เซต(Set)
            เซต คือลักษณะนามที่เราใช้เรียกกลุ่มของสิ่งต่าง ๆ
เช่นกลุ่มของคน สัตว์ กลุ่มของสิ่งของเป็นต้น และสิ่งต่าง ๆ ที่
อยู่ในกลุมว่า สมาชิก
          ่
            ใช้อักษรในภาษาอังกฤษตัวพิมพ์ใหญ่แทนชื่อเซต
อักษรในภาษาอังกฤษตัวพิมพ์เล็ก ตัวเลข เขียนสมาชิกของเซต
เมื่อเรากล่าวถึงเซต จะต้องกล่าวถึงสมาชิกในเซตซึ่งอาจจะมีหรือ
ไม่มีก็ได้ ถ้ามีก็ต้องทราบว่ามีอะไรบ้าง ดังนั้นการเขียนเซตจึง
จำาแนกได้ 2 แบบ ตามวิธีการเขียนสมาชิก
            1. การเขียนเซตแบบแจกแจงสมาชิก
                                 วิธีการเขียนแบบนี้จะเขียนสมาชิก
ของเซตในวงเล็บปีกกา และคั่นเครื่องหมายจุลภาค “ , ” และ A
= เซตของวันในหนึงสัปดาห์
                      ่
                   A={
จันทร์,อังคาร,พุธ,พฤหัสบดี,ศุกร์,เสาร์,อาทิตย์}
            2. การเขียนเซตแบบบอกเงื่อนไขของสมาชิก
                      วิธีเขียนแบบนี้เรานิยมใช้ตัวแปร x , y ,z
แทนสมาชิก หลังจากนั้นใช้เส้นคั่นและต่อจากเส้นคั่นจะเป็นส่วน
อธิบายเกี่ยวกับเงื่อนไขของสมาชิก
                   A = {x x เป็นวันในหนึ่งสัปดาห์}
                   A={
            จันทร์,อังคาร,พุธ,พฤหัสบดี,ศุกร์,เสาร์,อาทิตย์}
            ใช้สัญลักษณ์ “       ” แทนคำาว่า “ เป็นสมาชิกของ”
เช่น
                   B = { x x เป็นสระในภาษาอังกฤษ}
                   B={a,e,i,o,u}
                   a ∈A , e ∈ A , i∈A , o∈A , u∈A

     ชนิดของเซต
         1. เซตว่าง (Empty Set ) คือเซตที่ไม่มีสมาชิกเลย
            ใช้สัญลักษณ์ { } หรือ
         2. เซตจำากัด( Finite Set) คือเซตที่สามารถบอกได้ว่า
            มีสมาชิกเป็นจำานวนเท่าใด
         3. เซตอนันต์ (Infinity Set) คือเซตที่ไม่ใช่เซตจำากัด
     การเท่ากันของเซต
เซตสองเซตจะเท่ากันก็ต่อเมื่อ เซตทั้งสองมีสมาชิก
เท่ากันและเหมือนกันตัวต่อตัว
               A = {x เป็นจำานวนเต็มบวกที่น้อยกว่า 5}
               B={1,2,3,4}
               A=B

     สับเซต
           1. A เป็นสับเซตของ B ก็ต่อเมื่อ สมาชิกทุกตัวของ A
ต้องอยู่ใน B ใช้สัญลักษณ์
                 A⊂B =       {x x ∈ A → x ∈ B}
                       =     ∀x[x ∈ A → x ∈ B]
           2. A ไม่ เป็นสับเซตของ B ก็ต่อเมื่อ สมาชิกบางตัว
ของ A แต่ไม่อยู่ใน B ใช้สัญลักษณ์
                 A⊄B         =    {x x ∈ A ∧ x ∉B}
                       =     ∃x[x ∈ A ∧ x ∉ B]
           3. ถ้า n(A) = k แล้ว
                 จำานวนสับเซตของ A มี            =    2k
                       สับเซต
                 จำานวนสับเซตแท้ของ A มี =       2k -1
                 สับเซต
                สัญลัก เซต A เป็นสับเซตของเซต B แทนด้วย
                ษณ์      A B
                         เซต A ไม่เป็นสับเซตของเซต B แทน
                         ด้วย A B
A = {1, 2}      B=     A B, A C, A D
{2, 3}                 B A, B C, B D
C = {1, 2, 3}      D = C A, C B, C D
{1, 2, 3, 4}           D A, D B, D C
           1. เซตทุกเซตเป็นสับเซตของตัวมันเอง (A A)
           2. เซตว่าง เป็นสับเซตของทุก ๆ เซต ( A)
           3. ถ้า A แล้ว A =
           4. ถ้า A B และ B C แล้ว A C
           5. A = B ก็ต่อเมื่อ A B และ B A
     เพาเวอร์เซต (Power Set)
1. เพาเวอร์เซต ของเเซต A คือสมาชิกทั้งหมดเป็น
สับเซตของ A ใช้สัญลักษณ์
                               P(A) = {x x ⊂ A }
          2. ถ้า A เป็นเซตจำากัด
                ถ้า n(A) = k แล้ว
                      1. n[P(A)] =   2k
                      2. n[P(P(A))] =     k
                                           22
          3. จำานวนสมาชิกของ P(A) จะอยู่ในลำาดับเรขาคณิต
             ดังนี้
n(A)    0       1       2     3      4      5      6 ------
                                                      ----
n[P(    1       2       4     8     16      32    64 ------
A)]                                                   ----

     ทฤษฎีเกี่ยวกับเพาเวอร์เซต
        ถ้า A และ B เป็นเซตจำากัดใด ๆ
               1. สมาชิกทุกตัวของเพาเวอร์เซต ต้องเป็นเซต
               2. φ ∈P(A) และ          P(A) เสมอ
               3. A∈P(A) เสมอ แต่ A ไม่จำาเป็นต้องเป็นสับ
                  เซตของ P(A)
               4. เมื่อ A∈P(A) ดังนั้น P(A) ∈P(P(A))
               5. เพาเวอร์เซต จะไม่มทางเป็นเซตว่างได้เลย
                                        ี
                  นั่นคือ P(A) ≠φ
               6. P(φ) = {φ}
               7. {A}⊂P(A) เสมอ ดังนั้น {P(A)} ⊂P(P(A))
               8. P(A∩B)=P(A) ∩P(B)
               9. ถ้า A⊂B แล้ว P(A) ⊂P(B)

     การกระทำาของเซต(Operation of Set)
           คือการนำาเซตหลาย ๆ เซตมากระทำากันเพื่อให้เกิดเซต
ใหม่ขึ้นมา ซึ่งมีอยู่ 3 วิธีคือ
           1. อินเตอร์เซคชัน(Intersection)
                  ถ้า A และ B เป็นเซตสองเซต อินเตอร์เซคชัน
ของ A และ B หมายถึงเซตที่ประกอบด้วยสมาชิกที่เป็นทังของ A
                                                     ้
และ B ใช้สัญลักษณ์ A∩B
A∩B = {xx ∈ A และ x ∈ B}
ตัวอย่าง        A={1,2,3}, B={2,3,4}
วิธทำา
   ี        A∩B = {2 , 3 }
                   สามารถเขียนแผนภาพของ เวนน์ - ออย
เลอร์ ได้ดังนี้

                     A       B      U
                     1   2 3 4



                        A∩B = {2 , 3 }
            2. ยูเนียน (Union)
                  ถ้า A และ B เป็นเซตสองเซต ของยูเนียน A
และ B หมายถึงเซตที่ประกอบด้วยสมาชิกที่เป็นทังของ A และ B
                                             ้
ใช้สัญลักษณ์ A∪B
                  A∪B = {xx ∈ A หรือ x ∈ B}
ตัวอย่าง          A={1,2,3}, B={2,3,4}
วิธทำา
   ี        A∪B = {1 , 2 , 3 ,4 }
                       สามารถเขียนแผนภาพของ เวนน์ - ออย
เลอร์ ได้ดังนี้
                    A       B      U
                     1   2 3 4



                       A∪B = {1 , 2 , 3 , 4 }
          3. ผลต่างและคอมพลีเม้นต์(Difference and
Complement)
                 ถ้า A และ B เป็นเซตสองเซต เซตที่ประกอบ
ด้วยสมาชิกที่เป็นทั้งของ A แต่ไม่เป็นสมาชิกของ B ใช้
สัญลักษณ์ A - B
                 A - B = {xx ∈ A แต่ x ∉ B}
ตัวอย่าง         A={1,2,3}, B={2,3,4}
วิธทำา
   ี      A - B = {1 , 2 , 3 }
B–A={4}
                สามารถเขียนแผนภาพของ เวนน์ - ออย
เลอร์ ได้ดังนี้
                     A       B       U
                      1   2 3 4



                     A- B = {1 , 2 , 3 } และ B – A
={ 4 }
             ในทำานองเดียวกัน ถ้าเราจะหา U – A จะได้
               U={1,2 , 3,4,5,6}
               A = {2,4,6}
               U–A={1,3,5}
               U - A = {xx ∈ U แต่ x ∉ A}
               A’ หรือ Ac แทน U – A
               ดังนั้น A’ = Ac {xx ∉ A}
                                          U
                                    A
                           2,4,
                    1 , 3 6 5
                          ,

                     A’ = Ac {xx ∉ A} และ A’ = { 1 ,
3,5}
                 การพิจารณาเกี่ยวกับเซตจะง่ายขึ้น ถ้าเราใช้
    แผนภาพของเวนน์-ออยเลอร์ เข้ามาช่วย หลักการเขียน
    แผนภาพมีดังนี้
    1. ใช้รูปสี่เหลี่ยมผืนผ้าหรือสี่เหลี่ยมมุมฉากแทนเอกภพ
    สัมพัทธ์
    2. ใช้วงกลมหรือวงรีหรือรูปปิดใด ๆ แทนเซตต่าง ๆ ที่เป็น
    สมาชิกของ
และเขียนภายในสี่เหลี่ยมผืนผ้า
เป็นเอกภพสัมพัทธ์               A เป็นสับเซตของ



       เซต A และ B เป็นสับเซต เซต A และ B เป็นสับเซตของ
       ของ โดยที่ A และ B ไม่มี โดยที่ A และ B มีสมาชิกบาง
           สมาชิกร่วมกัน                 ตัวร่วมกัน



        เซต A เป็นสับเซตของ B                  เซต A = B

จำานวนสมาชิกของเซต หาได้จาก
       1. n(A∪B)=n(A)+n(B)-n(A∩B)
       2. n(A∪B∪C)= (A)+n(B)+n(C) - n(A∩B)- n(B∩C)-
          n(A∩C)+n(A ∩B ∩C)
ตัวอย่างที่ ١ ถ้า n(A∩B) มีสมาชิก ٣ ตัว (A∪B) มีสมาชิก ٥
ตัว A และ B มีสมาชิกเท่ากัน A-B
                มีสมาชิก ١ ตัว
วิธทำา
   ๊           จาก n(A∪B)=n(A)+n(B)-n(A∩B)
             แทนค่า           ٥  = n(A)+n(B)-3
                                 8       = 2n(A)
; เนื่องจาก n(A) = n(B)
                                        8
                                        2
                                              = n(A)
                    4 = n(A)

                     สามารถเขียนแผนภาพของ เวนน์ - ออย
เลอร์ ได้ดังนี้
                        A           B         U
                         1      2
                                3       5
                                4
A = {1,2,3,4}
                   B = {2,3,4,5}
                  A∪B = {1,2,3,4,5}
            A∩B = {2,3,4}
                  A - B = {1}
                  B - A = {5}
ตัวอย่างที่ ٢ ครอบครัวหนึงระหว่างที่ไปพักตากอากาศชายทะเล
                              ่
บางแสนมีฝนตก 13 วัน ถ้าฝนตก
                  ตอนเช้าตอนบ่าย อากาศแจ่มใส          แต่ถาฝนตก
                                                          ้
ตอนบ่าย ตอนเช้าอากาศแจ่มใส             ถ้า
                  ระหว่างที่พักตากอากาศ อยู่ นั้นมีอากาศแจ่มใส
ตอนเช้า 11 วัน และตอนบ่ายแจ่มใส
                12 วัน อยากทราบว่าครอบครัวนี้ไปพักตากอากาศ
กี่วัน
วิธทำา
    ี           กำาหนด        A แทนตอนเช้าอากาศแจ่มใส
                                  B แทนตอนบ่ายอากาศแจ่มใส
                            x แทนอากาศแจ่มใสตลอดทั้งวัน
      จาก                   n(A∪B)=n(A)+n(B)-n(A∩B)
                        13 =         (11-x)+ (12-x)
                        13       = 23 –2x
              2x =      23-13
                         10
              x =         2     = 5
            ดังนั้นจำานวนวันที่ไปพักตากอากาศ 13+5 = 18
วัน
                                         U
                   A
                                     B
                       11-x x 12-x
ตัวอย่างที่ 3 นักเรียนโรงเรียนมัธยมแห่งหนึ่งมีจำานวน ٣٠٠ คน
เลือกเข้าชุมนุมดังนี้
                  ١٥٠ คน เลือกคอมพิวเตอร์
                   ٢٠٦ คน เลือกคณิตศาสตร์
                   ٨٠ คน เลือกภาษาอังกฤษ
                   ٧٤ คนเลือก คอมพิวเตอร์และคณิตศาสตร์
            ٣٢ คนเลือก คอมพิวเตอร์และภาษาอังกฤษ
                  ٢٠ คนเลือกทั้ง ٣ วิชา
            จงหา จำานวนนักเรียนที่เลือกเรียนวิชาเดียว นักเรียนที่
เลือกคณิตศาสตร์และภาษาอังกฤษแต่ไม่เลือกคอมพิวเตอร์
วิธทำา
   ี          กำาหนด         C แทน เลือกคอมพิวเตอร์ ١٥٠ คน
                             M แทนเลือก เลือกคณิตศาสตร์ ٢
٠٦ คน
                             E แทนเลือกภาษาอังกฤษ ٨٠ คน
                             n(C∩M) แทน เลือก คอมพิวเตอร์
และคณิตศาสตร์ ٧٤ คน
                  n(C∩E) เลือก คอมพิวเตอร์และภาษาอังกฤษ ٣
٢ คน
                       n(C∩M∩E) เลือกทัง ٣ วิชา ٢٠ คน
                                            ้
                  n(M∩E) = ?
จาก     n(C∪M∪E)= n(C)+n(M)+n(E) - n(C∩M)- n(C∩E)-
n(M∩E)+n(C ∩M ∩E)
แทนค่า                 ٣٠٠ = 150+206+80-74-32- n(M∩E)
+20
                      n(M∩E) = 456-300-74-32
                      n(M∩E) = 50
                       สามารถเขียนแผนภาพของ เวนน์ - ออย
เลอร์ ได้ดังนี้


                                    C              U
                                  6
                      M           4
                                5
                                    12
                                42
                          82      0
                                  x 18         E
***นักเรียนที่เลือกเรียน คณิตศาสตร์และภาษาอังกฤษแต่ไม่
เลือกคอมพิวเตอร์
                              20+x    =   50
                                   x  =    30
***นักเรียนที่เลือกเรียน เพียง 1 วิชา
                                  82+18+64 =164
คน

Set

  • 1.
    เซต(Set) เซต คือลักษณะนามที่เราใช้เรียกกลุ่มของสิ่งต่าง ๆ เช่นกลุ่มของคน สัตว์ กลุ่มของสิ่งของเป็นต้น และสิ่งต่าง ๆ ที่ อยู่ในกลุมว่า สมาชิก ่ ใช้อักษรในภาษาอังกฤษตัวพิมพ์ใหญ่แทนชื่อเซต อักษรในภาษาอังกฤษตัวพิมพ์เล็ก ตัวเลข เขียนสมาชิกของเซต เมื่อเรากล่าวถึงเซต จะต้องกล่าวถึงสมาชิกในเซตซึ่งอาจจะมีหรือ ไม่มีก็ได้ ถ้ามีก็ต้องทราบว่ามีอะไรบ้าง ดังนั้นการเขียนเซตจึง จำาแนกได้ 2 แบบ ตามวิธีการเขียนสมาชิก 1. การเขียนเซตแบบแจกแจงสมาชิก วิธีการเขียนแบบนี้จะเขียนสมาชิก ของเซตในวงเล็บปีกกา และคั่นเครื่องหมายจุลภาค “ , ” และ A = เซตของวันในหนึงสัปดาห์ ่ A={ จันทร์,อังคาร,พุธ,พฤหัสบดี,ศุกร์,เสาร์,อาทิตย์} 2. การเขียนเซตแบบบอกเงื่อนไขของสมาชิก วิธีเขียนแบบนี้เรานิยมใช้ตัวแปร x , y ,z แทนสมาชิก หลังจากนั้นใช้เส้นคั่นและต่อจากเส้นคั่นจะเป็นส่วน อธิบายเกี่ยวกับเงื่อนไขของสมาชิก A = {x x เป็นวันในหนึ่งสัปดาห์} A={ จันทร์,อังคาร,พุธ,พฤหัสบดี,ศุกร์,เสาร์,อาทิตย์} ใช้สัญลักษณ์ “ ” แทนคำาว่า “ เป็นสมาชิกของ” เช่น B = { x x เป็นสระในภาษาอังกฤษ} B={a,e,i,o,u} a ∈A , e ∈ A , i∈A , o∈A , u∈A ชนิดของเซต 1. เซตว่าง (Empty Set ) คือเซตที่ไม่มีสมาชิกเลย ใช้สัญลักษณ์ { } หรือ 2. เซตจำากัด( Finite Set) คือเซตที่สามารถบอกได้ว่า มีสมาชิกเป็นจำานวนเท่าใด 3. เซตอนันต์ (Infinity Set) คือเซตที่ไม่ใช่เซตจำากัด การเท่ากันของเซต
  • 2.
    เซตสองเซตจะเท่ากันก็ต่อเมื่อ เซตทั้งสองมีสมาชิก เท่ากันและเหมือนกันตัวต่อตัว A = {x เป็นจำานวนเต็มบวกที่น้อยกว่า 5} B={1,2,3,4} A=B สับเซต 1. A เป็นสับเซตของ B ก็ต่อเมื่อ สมาชิกทุกตัวของ A ต้องอยู่ใน B ใช้สัญลักษณ์ A⊂B = {x x ∈ A → x ∈ B} = ∀x[x ∈ A → x ∈ B] 2. A ไม่ เป็นสับเซตของ B ก็ต่อเมื่อ สมาชิกบางตัว ของ A แต่ไม่อยู่ใน B ใช้สัญลักษณ์ A⊄B = {x x ∈ A ∧ x ∉B} = ∃x[x ∈ A ∧ x ∉ B] 3. ถ้า n(A) = k แล้ว จำานวนสับเซตของ A มี = 2k สับเซต จำานวนสับเซตแท้ของ A มี = 2k -1 สับเซต สัญลัก เซต A เป็นสับเซตของเซต B แทนด้วย ษณ์ A B เซต A ไม่เป็นสับเซตของเซต B แทน ด้วย A B A = {1, 2} B= A B, A C, A D {2, 3} B A, B C, B D C = {1, 2, 3} D = C A, C B, C D {1, 2, 3, 4} D A, D B, D C 1. เซตทุกเซตเป็นสับเซตของตัวมันเอง (A A) 2. เซตว่าง เป็นสับเซตของทุก ๆ เซต ( A) 3. ถ้า A แล้ว A = 4. ถ้า A B และ B C แล้ว A C 5. A = B ก็ต่อเมื่อ A B และ B A เพาเวอร์เซต (Power Set)
  • 3.
    1. เพาเวอร์เซต ของเเซตA คือสมาชิกทั้งหมดเป็น สับเซตของ A ใช้สัญลักษณ์ P(A) = {x x ⊂ A } 2. ถ้า A เป็นเซตจำากัด ถ้า n(A) = k แล้ว 1. n[P(A)] = 2k 2. n[P(P(A))] = k 22 3. จำานวนสมาชิกของ P(A) จะอยู่ในลำาดับเรขาคณิต ดังนี้ n(A) 0 1 2 3 4 5 6 ------ ---- n[P( 1 2 4 8 16 32 64 ------ A)] ---- ทฤษฎีเกี่ยวกับเพาเวอร์เซต ถ้า A และ B เป็นเซตจำากัดใด ๆ 1. สมาชิกทุกตัวของเพาเวอร์เซต ต้องเป็นเซต 2. φ ∈P(A) และ P(A) เสมอ 3. A∈P(A) เสมอ แต่ A ไม่จำาเป็นต้องเป็นสับ เซตของ P(A) 4. เมื่อ A∈P(A) ดังนั้น P(A) ∈P(P(A)) 5. เพาเวอร์เซต จะไม่มทางเป็นเซตว่างได้เลย ี นั่นคือ P(A) ≠φ 6. P(φ) = {φ} 7. {A}⊂P(A) เสมอ ดังนั้น {P(A)} ⊂P(P(A)) 8. P(A∩B)=P(A) ∩P(B) 9. ถ้า A⊂B แล้ว P(A) ⊂P(B) การกระทำาของเซต(Operation of Set) คือการนำาเซตหลาย ๆ เซตมากระทำากันเพื่อให้เกิดเซต ใหม่ขึ้นมา ซึ่งมีอยู่ 3 วิธีคือ 1. อินเตอร์เซคชัน(Intersection) ถ้า A และ B เป็นเซตสองเซต อินเตอร์เซคชัน ของ A และ B หมายถึงเซตที่ประกอบด้วยสมาชิกที่เป็นทังของ A ้ และ B ใช้สัญลักษณ์ A∩B
  • 4.
    A∩B = {xx∈ A และ x ∈ B} ตัวอย่าง A={1,2,3}, B={2,3,4} วิธทำา ี A∩B = {2 , 3 } สามารถเขียนแผนภาพของ เวนน์ - ออย เลอร์ ได้ดังนี้ A B U 1 2 3 4 A∩B = {2 , 3 } 2. ยูเนียน (Union) ถ้า A และ B เป็นเซตสองเซต ของยูเนียน A และ B หมายถึงเซตที่ประกอบด้วยสมาชิกที่เป็นทังของ A และ B ้ ใช้สัญลักษณ์ A∪B A∪B = {xx ∈ A หรือ x ∈ B} ตัวอย่าง A={1,2,3}, B={2,3,4} วิธทำา ี A∪B = {1 , 2 , 3 ,4 } สามารถเขียนแผนภาพของ เวนน์ - ออย เลอร์ ได้ดังนี้ A B U 1 2 3 4 A∪B = {1 , 2 , 3 , 4 } 3. ผลต่างและคอมพลีเม้นต์(Difference and Complement) ถ้า A และ B เป็นเซตสองเซต เซตที่ประกอบ ด้วยสมาชิกที่เป็นทั้งของ A แต่ไม่เป็นสมาชิกของ B ใช้ สัญลักษณ์ A - B A - B = {xx ∈ A แต่ x ∉ B} ตัวอย่าง A={1,2,3}, B={2,3,4} วิธทำา ี A - B = {1 , 2 , 3 }
  • 5.
    B–A={4} สามารถเขียนแผนภาพของ เวนน์ - ออย เลอร์ ได้ดังนี้ A B U 1 2 3 4 A- B = {1 , 2 , 3 } และ B – A ={ 4 } ในทำานองเดียวกัน ถ้าเราจะหา U – A จะได้ U={1,2 , 3,4,5,6} A = {2,4,6} U–A={1,3,5} U - A = {xx ∈ U แต่ x ∉ A} A’ หรือ Ac แทน U – A ดังนั้น A’ = Ac {xx ∉ A} U A 2,4, 1 , 3 6 5 , A’ = Ac {xx ∉ A} และ A’ = { 1 , 3,5} การพิจารณาเกี่ยวกับเซตจะง่ายขึ้น ถ้าเราใช้ แผนภาพของเวนน์-ออยเลอร์ เข้ามาช่วย หลักการเขียน แผนภาพมีดังนี้ 1. ใช้รูปสี่เหลี่ยมผืนผ้าหรือสี่เหลี่ยมมุมฉากแทนเอกภพ สัมพัทธ์ 2. ใช้วงกลมหรือวงรีหรือรูปปิดใด ๆ แทนเซตต่าง ๆ ที่เป็น สมาชิกของ และเขียนภายในสี่เหลี่ยมผืนผ้า
  • 6.
    เป็นเอกภพสัมพัทธ์ A เป็นสับเซตของ เซต A และ B เป็นสับเซต เซต A และ B เป็นสับเซตของ ของ โดยที่ A และ B ไม่มี โดยที่ A และ B มีสมาชิกบาง สมาชิกร่วมกัน ตัวร่วมกัน เซต A เป็นสับเซตของ B เซต A = B จำานวนสมาชิกของเซต หาได้จาก 1. n(A∪B)=n(A)+n(B)-n(A∩B) 2. n(A∪B∪C)= (A)+n(B)+n(C) - n(A∩B)- n(B∩C)- n(A∩C)+n(A ∩B ∩C) ตัวอย่างที่ ١ ถ้า n(A∩B) มีสมาชิก ٣ ตัว (A∪B) มีสมาชิก ٥ ตัว A และ B มีสมาชิกเท่ากัน A-B มีสมาชิก ١ ตัว วิธทำา ๊ จาก n(A∪B)=n(A)+n(B)-n(A∩B) แทนค่า ٥ = n(A)+n(B)-3 8 = 2n(A) ; เนื่องจาก n(A) = n(B) 8 2 = n(A) 4 = n(A) สามารถเขียนแผนภาพของ เวนน์ - ออย เลอร์ ได้ดังนี้ A B U 1 2 3 5 4
  • 7.
    A = {1,2,3,4} B = {2,3,4,5} A∪B = {1,2,3,4,5} A∩B = {2,3,4} A - B = {1} B - A = {5} ตัวอย่างที่ ٢ ครอบครัวหนึงระหว่างที่ไปพักตากอากาศชายทะเล ่ บางแสนมีฝนตก 13 วัน ถ้าฝนตก ตอนเช้าตอนบ่าย อากาศแจ่มใส แต่ถาฝนตก ้ ตอนบ่าย ตอนเช้าอากาศแจ่มใส ถ้า ระหว่างที่พักตากอากาศ อยู่ นั้นมีอากาศแจ่มใส ตอนเช้า 11 วัน และตอนบ่ายแจ่มใส 12 วัน อยากทราบว่าครอบครัวนี้ไปพักตากอากาศ กี่วัน วิธทำา ี กำาหนด A แทนตอนเช้าอากาศแจ่มใส B แทนตอนบ่ายอากาศแจ่มใส x แทนอากาศแจ่มใสตลอดทั้งวัน จาก n(A∪B)=n(A)+n(B)-n(A∩B) 13 = (11-x)+ (12-x) 13 = 23 –2x 2x = 23-13 10 x = 2 = 5 ดังนั้นจำานวนวันที่ไปพักตากอากาศ 13+5 = 18 วัน U A B 11-x x 12-x
  • 8.
    ตัวอย่างที่ 3 นักเรียนโรงเรียนมัธยมแห่งหนึ่งมีจำานวน٣٠٠ คน เลือกเข้าชุมนุมดังนี้ ١٥٠ คน เลือกคอมพิวเตอร์ ٢٠٦ คน เลือกคณิตศาสตร์ ٨٠ คน เลือกภาษาอังกฤษ ٧٤ คนเลือก คอมพิวเตอร์และคณิตศาสตร์ ٣٢ คนเลือก คอมพิวเตอร์และภาษาอังกฤษ ٢٠ คนเลือกทั้ง ٣ วิชา จงหา จำานวนนักเรียนที่เลือกเรียนวิชาเดียว นักเรียนที่ เลือกคณิตศาสตร์และภาษาอังกฤษแต่ไม่เลือกคอมพิวเตอร์ วิธทำา ี กำาหนด C แทน เลือกคอมพิวเตอร์ ١٥٠ คน M แทนเลือก เลือกคณิตศาสตร์ ٢ ٠٦ คน E แทนเลือกภาษาอังกฤษ ٨٠ คน n(C∩M) แทน เลือก คอมพิวเตอร์ และคณิตศาสตร์ ٧٤ คน n(C∩E) เลือก คอมพิวเตอร์และภาษาอังกฤษ ٣ ٢ คน n(C∩M∩E) เลือกทัง ٣ วิชา ٢٠ คน ้ n(M∩E) = ? จาก n(C∪M∪E)= n(C)+n(M)+n(E) - n(C∩M)- n(C∩E)- n(M∩E)+n(C ∩M ∩E) แทนค่า ٣٠٠ = 150+206+80-74-32- n(M∩E) +20 n(M∩E) = 456-300-74-32 n(M∩E) = 50 สามารถเขียนแผนภาพของ เวนน์ - ออย เลอร์ ได้ดังนี้ C U 6 M 4 5 12 42 82 0 x 18 E
  • 9.
    ***นักเรียนที่เลือกเรียน คณิตศาสตร์และภาษาอังกฤษแต่ไม่ เลือกคอมพิวเตอร์ 20+x = 50 x = 30 ***นักเรียนที่เลือกเรียน เพียง 1 วิชา 82+18+64 =164 คน