COCONUT SHELL
AGGREGATE CONCRETE
GCE Kannur
MAIN PROJECT
PROJECT ID: 2K6CEPJT01
1
2GCE Kannur
 AJEESHA V I
 APARNA P
 ARUN RAJ K
 SAHANA M P
 SHAHSOORA K
 SHAMJITH K M
MEMBERS:
OUTLINE
 INTRODUCTION
 MINI PROJECT OVERVIEW
 TEST CONDITIONS AND EXPERIMENTAL PROCEDURE
 TEST RESULTS
 ANALYSIS
 CONCLUSION
3
4GCE Kannur
25.48
29.84
21
3.98
19.7
Philippines
Indonesia
India
Srilanka
Others
Coconut Production in the World- Country wise
(Values in percentage)
Source: Food and Agriculture Organization of the United Nations (FAO).
INTRODUCTION - WORLD
5GCE Kannur
45%
29%
12%
6%
8%
KER
TN
KAR
AP
Others
Coconut Production in INDIA - State wise
(Values in Percentage)
Source: Coconut Development Board, Kerala
INTRODUCTION - INDIA
6
• Solid waste management issues;
• Utilization of Coconut Shell (CS) in cost effective
construction;
• Sustainable development – preservation & economy;
• Light weight structures;
GCE Kannur
INTRODUCTION
GCE Kannur 7
Cement OPC 53 grade
River sand
Coconut shell aggregate
8mm to 16mm size
(From local homes, hostels,..)
Crushed granite stone
20 mm
Potable drinking water
MATERIALS
GCE Kannur 8
METHEDOLOGY ADOPTED
Determination of engineering
properties of CS
Determination of properties of
conventional aggregates
Casting M20 mix concrete
Testing, Analysis & Results
Documentation
Conclusion
GCE Kannur 9
To evaluate the engineering properties of
coconut shell aggregate.
To compare the properties of coconut shell
aggregate with conventional aggregate.
MINI PROJECT OVERVIEW
GCE Kannur 10
PROPERTIES TESTED
Specific gravity
Void ratio
Bulk density
Porosity
Aggregate impact value
Aggregate crushing value
Abrasion value
Fineness modulus
GCE Kannur 11
Tests
Convention
al aggregate
Coconut
shell aggregate
Sand
Max size 20 16 4.75
Specific gravity 2.82 1.29 1.1
Bulk density(kg/l) 1.51 0.681
Void ratio 0.866 0.894
Porosity (%) 46.4 47.2
Aggregate abrasion value 27 4.66 -
Impact value of aggregate (%) 21.114 5.51 -
Aggregate crushing value (%) 2.6 5.28 -
Fineness modulus 0.915 1.415 2.83
PROPERTIES AT A GLANCE
12
COCONUT SHELL AGGREGATE
CONCRETE
To find the optimum replacement
of coconut shell
GCE Kannur 13
MIX DESIGN
Mass of cement (in kg/m3) 383
Mass of water (in kg/m3) 191.6
Mass of fine aggregate (in kg/m3) 626.36
Mass of coarse aggregate (in kg/m3) 1200.8
Mix ratio 1: 1.635: 3.135
GCE Kannur 14
CURING
Temperatures : 27°C ±7°C
W/C Ratio : 0.5
Experimental procedure
 Compressive strength
 Split tensile strength
 Flexural strength
15
COMPRESSIVE STRENGTH
Factors affecting,
16
Ultimate strength = P/A
Water cement ratio
Aggregate cement ratio
Aggregate grade and maximum
size of aggregate
Compaction
Curing
Age of concrete
FLEXURAL STRENGTH
Modulus of rupture, fct =
PL
bd2 ……………… (1)
fct =
3Pa
b
……………… (2)
17
If a > 200, eqn 1
If 170 < a < 200, eqn 2
SPLIT TENSILE STRENGTH
Circular disc subjected to compression load
diametrically
F =
2P
𝜋DL
Where,
L = Length of cylinder
D = Diameter of cylinder
P = Maximum load
18
19
TEST RESULTS
0% Replacement
Cement content : 383 kg/m3
Water cement ratio : 0.5
Properties
7 days 28 days
1 2 Mean
(N/mm2)
1 2 Mean
(N/mm2)
Compressive
strength
18.03 17.99 18.01 26.2 26.6 26.4
Split tensile
strength
1.424 1.44 1.432
2.85 2.79 2.82
Flexural strength 2.02 2.08 2.05
3.25 3.09 3.17
20
5% Replacement
Cement content : 384.17 kg/m3
Water cement ratio : 0.5
Properties
7 days 28 days
1 2 Mean
(N/mm2)
1 2 Mean
(N/mm2)
Compressive
strength
17.82 17.99 17.90 24.06 24.18 24.12
Split tensile
strength
1.12 0.98 1.050 2.64 2.256 2.448
Flexural strength 2.17 1.79 1.981 2.015 2.551 2.283
21
10% replacement
Trial no:1
Cement content : 385.76 kg/m3
Water cement ratio : 0.5
Properties
7 days 28 days
1 2 Mean
(N/mm2)
1 2 Mean
(N/mm2)
Compressive
strength
16.85 16.75 16.80 24.45 17.09 20.77
Split tensile
strength
1.220 1.210 1.215 1.84 2.04 1.94
Flexural
strength
1.843 1.621 1.732 2.78 2.29 2.535
22
10% replacement
Trial no: 2
Cement content: 386.55kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2
Mean
(N/mm2) 1 2
Mean
(N/mm2)
Compressive
strength 17.55 16.21 16.89 23.81 24.21 24.02
Split tensile
strength 1.3 1.260 1.28 2.47 2.61 2.54
23
15% replacement
Cement content: 387.34kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2
Mean
(N/mm2) 1 2
Mean
(N/mm2)
Compressive
strength
17.9 17.5 17.7 24.87 24.35 24.61
Split tensile
strength
1.38 1.27 1.32 2.61 2.53 2.57
Flexural
strength
1.984 1.69 1.837 2.99 2.79 2.89
24
20%replacement
Trial no:1
Cement content: 388.13kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2
Mean
(N/mm2) 1 2
Mean
(N/mm2)
Compressive
strength
12.48 13.33 12.9 20.32 20.49 20.41
Split tensile
strength
1.23 1.1 1.16 1.87 2.09 1.98
Flexural
strength
1.95 1.69 1.820 2.78 2.42 2.60
25
Trial no:2
Cement content: 388.92kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2 Mean 1 2 Mean
Compressive
strength
14.81 14.20 14.78 21.76 19.9 20.83
Trial no:3
Cement content: 389.71kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2 Mean 1 2 Mean
Compressive
strength
15.7 14.3 15 20.89 22.89 21.89
26
25%replacement
Cement content: 390.50kg/m3
Water cement ratio: 0.5
Properties
7 days 28 days
1 2 Mean 1 2 Mean
Compressive
strength
12.03 11.87 11.95 21.18 20.54 20.86
Split tensile strength 0.89 1.14 1.015 2.42 2.48 2.45
Flexural strength 1.57 1.69 1.63
27
Trial 2
Cement content=391.29kg/m3
Properties
7 days 28 days
1 2 Mean 1 2 Mean
Compressive
strength
11.89 12.13 12.01 21.2 21.26 21.23
30% Replacement
Cement content: 392.08kg/m3
w/c Ratio:0.5
Properties
7 days
1 2 Mean
Compressive strength 10.89 11.58 11.23
Split tensile strength 0.86 1.08 0.97
28
35% Replacement
Cement content:392.08
W/C ratio:0.5
Properties
7 days
1 2
Mean
(N/mm2)
Compressive strength 10.67 11.45 11.06
Split tensile strength 0.59 0.74 0.66
29
ANALYSIS
Compressive strength
0%
Replacement
Cement
addition rate
(kg/m3)
7 day strength (N/mm2)
Extra
cement (g)1 2 Mean
0 383.00 18.03 17.99 18.01 0
5 384.17 17.82 17.99 17.90 150
10 385.76 16.85 16.75 16.80 200
10 386.55 17.55 16.21 16.89 250
15 387.34 17.90 17.50 17.70 300
20 388.13 12.48 13.33 12.90 350
20 388.92 14.87 14.20 14.78 400
20 389.71 15.7 14.3 15.0 450
25 390.50 12.03 11.87 11.95 450
25 391.29 12.57 13.01 12.79 500
30 392.08 10.89 11.58 11.23 550
35 392.87 10.67 11.45 11.06 600
30
%
replacement
Cement
addition rate
(kg/m3)
3 days strength
(N/mm2)
7 days strength
(N/mm2)
1 2 Mean 1 2 Mean
0 - 0.81 0.83 0.820 1.424 1.44 1.432
5 384.17 kg/m3 0.726 0.746 0.736 1.120 0.98 1.050
10 385.76 kg/m3 0.700 0.740 0.720 1.220 1.210 1.210
10 386.55 kg/m3 0.760 0.760 0.760 1.300 1.260 1.280
15 387.34 kg/m3 1.380 1.270 1.32
20 388.13 kg/m3 1.23 1.10 1.16
20 388.92 kg/m3 1.37 0.96 1.165
25 390.50 kg/m3 0.89 1.14 1.015
30 391.29 kg/m3 0.86 1.08 0.97
35 392.08 kg/m3 0.59 0.74 0.66
Split tensile strength
31
%
replacement
Cement
addition rate
(kg/m3)
7 days strength
(N/mm2)
28 days strength
(N/mm2)
1 2 Mean 1 2 Mean
0 - 2.02 2.08 2.05 3.25 3.09 3.17
5 384.17 kg/m3 2.17 1.79 1.981 2.015 2.551 2.283
10 385.76 kg/m3 1.843 1.621 1.732 2.78 2.29 2.535
15 387.34 kg/m3 1.984 1.69 1.837 2.99 2.79 2.89
20 388.13 kg/m3 1.95 1.69 1.82 2.78 2.42 2.60
Flexural strength
32
Fig 6.1 Seven days compressive strength (N/mm2)
33
Compressivestrength(N/mm2)
Fig 6.2 Seven days split tensile strength (N/mm2)
34
Compressivestrength(N/mm2)
Fig 6.3 seven days flexural strength
35
Compressivestrength(N/mm2)
Fig 6.4 : 28 days compressive strength
36
Compressivestrength(N/mm2)
Fig 6.5 : 28 days split tensile strength
37
Compressivestrength(N/mm2)
Fig 6.6 : 28 days flexural strength
38
Compressivestrength(N/mm2)
GCE Kannur 41
The optimum replacement is obtained as 15%
CONCLUSION
Can be used as coarse aggregate in the
production of lightweight concrete
GCE Kannur 42
1. E. A. Olanipekun, K. O. Olusola ,and O. Atia, “Comparative study between palm
kernel shell and coconut shell as coarse aggregate”, Journal of Engineering and
Applied Science, Asian Research Publishing Network. Japan, 2005.
2. U. O. Kabiru, and A. Saleh, “Exploratory study of coconut shell as coarse
aggregate in concrete”, Journal of engineering and applied sciences, Vol. 2,
December 2010.
3. K. Gunasekaran, and P. S. Kumar, “Lightweight Concrete using Coconut Shells as
Aggregate”, Proceedings, International Conference on "Innovations in Building
Materials, Structural Designs and Construction Practices (IBMSDCP-2008), 15-17
May 2008, pp.375-382.
4. K. Gunasekaran, “Utilization of Coconut Shell as Coarse Aggregate in the
Development of Lightweight Concrete”, PhD Thesis, Department of Civil
Engineering, SRM University, Kattankulathur, 2011.
5. C. B. Gopal, and K. B. Ranjan, “Effect of Coconut Shell Aggregate on Normal
Strength Concrete”, International Journal of Engineering Research & Technology,
Vol. 2 Issue 6, June – 2013, pp: 2405 -2415.
6. Y. Amarnath, and C. Ramachandrudu, “Properties of Concrete with Coconut Shells
as Aggregate Replacement”, International Journal of Engineering Inventions,
Volume 1, Issue 6 (October 2012), pp: 21-31.
7. U. Johnson Alengaram, Baig Abdullah Al Muhit, and Mohd Zamin bin Jumaat,
“Utilization of oil palm kernel shell as lightweight aggregate in concrete”,
Construction and Building Materials, Volume 38, January 2013, Pages 161-172.
REFERENCES
GCE Kannur 43

Project csac

  • 1.
    COCONUT SHELL AGGREGATE CONCRETE GCEKannur MAIN PROJECT PROJECT ID: 2K6CEPJT01 1
  • 2.
    2GCE Kannur  AJEESHAV I  APARNA P  ARUN RAJ K  SAHANA M P  SHAHSOORA K  SHAMJITH K M MEMBERS:
  • 3.
    OUTLINE  INTRODUCTION  MINIPROJECT OVERVIEW  TEST CONDITIONS AND EXPERIMENTAL PROCEDURE  TEST RESULTS  ANALYSIS  CONCLUSION 3
  • 4.
    4GCE Kannur 25.48 29.84 21 3.98 19.7 Philippines Indonesia India Srilanka Others Coconut Productionin the World- Country wise (Values in percentage) Source: Food and Agriculture Organization of the United Nations (FAO). INTRODUCTION - WORLD
  • 5.
    5GCE Kannur 45% 29% 12% 6% 8% KER TN KAR AP Others Coconut Productionin INDIA - State wise (Values in Percentage) Source: Coconut Development Board, Kerala INTRODUCTION - INDIA
  • 6.
    6 • Solid wastemanagement issues; • Utilization of Coconut Shell (CS) in cost effective construction; • Sustainable development – preservation & economy; • Light weight structures; GCE Kannur INTRODUCTION
  • 7.
    GCE Kannur 7 CementOPC 53 grade River sand Coconut shell aggregate 8mm to 16mm size (From local homes, hostels,..) Crushed granite stone 20 mm Potable drinking water MATERIALS
  • 8.
    GCE Kannur 8 METHEDOLOGYADOPTED Determination of engineering properties of CS Determination of properties of conventional aggregates Casting M20 mix concrete Testing, Analysis & Results Documentation Conclusion
  • 9.
    GCE Kannur 9 Toevaluate the engineering properties of coconut shell aggregate. To compare the properties of coconut shell aggregate with conventional aggregate. MINI PROJECT OVERVIEW
  • 10.
    GCE Kannur 10 PROPERTIESTESTED Specific gravity Void ratio Bulk density Porosity Aggregate impact value Aggregate crushing value Abrasion value Fineness modulus
  • 11.
    GCE Kannur 11 Tests Convention alaggregate Coconut shell aggregate Sand Max size 20 16 4.75 Specific gravity 2.82 1.29 1.1 Bulk density(kg/l) 1.51 0.681 Void ratio 0.866 0.894 Porosity (%) 46.4 47.2 Aggregate abrasion value 27 4.66 - Impact value of aggregate (%) 21.114 5.51 - Aggregate crushing value (%) 2.6 5.28 - Fineness modulus 0.915 1.415 2.83 PROPERTIES AT A GLANCE
  • 12.
    12 COCONUT SHELL AGGREGATE CONCRETE Tofind the optimum replacement of coconut shell
  • 13.
    GCE Kannur 13 MIXDESIGN Mass of cement (in kg/m3) 383 Mass of water (in kg/m3) 191.6 Mass of fine aggregate (in kg/m3) 626.36 Mass of coarse aggregate (in kg/m3) 1200.8 Mix ratio 1: 1.635: 3.135
  • 14.
    GCE Kannur 14 CURING Temperatures: 27°C ±7°C W/C Ratio : 0.5
  • 15.
    Experimental procedure  Compressivestrength  Split tensile strength  Flexural strength 15
  • 16.
    COMPRESSIVE STRENGTH Factors affecting, 16 Ultimatestrength = P/A Water cement ratio Aggregate cement ratio Aggregate grade and maximum size of aggregate Compaction Curing Age of concrete
  • 17.
    FLEXURAL STRENGTH Modulus ofrupture, fct = PL bd2 ……………… (1) fct = 3Pa b ……………… (2) 17 If a > 200, eqn 1 If 170 < a < 200, eqn 2
  • 18.
    SPLIT TENSILE STRENGTH Circulardisc subjected to compression load diametrically F = 2P 𝜋DL Where, L = Length of cylinder D = Diameter of cylinder P = Maximum load 18
  • 19.
  • 20.
    TEST RESULTS 0% Replacement Cementcontent : 383 kg/m3 Water cement ratio : 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 18.03 17.99 18.01 26.2 26.6 26.4 Split tensile strength 1.424 1.44 1.432 2.85 2.79 2.82 Flexural strength 2.02 2.08 2.05 3.25 3.09 3.17 20
  • 21.
    5% Replacement Cement content: 384.17 kg/m3 Water cement ratio : 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 17.82 17.99 17.90 24.06 24.18 24.12 Split tensile strength 1.12 0.98 1.050 2.64 2.256 2.448 Flexural strength 2.17 1.79 1.981 2.015 2.551 2.283 21
  • 22.
    10% replacement Trial no:1 Cementcontent : 385.76 kg/m3 Water cement ratio : 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 16.85 16.75 16.80 24.45 17.09 20.77 Split tensile strength 1.220 1.210 1.215 1.84 2.04 1.94 Flexural strength 1.843 1.621 1.732 2.78 2.29 2.535 22
  • 23.
    10% replacement Trial no:2 Cement content: 386.55kg/m3 Water cement ratio: 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 17.55 16.21 16.89 23.81 24.21 24.02 Split tensile strength 1.3 1.260 1.28 2.47 2.61 2.54 23
  • 24.
    15% replacement Cement content:387.34kg/m3 Water cement ratio: 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 17.9 17.5 17.7 24.87 24.35 24.61 Split tensile strength 1.38 1.27 1.32 2.61 2.53 2.57 Flexural strength 1.984 1.69 1.837 2.99 2.79 2.89 24
  • 25.
    20%replacement Trial no:1 Cement content:388.13kg/m3 Water cement ratio: 0.5 Properties 7 days 28 days 1 2 Mean (N/mm2) 1 2 Mean (N/mm2) Compressive strength 12.48 13.33 12.9 20.32 20.49 20.41 Split tensile strength 1.23 1.1 1.16 1.87 2.09 1.98 Flexural strength 1.95 1.69 1.820 2.78 2.42 2.60 25
  • 26.
    Trial no:2 Cement content:388.92kg/m3 Water cement ratio: 0.5 Properties 7 days 28 days 1 2 Mean 1 2 Mean Compressive strength 14.81 14.20 14.78 21.76 19.9 20.83 Trial no:3 Cement content: 389.71kg/m3 Water cement ratio: 0.5 Properties 7 days 28 days 1 2 Mean 1 2 Mean Compressive strength 15.7 14.3 15 20.89 22.89 21.89 26
  • 27.
    25%replacement Cement content: 390.50kg/m3 Watercement ratio: 0.5 Properties 7 days 28 days 1 2 Mean 1 2 Mean Compressive strength 12.03 11.87 11.95 21.18 20.54 20.86 Split tensile strength 0.89 1.14 1.015 2.42 2.48 2.45 Flexural strength 1.57 1.69 1.63 27
  • 28.
    Trial 2 Cement content=391.29kg/m3 Properties 7days 28 days 1 2 Mean 1 2 Mean Compressive strength 11.89 12.13 12.01 21.2 21.26 21.23 30% Replacement Cement content: 392.08kg/m3 w/c Ratio:0.5 Properties 7 days 1 2 Mean Compressive strength 10.89 11.58 11.23 Split tensile strength 0.86 1.08 0.97 28
  • 29.
    35% Replacement Cement content:392.08 W/Cratio:0.5 Properties 7 days 1 2 Mean (N/mm2) Compressive strength 10.67 11.45 11.06 Split tensile strength 0.59 0.74 0.66 29
  • 30.
    ANALYSIS Compressive strength 0% Replacement Cement addition rate (kg/m3) 7day strength (N/mm2) Extra cement (g)1 2 Mean 0 383.00 18.03 17.99 18.01 0 5 384.17 17.82 17.99 17.90 150 10 385.76 16.85 16.75 16.80 200 10 386.55 17.55 16.21 16.89 250 15 387.34 17.90 17.50 17.70 300 20 388.13 12.48 13.33 12.90 350 20 388.92 14.87 14.20 14.78 400 20 389.71 15.7 14.3 15.0 450 25 390.50 12.03 11.87 11.95 450 25 391.29 12.57 13.01 12.79 500 30 392.08 10.89 11.58 11.23 550 35 392.87 10.67 11.45 11.06 600 30
  • 31.
    % replacement Cement addition rate (kg/m3) 3 daysstrength (N/mm2) 7 days strength (N/mm2) 1 2 Mean 1 2 Mean 0 - 0.81 0.83 0.820 1.424 1.44 1.432 5 384.17 kg/m3 0.726 0.746 0.736 1.120 0.98 1.050 10 385.76 kg/m3 0.700 0.740 0.720 1.220 1.210 1.210 10 386.55 kg/m3 0.760 0.760 0.760 1.300 1.260 1.280 15 387.34 kg/m3 1.380 1.270 1.32 20 388.13 kg/m3 1.23 1.10 1.16 20 388.92 kg/m3 1.37 0.96 1.165 25 390.50 kg/m3 0.89 1.14 1.015 30 391.29 kg/m3 0.86 1.08 0.97 35 392.08 kg/m3 0.59 0.74 0.66 Split tensile strength 31
  • 32.
    % replacement Cement addition rate (kg/m3) 7 daysstrength (N/mm2) 28 days strength (N/mm2) 1 2 Mean 1 2 Mean 0 - 2.02 2.08 2.05 3.25 3.09 3.17 5 384.17 kg/m3 2.17 1.79 1.981 2.015 2.551 2.283 10 385.76 kg/m3 1.843 1.621 1.732 2.78 2.29 2.535 15 387.34 kg/m3 1.984 1.69 1.837 2.99 2.79 2.89 20 388.13 kg/m3 1.95 1.69 1.82 2.78 2.42 2.60 Flexural strength 32
  • 33.
    Fig 6.1 Sevendays compressive strength (N/mm2) 33 Compressivestrength(N/mm2)
  • 34.
    Fig 6.2 Sevendays split tensile strength (N/mm2) 34 Compressivestrength(N/mm2)
  • 35.
    Fig 6.3 sevendays flexural strength 35 Compressivestrength(N/mm2)
  • 36.
    Fig 6.4 :28 days compressive strength 36 Compressivestrength(N/mm2)
  • 37.
    Fig 6.5 :28 days split tensile strength 37 Compressivestrength(N/mm2)
  • 38.
    Fig 6.6 :28 days flexural strength 38 Compressivestrength(N/mm2)
  • 41.
    GCE Kannur 41 Theoptimum replacement is obtained as 15% CONCLUSION Can be used as coarse aggregate in the production of lightweight concrete
  • 42.
    GCE Kannur 42 1.E. A. Olanipekun, K. O. Olusola ,and O. Atia, “Comparative study between palm kernel shell and coconut shell as coarse aggregate”, Journal of Engineering and Applied Science, Asian Research Publishing Network. Japan, 2005. 2. U. O. Kabiru, and A. Saleh, “Exploratory study of coconut shell as coarse aggregate in concrete”, Journal of engineering and applied sciences, Vol. 2, December 2010. 3. K. Gunasekaran, and P. S. Kumar, “Lightweight Concrete using Coconut Shells as Aggregate”, Proceedings, International Conference on "Innovations in Building Materials, Structural Designs and Construction Practices (IBMSDCP-2008), 15-17 May 2008, pp.375-382. 4. K. Gunasekaran, “Utilization of Coconut Shell as Coarse Aggregate in the Development of Lightweight Concrete”, PhD Thesis, Department of Civil Engineering, SRM University, Kattankulathur, 2011. 5. C. B. Gopal, and K. B. Ranjan, “Effect of Coconut Shell Aggregate on Normal Strength Concrete”, International Journal of Engineering Research & Technology, Vol. 2 Issue 6, June – 2013, pp: 2405 -2415. 6. Y. Amarnath, and C. Ramachandrudu, “Properties of Concrete with Coconut Shells as Aggregate Replacement”, International Journal of Engineering Inventions, Volume 1, Issue 6 (October 2012), pp: 21-31. 7. U. Johnson Alengaram, Baig Abdullah Al Muhit, and Mohd Zamin bin Jumaat, “Utilization of oil palm kernel shell as lightweight aggregate in concrete”, Construction and Building Materials, Volume 38, January 2013, Pages 161-172. REFERENCES
  • 43.