Prepared by Volkan OBAN
ggplot2 Examples:
1-
students = read.csv("student.csv")
library(ggplot2)
ggplot(students, aes(x = Height)) + geom_dotplot()
2-
ggplot(students, aes(x = Sex, y = Height)) + geom_boxplot() + coord_flip()
3-
ggplot(students,aes(x =Sleep)) +geom_dotplot(dotsize=0.4)
4-
ggplot(students,aes(x =Sleep)) +geom_dotplot(dotsize=0.4) + facet_grid(Level ~.)
5-
ggplot(students, aes(x = Major, y = MilesHome)) + geom_boxplot() +
coord_fip()
qplot
6-
qplot(color, price / carat, data = diamonds, geom = "jitter")
7-
qplot(color, price / carat, data = diamonds, geom = "boxplot")
8-
qplot(carat, data = diamonds, geom = "histogram", fill = color)
9-
>library(nlme)
> data(Oxboys)
> p <- ggplot(Oxboys, aes(age, height, group = Subject)) +
+ geom_line()
> p
> p + geom_smooth(aes(group = Subject), method="lm", se = F)
10-
depth_dist<- ggplot(diamonds,aes(depth)) +xlim(58,68) depth_dist+ geom_histogram(aes(y=
..density..),binwidth= 0.1) + facet_grid(cut~ .) depth_dist+ geom_histogram(aes(fill =cut),
binwidth= 0.1, position= "fill") depth_dist+geom_freqpoly(aes(y=..density..,colour= cut),
binwidth= 0.1)
Reference: http://www.stat.wisc.edu/~larget/stat302/chap2.pdf
Reference book: ggplot2 Elegant Graphics for Data Analysis; Wickham, Hadley
11-
> library("ggplot2")
> library("ggthemes")
> ggplot(diamonds, aes(x = clarity, fill = cut)) +
geom_bar() + scale_fill_ptol() +theme_minimal()
12- > dtemp <- data.frame(months = factor(rep(substr(month.name,1,3), 4), l
evels = substr(month.name,1,3)),
city = rep(c("Tokyo", "New York", "Berlin", "London"), each = 12),
temp = c(7.0, 6.9, 9.5, 14.5, 18.2, 21.5, 25.2, 26.5, 23.3, 18.3, 13.9, 9.6
, -0.2, 0.8, 5.7, 11.3, 17.0, 22.0, 24.8, 24.1, 20.1, 14.1, 8.6, 2.5,
-0.9, 0.6, 3.5, 8.4, 13.5, 17.0, 18.6, 17.9, 14.3, 9.0, 3.9, 1.0,
3.9, 4.2, 5.7, 8.5, 11.9, 15.2, 17.0, 16.6, 14.2, 10.3, 6.6, 4.8))
> ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
geom_line() +
geom_point(size = 1.1) +
ggtitle("Monthly Average Temperature") +
theme_hc() +
scale_colour_hc()
> ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
geom_line() +
geom_point(size = 1.1) +
ggtitle("Monthly Average Temperature") +
theme_hc(bgcolor = "darkunica") +
scale_fill_hc("darkunica")
Ref: https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html
13-
> ppc <- ggplot(data = diamonds, aes(x = color, y = price/carat))
> ppc + geom_boxplot(aes(fill = color))
Ref:https://www3.nd.edu/~steve/computing_with_data/11_geom_examples/ggplot_examples.html
14-
morph <- read.csv("Morph_for_Sato.csv")
names(morph) <- tolower(names(morph)) # make columns names lowercase
morph <- subset(morph, islandid == "Flor_Chrl") # take only one island morph <-
morph[,c("taxonorig", "sex", "wingl", "beakh", "ubeakl")] # only keep these
names(morph)[1] <- "taxon" morph <- data.frame(na.omit(morph)) # remove all rows
morph$taxon <- factor(morph$taxon) # remove extra remaining factor levels
morph$sex <- factor(morph$sex) # remove extra remaining factor levels
row.names(morph)
ggplot(morph, aes(taxon, wingl)) + geom_boxplot() + coord_flip()
Ref: http://seananderson.ca/ggplot2-FISH554/
15-
ggplot(morph, aes(sex, wingl)) + geom_violin() + facet_wrap(~taxon)
16.
library("dplyr")
> morph_quant <-
morph %>%
+ group_by(taxon) %>%
+ summarise(
+ l = quantile(wingl, 0.25)[[1]],
+ m = median(wingl),
+ u = quantile(wingl, 0.75)[[1]]) %>%
+ # re-order factor levels by median for plotting:
+ mutate(taxon = reorder(taxon, m, function(x) x))
>ggplot(morph_quant, aes(x = taxon, y = m, ymin = l, ymax = u)) +
geom_pointrange() + coord_flip() + ylab("Wing length") + xlab("")
Ref: http://seananderson.ca/ggplot2-FISH554/
17-
>library(ggplot2)
> plot2 <- qplot(color, price/carat, data = diamonds, geom = "boxplot", col
our = color)
> plot2
18-
> library(GGally)
> library(ggplot2)
>data(tips, package = "reshape")
> pm <- ggpairs(tips, mapping = aes(color = sex), columns = c("total_bill", "time", "tip"))
> pm
Ref: http://ggobi.github.io/ggally/docs.html#columns_and_mapping

R-ggplot2 package Examples

  • 1.
    Prepared by VolkanOBAN ggplot2 Examples: 1- students = read.csv("student.csv") library(ggplot2) ggplot(students, aes(x = Height)) + geom_dotplot()
  • 2.
    2- ggplot(students, aes(x =Sex, y = Height)) + geom_boxplot() + coord_flip()
  • 3.
  • 4.
  • 5.
    5- ggplot(students, aes(x =Major, y = MilesHome)) + geom_boxplot() + coord_fip()
  • 6.
    qplot 6- qplot(color, price /carat, data = diamonds, geom = "jitter")
  • 7.
    7- qplot(color, price /carat, data = diamonds, geom = "boxplot")
  • 8.
    8- qplot(carat, data =diamonds, geom = "histogram", fill = color)
  • 9.
    9- >library(nlme) > data(Oxboys) > p<- ggplot(Oxboys, aes(age, height, group = Subject)) + + geom_line() > p > p + geom_smooth(aes(group = Subject), method="lm", se = F)
  • 10.
    10- depth_dist<- ggplot(diamonds,aes(depth)) +xlim(58,68)depth_dist+ geom_histogram(aes(y= ..density..),binwidth= 0.1) + facet_grid(cut~ .) depth_dist+ geom_histogram(aes(fill =cut), binwidth= 0.1, position= "fill") depth_dist+geom_freqpoly(aes(y=..density..,colour= cut), binwidth= 0.1) Reference: http://www.stat.wisc.edu/~larget/stat302/chap2.pdf Reference book: ggplot2 Elegant Graphics for Data Analysis; Wickham, Hadley
  • 11.
    11- > library("ggplot2") > library("ggthemes") >ggplot(diamonds, aes(x = clarity, fill = cut)) + geom_bar() + scale_fill_ptol() +theme_minimal()
  • 12.
    12- > dtemp<- data.frame(months = factor(rep(substr(month.name,1,3), 4), l evels = substr(month.name,1,3)), city = rep(c("Tokyo", "New York", "Berlin", "London"), each = 12), temp = c(7.0, 6.9, 9.5, 14.5, 18.2, 21.5, 25.2, 26.5, 23.3, 18.3, 13.9, 9.6 , -0.2, 0.8, 5.7, 11.3, 17.0, 22.0, 24.8, 24.1, 20.1, 14.1, 8.6, 2.5, -0.9, 0.6, 3.5, 8.4, 13.5, 17.0, 18.6, 17.9, 14.3, 9.0, 3.9, 1.0, 3.9, 4.2, 5.7, 8.5, 11.9, 15.2, 17.0, 16.6, 14.2, 10.3, 6.6, 4.8)) > ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) + geom_line() + geom_point(size = 1.1) + ggtitle("Monthly Average Temperature") + theme_hc() + scale_colour_hc() > ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) + geom_line() + geom_point(size = 1.1) + ggtitle("Monthly Average Temperature") + theme_hc(bgcolor = "darkunica") + scale_fill_hc("darkunica") Ref: https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html
  • 13.
    13- > ppc <-ggplot(data = diamonds, aes(x = color, y = price/carat)) > ppc + geom_boxplot(aes(fill = color)) Ref:https://www3.nd.edu/~steve/computing_with_data/11_geom_examples/ggplot_examples.html
  • 14.
    14- morph <- read.csv("Morph_for_Sato.csv") names(morph)<- tolower(names(morph)) # make columns names lowercase morph <- subset(morph, islandid == "Flor_Chrl") # take only one island morph <- morph[,c("taxonorig", "sex", "wingl", "beakh", "ubeakl")] # only keep these names(morph)[1] <- "taxon" morph <- data.frame(na.omit(morph)) # remove all rows morph$taxon <- factor(morph$taxon) # remove extra remaining factor levels morph$sex <- factor(morph$sex) # remove extra remaining factor levels row.names(morph) ggplot(morph, aes(taxon, wingl)) + geom_boxplot() + coord_flip() Ref: http://seananderson.ca/ggplot2-FISH554/
  • 15.
    15- ggplot(morph, aes(sex, wingl))+ geom_violin() + facet_wrap(~taxon)
  • 16.
    16. library("dplyr") > morph_quant <- morph%>% + group_by(taxon) %>% + summarise( + l = quantile(wingl, 0.25)[[1]], + m = median(wingl), + u = quantile(wingl, 0.75)[[1]]) %>% + # re-order factor levels by median for plotting: + mutate(taxon = reorder(taxon, m, function(x) x)) >ggplot(morph_quant, aes(x = taxon, y = m, ymin = l, ymax = u)) + geom_pointrange() + coord_flip() + ylab("Wing length") + xlab("") Ref: http://seananderson.ca/ggplot2-FISH554/
  • 17.
    17- >library(ggplot2) > plot2 <-qplot(color, price/carat, data = diamonds, geom = "boxplot", col our = color) > plot2
  • 18.
    18- > library(GGally) > library(ggplot2) >data(tips,package = "reshape") > pm <- ggpairs(tips, mapping = aes(color = sex), columns = c("total_bill", "time", "tip")) > pm Ref: http://ggobi.github.io/ggally/docs.html#columns_and_mapping