentacja Szczecin
Baruwa Prezentacja Szczecin
Pomcert
 
Baruwa Prezentacja Krakow
Baruwa Prezentacja KrakowBaruwa Prezentacja Krakow
Baruwa Prezentacja Krakow
Pomcert
 
Baruwa Prezentacja Lublin
Baruwa Prezentacja LublinBaruwa Prezentacja Lublin
Baruwa Prezentacja Lublin
Pomcert
 
Baruwa Prezentacja Białystok
Baruwa Prezentacja BiałystokBaruwa Prezentacja Białystok
Baruwa Prezentacja Białystok
Pomcert
 
Bonus miracle presentation (PL)
Bonus miracle presentation (PL)Bonus miracle presentation (PL)
Bonus miracle presentation (PL)
Pomcert
 
Bonus miracle kickoff presentation
Bonus miracle kickoff presentationBonus miracle kickoff presentation
Bonus miracle kickoff presentation
Pomcert
 
Bonus miracle presentation
Bonus miracle presentationBonus miracle presentation
Bonus miracle presentation
Pomcert
 
20141008 tno@eera unconventionals nl
20141008 tno@eera unconventionals nl20141008 tno@eera unconventionals nl
20141008 tno@eera unconventionals nlPomcert
 
Innovative stimulation am ar_10.10
Innovative stimulation am ar_10.10Innovative stimulation am ar_10.10
Innovative stimulation am ar_10.10Pomcert
 
Eera gdansk jh2014
Eera gdansk jh2014Eera gdansk jh2014
Eera gdansk jh2014Pomcert
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturingPomcert
 
20141008 intro eera shale gas_technical seminar_sp2
20141008 intro eera shale gas_technical seminar_sp220141008 intro eera shale gas_technical seminar_sp2
20141008 intro eera shale gas_technical seminar_sp2Pomcert
 
20131206 eera-shale gas-dow v4
20131206 eera-shale gas-dow v420131206 eera-shale gas-dow v4
20131206 eera-shale gas-dow v4Pomcert
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleuryPomcert
 
Horizon 2020
Horizon 2020Horizon 2020
Horizon 2020Pomcert
 
Etp cuh gdańsk 2014 10 08 ver20141007
Etp cuh gdańsk 2014 10 08 ver20141007Etp cuh gdańsk 2014 10 08 ver20141007
Etp cuh gdańsk 2014 10 08 ver20141007Pomcert
 
Eera sp2 intro
Eera sp2   introEera sp2   intro
Eera sp2 introPomcert
 
Eera sp2 intro
Eera sp2   introEera sp2   intro
Eera sp2 introPomcert
 

More from Pomcert (20)

Baruwa Prezentacja Wrocław
Baruwa Prezentacja WrocławBaruwa Prezentacja Wrocław
Baruwa Prezentacja Wrocław
 
Baruwa Prezentacja Rzeszów
Baruwa Prezentacja RzeszówBaruwa Prezentacja Rzeszów
Baruwa Prezentacja Rzeszów
 
Baruwa Prezentacja Szczecin
Baruwa Prezentacja SzczecinBaruwa Prezentacja Szczecin
Baruwa Prezentacja Szczecin
 
Baruwa Prezentacja Krakow
Baruwa Prezentacja KrakowBaruwa Prezentacja Krakow
Baruwa Prezentacja Krakow
 
Baruwa Prezentacja Lublin
Baruwa Prezentacja LublinBaruwa Prezentacja Lublin
Baruwa Prezentacja Lublin
 
Baruwa Prezentacja Białystok
Baruwa Prezentacja BiałystokBaruwa Prezentacja Białystok
Baruwa Prezentacja Białystok
 
Bonus miracle presentation (PL)
Bonus miracle presentation (PL)Bonus miracle presentation (PL)
Bonus miracle presentation (PL)
 
Bonus miracle kickoff presentation
Bonus miracle kickoff presentationBonus miracle kickoff presentation
Bonus miracle kickoff presentation
 
Bonus miracle presentation
Bonus miracle presentationBonus miracle presentation
Bonus miracle presentation
 
20141008 tno@eera unconventionals nl
20141008 tno@eera unconventionals nl20141008 tno@eera unconventionals nl
20141008 tno@eera unconventionals nl
 
Innovative stimulation am ar_10.10
Innovative stimulation am ar_10.10Innovative stimulation am ar_10.10
Innovative stimulation am ar_10.10
 
Eera gdansk jh2014
Eera gdansk jh2014Eera gdansk jh2014
Eera gdansk jh2014
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing
 
20141008 intro eera shale gas_technical seminar_sp2
20141008 intro eera shale gas_technical seminar_sp220141008 intro eera shale gas_technical seminar_sp2
20141008 intro eera shale gas_technical seminar_sp2
 
20131206 eera-shale gas-dow v4
20131206 eera-shale gas-dow v420131206 eera-shale gas-dow v4
20131206 eera-shale gas-dow v4
 
Shale eera fleury
Shale eera fleuryShale eera fleury
Shale eera fleury
 
Horizon 2020
Horizon 2020Horizon 2020
Horizon 2020
 
Etp cuh gdańsk 2014 10 08 ver20141007
Etp cuh gdańsk 2014 10 08 ver20141007Etp cuh gdańsk 2014 10 08 ver20141007
Etp cuh gdańsk 2014 10 08 ver20141007
 
Eera sp2 intro
Eera sp2   introEera sp2   intro
Eera sp2 intro
 
Eera sp2 intro
Eera sp2   introEera sp2   intro
Eera sp2 intro
 

Agh eera 8-9.10.2014

  • 1. ERA Shale Gas Joint Programme Technical seminar Modelling of fluid flow in shales Faculty of Drilling, Oil and Gas Department of Natural Gas Engineering Gdańsk, 8-9.10.2014 wwwwww..aagghh..eedduu..ppll
  • 2. shale gas = unconventional gas (why?) shale gas - natural gas that is trapped within fine-grained sedimentary rocks (called shale or mudstone), that can be source rocks for hydrocarbons „unconventional reservoirs” are those that cannot be produced at economic flow rates without massive stimulation treatments or special recovery processes and technologies the term „unconventional” reflects current level of techniques and technologies, the knowledge and experience applied to recover hydrocarbons from such type of reservoirs wwwwww..aagghh..eedduu..ppll
  • 3. shale gas resources • important contribution to the U.S. „energy cocktail” • shale gas resources are of high interest; expected to be future source of hydrocarbons • economically efficient development achieved by intensive multi-stage hydraulic fracturing World shale gas in place ~690 Tcm Technically recoverable resources ~ 190 Tcm Conventional natural gas proved reserves ~210 Tcm According to Energy Information Agency (EIA, 2013) wwwwww..aagghh..eedduu..ppll
  • 4. shale rock properties • variety of shale rock types => different types of shale gas reservoirs • four important characteristics : 1. maturity of organic matter (vitrinite reflectance [%Ro]; > 1% Ro) 2. type of gas generated and stored in the reservoir (thermogenic or biogenic) 3. TOC content of the strata (min. 1.0 wt%) 4. permeability of the reservoir (0.00001-0.001mD = 10-1000 nD) www.agh.edu.pl
  • 5. modelling „problems” • complex porous system and interaction between its elements • multiple gas storage and transport mechanisms www.agh.edu.pl
  • 6. 4-porosity system • three different natural porous systems: 1. gas-wet organic porosity 2. water-wet (primarly) inorganic porosity 3. system of natural fractures • one human-made pore system – hydraulicaly induced fractures www.agh.edu.pl
  • 7. tank representation of the quad-porosity model www.agh.edu.pl Hudson, 2011 •the solid tanks represent four different porosity systems •the dashed small tanks represent internal physical phenomena •the valves represent the connectivity between each system
  • 8. quad-porosity model in parallel with cross-flow www.agh.edu.pl
  • 9. quad-porosity model in parallel without cross-flow www.agh.edu.pl
  • 10. quad-porosity model in series www.agh.edu.pl
  • 11. how do we model naturally fractured rocks? • Dual Porosity model (DP) • Dual Permeability model (DK) • Multi INteracting Continua (MINC) • fractures orthogonal in three directions (fracture spacing in i,j,k), act as boundaries for matrix elements www.agh.edu.pl
  • 12. standard Dual Porosity model • two porosity systems: matrix and fracture porosity • own porosity, permeability and other properties (e.g. water saturation) values for each porosity system • matrix connected only to the fracture in the same grid block • fluid flows through the fracture network; matrix blocks act as source and sink terms • no direct matrix-matrix flow www.agh.edu.pl
  • 13. Dual Permeability model • main difference – each matrix block is connected to both the fracture blocks and the surrounding matrix blocks • fluid flows both through the fracture network as well as through the matrix • where to use? – in cases where there is capillary continuity – when vertical (K direction) matrix-matrix mass transfer is important – matrix-matrix flow can be controlled (or even set to zero) by matrix transmissibility multipliers www.agh.edu.pl
  • 14. • one-dimensional nested discretization of matrix blocks – allows for better representation of matrix-fracture transfer • very efficient representation of the transient fluid regime • can represent the pressure, viscous and capillary forces; the gravity force is not considered in this nested, one-dimensional matrix refinement www.agh.edu.pl
  • 15. DK vs MINC – what to choose? • DK – normally used when simulating naturally fractured reservoirs • MINC – accounts for transient flow from matrix to fracture; useful for low permeability systems where pressure drop between fracture and shale is very large www.agh.edu.pl
  • 16. solution: LS-LR-DK model (Logarithmically Spaced – Locally Refined – Dual Permeability) simple local grid refinement (LGR) based model gridded similarly to MINC but without its limitations of lack of matrix-matrix flow MINC LS-LR-DK www.agh.edu.pl
  • 18. shale rock modelling - coclusions • the standard Dual Perm model is unable to properly model very low permeable fractured shales • the MINC model is able to approximately reproduce the flow in very low permeability fractured shales, but cannot be used in higher permeability shale gas models • the LGR based logarithmically spaced dual permeability (LS-LR-DK) grid overcomes limitations of both DK and MINC grids • together with non-Darcy flow permeability based correction factor (Kcorr) non-Darcy flow effects can be accurately modelled in hydraulic fracture blocks as wide as 2 ft www.agh.edu.pl
  • 19. gas storage mechanisms three types of gas storing mechanisms: 1. free gas – gas stored in matrix pore volume (pores and natural fractures) 2. adsorbed gas – gas adsorbed onto surface of the shale formation and solid organic material 3. gas dissolved in organic material www.agh.edu.pl
  • 20. adsorbed gas • amount of adsorbed gas varies between reservoirs - from 15% up to 60% (even 85%), of gas initially in place • sufficient pressure decrease necessary to liberate the adsorbed gas • modeled with use of Langmuir isoterm, which relates the volume of adsorbed gas (Vads) to reservoir pressure (P) = ´ ads L • VL and PL – Langmuir’s characteristic volume and pressure; depend on TOC www.agh.edu.pl L V V P P + P
  • 22. adsorbed gas contribution www.agh.edu.pl
  • 23. Knudsen diffusion number and flow regimes • viscous flow Kn ≤ 0.001 (the mean free path of gas molecules is negligible compared to pore throat size) • slip flow 0.001 ≤ Kn ≤ 0.1 p m l ´ ´ ´ ´ (flow velocity at pore boundary is not zero; mean free path becomes significant compared with pore throat size and collisions with pore walls start to become important) • transition flow regime 0.1 ≤ Kn ≤ 10 (most difficult; most of shales fall in this region) • free molecular regime Kn > 10 (modelled using Knudsen diffusion) www.agh.edu.pl 1 2 2.82 n pore R T K P M r k f = =
  • 24. Klinkenberg effect = æ + ö çè ø¸ ( ) www.agh.edu.pl 1 1 1 4 1 1 a n n n k k b P b a K K P K ¥ æ ´ ö = - ´ ´ç + ¸- è + ø
  • 25. how do we model gas flow in shales? • gas flow through the shale matrix • viscous flow (Darcy flow) • diffusion ▪ gas flow in fractures • Darcy flow • non-Darcy flow www.agh.edu.pl
  • 26. Thank you! stanislaw.nagy@agh.edu.pl lukasz.klimkowski@agh.edu.pl www.agh.edu.pl
  • 27. natural fracture spacing effect www.agh.edu.pl
  • 28. primary fracture conductivity effect www.agh.edu.pl
  • 29. primary fracture permeability gradient effect www.agh.edu.pl
  • 30. primary fracture permeability gradient effect www.agh.edu.pl
  • 31. SRV extent effect www.agh.edu.pl