SlideShare a Scribd company logo
1 of 25
Physics 111: Mechanics
Lecture 3
Dale Gary
NJIT Physics Department
February 5-8, 2013
Motion in Two Dimensions
 Reminder of vectors and vector algebra
 Displacement and position in 2-D
 Average and instantaneous velocity in 2-D
 Average and instantaneous acceleration in 2-D
 Projectile motion
 Uniform circular motion
 Relative velocity*
February 5-8, 2013
Vector and its components
 The components are the
legs of the right triangle
whose hypotenuse is A
y
x A
A
A





2 2 1
tan y
x y
x
A
A A A and
A
   
    
 
)
sin(
)
cos(







A
A
A
A
y
x
Or,
   
 




















x
y
x
y
y
x
A
A
A
A
A
A
A
1
2
2
tan
or
tan 


February 5-8, 2013
 Which diagram can represent ?
A) B)
C) D)
Vector Algebra
1
2 r
r
r





r

2
r

1
r

r

2
r

1
r

r

2
r

1
r
 r

2
r

1
r

1
r

February 5-8, 2013
 Kinematic variables in one dimension
 Position: x(t) m
 Velocity: v(t) m/s
 Acceleration: a(t) m/s2
 Kinematic variables in three dimensions
 Position: m
 Velocity: m/s
 Acceleration: m/s2
 All are vectors: have direction and
magnitudes
Motion in two dimensions
k
v
j
v
i
v
t
v z
y
x
ˆ
ˆ
ˆ
)
( 



y
x
z
i
j
k
x
k
z
j
y
i
x
t
r ˆ
ˆ
ˆ
)
( 



k
a
j
a
i
a
t
a z
y
x
ˆ
ˆ
ˆ
)
( 



February 5-8, 2013
 In one dimension
 In two dimensions
 Position: the position of an object is
described by its position vector
--always points to particle from origin.
 Displacement:
x1 (t1) = - 3.0 m, x2 (t2) = + 1.0 m
Δx = +1.0 m + 3.0 m = +4.0 m
Position and Displacement
)
(t
r

1
2 r
r
r






j
y
i
x
j
y
y
i
x
x
j
y
i
x
j
y
i
x
r
ˆ
ˆ
ˆ
)
(
ˆ
)
(
)
ˆ
ˆ
(
)
ˆ
ˆ
(
1
2
1
2
1
1
2
2














)
(
)
( 1
1
2
2 t
x
t
x
x 


1
2 r
r
r






February 5-8, 2013
 Average velocity
 Instantaneous velocity
 v is tangent to the path in x-y graph;
Average & Instantaneous Velocity
dt
r
d
t
r
v
v
t
avg










 0
0
t
lim
lim
j
v
i
v
j
t
y
i
t
x
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 








t
r
vavg





j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
v y
x
ˆ
ˆ
ˆ
ˆ 






February 5-8, 2013
Motion of a Turtle
A turtle starts at the origin and moves with the speed of v0=10 cm/s in
the direction of 25° to the horizontal.
(a) Find the coordinates of a turtle 10 seconds later.
(b) How far did the turtle walk in 10 seconds?
February 5-8, 2013
Motion of a Turtle
Notice, you can solve the
equations independently for the
horizontal (x) and vertical (y)
components of motion and then
combine them!
y
x v
v
v





0
0 0 cos25 9.06 cm/s
x
v v
 
 X components:
 Y components:
 Distance from the origin:
0 90.6 cm
x
x v t
  
0 0 sin 25 4.23 cm/s
y
v v
  0 42.3 cm
y
y v t
  
cm
0
.
100
2
2




 y
x
d
February 5-8, 2013
 Average acceleration
 Instantaneous acceleration
 The magnitude of the velocity (the speed) can change
 The direction of the velocity can change, even though the
magnitude is constant
 Both the magnitude and the direction can change
Average & Instantaneous Acceleration
dt
v
d
t
v
a
a
t
avg










 0
0
t
lim
lim
j
a
i
a
j
t
v
i
t
v
a y
avg
x
avg
y
x
avg
ˆ
ˆ
ˆ
ˆ ,
, 








t
v
aavg





j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
a y
x
y
x ˆ
ˆ
ˆ
ˆ 






February 5-8, 2013
 Position
 Average velocity
 Instantaneous velocity
 Acceleration
 are not necessarily same direction.
Summary in two dimension
j
y
i
x
t
r ˆ
ˆ
)
( 


j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
t
v
t
a y
x
y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












j
v
i
v
j
t
y
i
t
x
t
r
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 












j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
t
r
t
v y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












dt
dx
vx 
dt
dy
vy 
2
2
dt
x
d
dt
dv
a x
x 
 2
2
dt
y
d
dt
dv
a
y
y 

)
(
and
),
(
, t
a
t
v
(t)
r



February 5-8, 2013
Motion in two dimensions
t
a
v
v




 0
 Motions in each dimension are independent components
 Constant acceleration equations
 Constant acceleration equations hold in each dimension
 t = 0 beginning of the process;
 where ax and ay are constant;
 Initial velocity initial displacement ;
2
2
1
0 t
a
t
v
r
r







t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


j
a
i
a
a y
x
ˆ
ˆ 


j
v
i
v
v y
x
ˆ
ˆ 0
0
0 


j
y
i
x
r ˆ
ˆ 0
0
0 


February 5-8, 2013
 Define coordinate system. Make sketch showing axes, origin.
 List known quantities. Find v0x , v0y , ax , ay , etc. Show initial
conditions on sketch.
 List equations of motion to see which ones to use.
 Time t is the same for x and y directions.
x0 = x(t = 0), y0 = y(t = 0), v0x = vx(t = 0), v0y = vy(t = 0).
 Have an axis point along the direction of a if it is constant.
Hints for solving problems
t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


February 5-8, 2013
 2-D problem and define a coordinate
system: x- horizontal, y- vertical (up +)
 Try to pick x0 = 0, y0 = 0 at t = 0
 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical: ay = -g = -9.8 m/s2, v0y = 0
 Equations:
Projectile Motion
2
2
1
gt
t
v
y
y iy
i
f 


t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


Horizontal Vertical
February 5-8, 2013
 X and Y motions happen independently, so
we can treat them separately
 Try to pick x0 = 0, y0 = 0 at t = 0
 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical: ay = -g = -9.8 m/s2
 x and y are connected by time t
 y(x) is a parabola
Projectile Motion
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

Horizontal Vertical
February 5-8, 2013
 2-D problem and define a coordinate system.
 Horizontal: ax = 0 and vertical: ay = -g.
 Try to pick x0 = 0, y0 = 0 at t = 0.
 Velocity initial conditions:
 v0 can have x, y components.
 v0x is constant usually.
 v0y changes continuously.
 Equations:
Projectile Motion
0
0
0 cos
v
v x 
Horizontal Vertical
0
0
0 sin 
v
v x 
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

February 5-8, 2013
 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0 and v0y = v0 sinθ0
 Horizontal motion:
 Vertical motion:
 Parabola;
 θ0 = 0 and θ0 = 90 ?
Trajectory of Projectile Motion
2
2
1
0
0 gt
t
v
y y 


x
x
v
x
t
t
v
x
0
0
0 



2
0
0
0
2 

















x
x
y
v
x
g
v
x
v
y
2
0
2
2
0
0
cos
2
tan x
v
g
x
y

 

February 5-8, 2013
 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0 and v0x = v0 sinθ0, then
What is R and h ?
Horizontal Vertical
2
2
1
0
0
0 gt
t
v y 


t
v
x x
0
0

g
v
g
v
v
t
v
x
x
R x
0
2
0
0
0
0
0
0
0
2
sin
sin
cos
2 







g
v
g
v
t
y 0
0
0 sin
2
2 


2
0
2
2
1
0
0
2
2
2












t
g
t
v
gt
t
v
y
y
h y
h
h
y
g
v
h
2
sin 0
2
2
0 

y
y
y
y
y v
g
v
g
v
gt
v
v 0
0
0
0
2






h
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

February 5-8, 2013
Projectile Motion
at Various Initial Angles
 Complementary
values of the initial
angle result in the
same range
 The heights will be
different
 The maximum range
occurs at a projection
angle of 45o
g
v
R

2
sin
2
0

February 5-8, 2013
Uniform circular motion
Constant speed, or,
constant magnitude of velocity
Motion along a circle:
Changing direction of velocity
February 5-8, 2013
Circular Motion: Observations
 Object moving along a
curved path with constant
speed
 Magnitude of velocity: same
 Direction of velocity: changing
 Velocity: changing
 Acceleration is NOT zero!
 Net force acting on the
object is NOT zero
 “Centripetal force” a
m
Fnet



February 5-8, 2013
 Centripetal acceleration
 Direction: Centripetal
Uniform Circular Motion
r
v
t
v
a
r
v
r
v
t
r
t
v
r
r
v
v
r
r
v
v
r
2
2
so,
















O
x
y
ri
R
A B
vi
rf
vf
Δr
vi
vf
Δv = vf - vi
February 5-8, 2013
Uniform Circular Motion
 Velocity:
 Magnitude: constant v
 The direction of the velocity is
tangent to the circle
 Acceleration:
 Magnitude:
 directed toward the center of
the circle of motion
 Period:
 time interval required for one
complete revolution of the
particle
r
v
ac
2

r
v
ac
2

v
r
T

2

v
ac



February 5-8, 2013
 Position
 Average velocity
 Instantaneous velocity
 Acceleration
 are not necessarily in the same direction.
Summary
j
y
i
x
t
r ˆ
ˆ
)
( 


j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
t
v
t
a y
x
y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












j
v
i
v
j
t
y
i
t
x
t
r
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 












j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
t
r
t
v y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












dt
dx
vx 
dt
dy
vy 
2
2
dt
x
d
dt
dv
a x
x 
 2
2
dt
y
d
dt
dv
a
y
y 

)
(
and
),
(
, t
a
t
v
(t)
r



February 5-8, 2013
 If a particle moves with constant acceleration a, motion
equations are
 Projectile motion is one type of 2-D motion under constant
acceleration, where ax = 0, ay = -g.
Summary
j
t
a
t
v
y
i
t
a
t
v
x
j
y
i
x
r yi
yi
i
xi
xi
i
f
f
f
ˆ
)
(
ˆ
)
(
ˆ
ˆ 2
2
1
2
2
1









j
t
a
v
i
t
a
v
j
v
i
v
t
v y
iy
x
ix
fy
fx
f
ˆ
)
(
ˆ
)
(
ˆ
ˆ
)
( 






t
a
v
v i





2
2
1
t
a
t
v
r
r i
i
f








More Related Content

Similar to Physics: Motion in Two Dimension, Projectile Motion.ppt

Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
nur amalina
 
The motion with vector analyze
The motion with vector analyzeThe motion with vector analyze
The motion with vector analyze
Tuti Resri Yanti
 

Similar to Physics: Motion in Two Dimension, Projectile Motion.ppt (20)

motion 1 dimention
motion 1 dimentionmotion 1 dimention
motion 1 dimention
 
Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02
 
Kleppner solution partial
Kleppner solution   partialKleppner solution   partial
Kleppner solution partial
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
 
Relative motion and relative speed
Relative motion and relative speedRelative motion and relative speed
Relative motion and relative speed
 
3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)
 
3. Motion in straight line 1.pptx
3. Motion in straight line 1.pptx3. Motion in straight line 1.pptx
3. Motion in straight line 1.pptx
 
The motion with vector analyze
The motion with vector analyzeThe motion with vector analyze
The motion with vector analyze
 
Ecp2
Ecp2Ecp2
Ecp2
 
Class 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdfClass 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdf
 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear Motion
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
chapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptxchapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptx
 
1 d chapter 2
1 d chapter 21 d chapter 2
1 d chapter 2
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdf
 
MECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptxMECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptx
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a Projectile
 
Ch03 ssm
Ch03 ssmCh03 ssm
Ch03 ssm
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
 

More from GeraldineMinong1

heat_work_and_internal_hbnnkkjenergy.ppt
heat_work_and_internal_hbnnkkjenergy.pptheat_work_and_internal_hbnnkkjenergy.ppt
heat_work_and_internal_hbnnkkjenergy.ppt
GeraldineMinong1
 
Taxonomic and Hierarchial Key Powerpoint.ppt
Taxonomic and Hierarchial Key Powerpoint.pptTaxonomic and Hierarchial Key Powerpoint.ppt
Taxonomic and Hierarchial Key Powerpoint.ppt
GeraldineMinong1
 
Mendelian_Genetics Variation_and_Inheritance.ppt
Mendelian_Genetics Variation_and_Inheritance.pptMendelian_Genetics Variation_and_Inheritance.ppt
Mendelian_Genetics Variation_and_Inheritance.ppt
GeraldineMinong1
 
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptxland-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
GeraldineMinong1
 
heatandworkpowerpointrevised-160813135903.pdf
heatandworkpowerpointrevised-160813135903.pdfheatandworkpowerpointrevised-160813135903.pdf
heatandworkpowerpointrevised-160813135903.pdf
GeraldineMinong1
 
heat_work_and_internal_energy first law of thermodynamics.ppt
heat_work_and_internal_energy first law of thermodynamics.pptheat_work_and_internal_energy first law of thermodynamics.ppt
heat_work_and_internal_energy first law of thermodynamics.ppt
GeraldineMinong1
 
Seasons, Breezes, International Convergence Zone.ppt
Seasons, Breezes, International Convergence Zone.pptSeasons, Breezes, International Convergence Zone.ppt
Seasons, Breezes, International Convergence Zone.ppt
GeraldineMinong1
 
cell-division-mitosis-meiosis-1225581257073362-9.ppt
cell-division-mitosis-meiosis-1225581257073362-9.pptcell-division-mitosis-meiosis-1225581257073362-9.ppt
cell-division-mitosis-meiosis-1225581257073362-9.ppt
GeraldineMinong1
 
AP Cell Cycle-Mitosis and Meiosissss.ppt
AP Cell Cycle-Mitosis and Meiosissss.pptAP Cell Cycle-Mitosis and Meiosissss.ppt
AP Cell Cycle-Mitosis and Meiosissss.ppt
GeraldineMinong1
 
Digestive System PPT Parts and Functions.ppt
Digestive System PPT Parts and Functions.pptDigestive System PPT Parts and Functions.ppt
Digestive System PPT Parts and Functions.ppt
GeraldineMinong1
 
3-4preventionandselfmonitoringofncds-190331021253.pptx
3-4preventionandselfmonitoringofncds-190331021253.pptx3-4preventionandselfmonitoringofncds-190331021253.pptx
3-4preventionandselfmonitoringofncds-190331021253.pptx
GeraldineMinong1
 
0708_conduction_convection_radiation.ppt
0708_conduction_convection_radiation.ppt0708_conduction_convection_radiation.ppt
0708_conduction_convection_radiation.ppt
GeraldineMinong1
 
projectile motion and memontum and equilibrium.ppt
projectile motion and memontum and equilibrium.pptprojectile motion and memontum and equilibrium.ppt
projectile motion and memontum and equilibrium.ppt
GeraldineMinong1
 
periodic trends table of elements_2 history.ppt
periodic trends table of elements_2 history.pptperiodic trends table of elements_2 history.ppt
periodic trends table of elements_2 history.ppt
GeraldineMinong1
 
PT History and Intro of the Periodic Table of Elements.pptx
PT History and Intro of the Periodic Table of Elements.pptxPT History and Intro of the Periodic Table of Elements.pptx
PT History and Intro of the Periodic Table of Elements.pptx
GeraldineMinong1
 
copy-of-heat-transfer-1224644490309464-8.pdf
copy-of-heat-transfer-1224644490309464-8.pdfcopy-of-heat-transfer-1224644490309464-8.pdf
copy-of-heat-transfer-1224644490309464-8.pdf
GeraldineMinong1
 
History_of_the_Periodic_Table of Elements.ppt
History_of_the_Periodic_Table of Elements.pptHistory_of_the_Periodic_Table of Elements.ppt
History_of_the_Periodic_Table of Elements.ppt
GeraldineMinong1
 
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptxA0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
GeraldineMinong1
 
Chapter_05 Human and Nervous Systema.ppt
Chapter_05 Human and Nervous Systema.pptChapter_05 Human and Nervous Systema.ppt
Chapter_05 Human and Nervous Systema.ppt
GeraldineMinong1
 

More from GeraldineMinong1 (20)

6706524360692465dfdvdcdsfgrbhb s213.ppt
6706524360692465dfdvdcdsfgrbhb  s213.ppt6706524360692465dfdvdcdsfgrbhb  s213.ppt
6706524360692465dfdvdcdsfgrbhb s213.ppt
 
heat_work_and_internal_hbnnkkjenergy.ppt
heat_work_and_internal_hbnnkkjenergy.pptheat_work_and_internal_hbnnkkjenergy.ppt
heat_work_and_internal_hbnnkkjenergy.ppt
 
Taxonomic and Hierarchial Key Powerpoint.ppt
Taxonomic and Hierarchial Key Powerpoint.pptTaxonomic and Hierarchial Key Powerpoint.ppt
Taxonomic and Hierarchial Key Powerpoint.ppt
 
Mendelian_Genetics Variation_and_Inheritance.ppt
Mendelian_Genetics Variation_and_Inheritance.pptMendelian_Genetics Variation_and_Inheritance.ppt
Mendelian_Genetics Variation_and_Inheritance.ppt
 
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptxland-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
land-and-sea-breezes-monsoon-cold-and-warm-fronts-itcz.pptx
 
heatandworkpowerpointrevised-160813135903.pdf
heatandworkpowerpointrevised-160813135903.pdfheatandworkpowerpointrevised-160813135903.pdf
heatandworkpowerpointrevised-160813135903.pdf
 
heat_work_and_internal_energy first law of thermodynamics.ppt
heat_work_and_internal_energy first law of thermodynamics.pptheat_work_and_internal_energy first law of thermodynamics.ppt
heat_work_and_internal_energy first law of thermodynamics.ppt
 
Seasons, Breezes, International Convergence Zone.ppt
Seasons, Breezes, International Convergence Zone.pptSeasons, Breezes, International Convergence Zone.ppt
Seasons, Breezes, International Convergence Zone.ppt
 
cell-division-mitosis-meiosis-1225581257073362-9.ppt
cell-division-mitosis-meiosis-1225581257073362-9.pptcell-division-mitosis-meiosis-1225581257073362-9.ppt
cell-division-mitosis-meiosis-1225581257073362-9.ppt
 
AP Cell Cycle-Mitosis and Meiosissss.ppt
AP Cell Cycle-Mitosis and Meiosissss.pptAP Cell Cycle-Mitosis and Meiosissss.ppt
AP Cell Cycle-Mitosis and Meiosissss.ppt
 
Digestive System PPT Parts and Functions.ppt
Digestive System PPT Parts and Functions.pptDigestive System PPT Parts and Functions.ppt
Digestive System PPT Parts and Functions.ppt
 
3-4preventionandselfmonitoringofncds-190331021253.pptx
3-4preventionandselfmonitoringofncds-190331021253.pptx3-4preventionandselfmonitoringofncds-190331021253.pptx
3-4preventionandselfmonitoringofncds-190331021253.pptx
 
0708_conduction_convection_radiation.ppt
0708_conduction_convection_radiation.ppt0708_conduction_convection_radiation.ppt
0708_conduction_convection_radiation.ppt
 
projectile motion and memontum and equilibrium.ppt
projectile motion and memontum and equilibrium.pptprojectile motion and memontum and equilibrium.ppt
projectile motion and memontum and equilibrium.ppt
 
periodic trends table of elements_2 history.ppt
periodic trends table of elements_2 history.pptperiodic trends table of elements_2 history.ppt
periodic trends table of elements_2 history.ppt
 
PT History and Intro of the Periodic Table of Elements.pptx
PT History and Intro of the Periodic Table of Elements.pptxPT History and Intro of the Periodic Table of Elements.pptx
PT History and Intro of the Periodic Table of Elements.pptx
 
copy-of-heat-transfer-1224644490309464-8.pdf
copy-of-heat-transfer-1224644490309464-8.pdfcopy-of-heat-transfer-1224644490309464-8.pdf
copy-of-heat-transfer-1224644490309464-8.pdf
 
History_of_the_Periodic_Table of Elements.ppt
History_of_the_Periodic_Table of Elements.pptHistory_of_the_Periodic_Table of Elements.ppt
History_of_the_Periodic_Table of Elements.ppt
 
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptxA0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
A0FFBFA9-A1A6-AF45-999FD8E2B9C17BA0.pptx
 
Chapter_05 Human and Nervous Systema.ppt
Chapter_05 Human and Nervous Systema.pptChapter_05 Human and Nervous Systema.ppt
Chapter_05 Human and Nervous Systema.ppt
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Recently uploaded (20)

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

Physics: Motion in Two Dimension, Projectile Motion.ppt

  • 1. Physics 111: Mechanics Lecture 3 Dale Gary NJIT Physics Department
  • 2. February 5-8, 2013 Motion in Two Dimensions  Reminder of vectors and vector algebra  Displacement and position in 2-D  Average and instantaneous velocity in 2-D  Average and instantaneous acceleration in 2-D  Projectile motion  Uniform circular motion  Relative velocity*
  • 3. February 5-8, 2013 Vector and its components  The components are the legs of the right triangle whose hypotenuse is A y x A A A      2 2 1 tan y x y x A A A A and A            ) sin( ) cos(        A A A A y x Or,                           x y x y y x A A A A A A A 1 2 2 tan or tan   
  • 4. February 5-8, 2013  Which diagram can represent ? A) B) C) D) Vector Algebra 1 2 r r r      r  2 r  1 r  r  2 r  1 r  r  2 r  1 r  r  2 r  1 r  1 r 
  • 5. February 5-8, 2013  Kinematic variables in one dimension  Position: x(t) m  Velocity: v(t) m/s  Acceleration: a(t) m/s2  Kinematic variables in three dimensions  Position: m  Velocity: m/s  Acceleration: m/s2  All are vectors: have direction and magnitudes Motion in two dimensions k v j v i v t v z y x ˆ ˆ ˆ ) (     y x z i j k x k z j y i x t r ˆ ˆ ˆ ) (     k a j a i a t a z y x ˆ ˆ ˆ ) (    
  • 6. February 5-8, 2013  In one dimension  In two dimensions  Position: the position of an object is described by its position vector --always points to particle from origin.  Displacement: x1 (t1) = - 3.0 m, x2 (t2) = + 1.0 m Δx = +1.0 m + 3.0 m = +4.0 m Position and Displacement ) (t r  1 2 r r r       j y i x j y y i x x j y i x j y i x r ˆ ˆ ˆ ) ( ˆ ) ( ) ˆ ˆ ( ) ˆ ˆ ( 1 2 1 2 1 1 2 2               ) ( ) ( 1 1 2 2 t x t x x    1 2 r r r      
  • 7. February 5-8, 2013  Average velocity  Instantaneous velocity  v is tangent to the path in x-y graph; Average & Instantaneous Velocity dt r d t r v v t avg            0 0 t lim lim j v i v j t y i t x v y avg x avg avg ˆ ˆ ˆ ˆ , ,          t r vavg      j v i v j dt dy i dt dx dt r d v y x ˆ ˆ ˆ ˆ       
  • 8. February 5-8, 2013 Motion of a Turtle A turtle starts at the origin and moves with the speed of v0=10 cm/s in the direction of 25° to the horizontal. (a) Find the coordinates of a turtle 10 seconds later. (b) How far did the turtle walk in 10 seconds?
  • 9. February 5-8, 2013 Motion of a Turtle Notice, you can solve the equations independently for the horizontal (x) and vertical (y) components of motion and then combine them! y x v v v      0 0 0 cos25 9.06 cm/s x v v    X components:  Y components:  Distance from the origin: 0 90.6 cm x x v t    0 0 sin 25 4.23 cm/s y v v   0 42.3 cm y y v t    cm 0 . 100 2 2      y x d
  • 10. February 5-8, 2013  Average acceleration  Instantaneous acceleration  The magnitude of the velocity (the speed) can change  The direction of the velocity can change, even though the magnitude is constant  Both the magnitude and the direction can change Average & Instantaneous Acceleration dt v d t v a a t avg            0 0 t lim lim j a i a j t v i t v a y avg x avg y x avg ˆ ˆ ˆ ˆ , ,          t v aavg      j a i a j dt dv i dt dv dt v d a y x y x ˆ ˆ ˆ ˆ       
  • 11. February 5-8, 2013  Position  Average velocity  Instantaneous velocity  Acceleration  are not necessarily same direction. Summary in two dimension j y i x t r ˆ ˆ ) (    j a i a j dt dv i dt dv dt v d t v t a y x y x t ˆ ˆ ˆ ˆ lim ) ( 0             j v i v j t y i t x t r v y avg x avg avg ˆ ˆ ˆ ˆ , ,              j v i v j dt dy i dt dx dt r d t r t v y x t ˆ ˆ ˆ ˆ lim ) ( 0             dt dx vx  dt dy vy  2 2 dt x d dt dv a x x   2 2 dt y d dt dv a y y   ) ( and ), ( , t a t v (t) r   
  • 12. February 5-8, 2013 Motion in two dimensions t a v v      0  Motions in each dimension are independent components  Constant acceleration equations  Constant acceleration equations hold in each dimension  t = 0 beginning of the process;  where ax and ay are constant;  Initial velocity initial displacement ; 2 2 1 0 t a t v r r        t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x    j a i a a y x ˆ ˆ    j v i v v y x ˆ ˆ 0 0 0    j y i x r ˆ ˆ 0 0 0   
  • 13. February 5-8, 2013  Define coordinate system. Make sketch showing axes, origin.  List known quantities. Find v0x , v0y , ax , ay , etc. Show initial conditions on sketch.  List equations of motion to see which ones to use.  Time t is the same for x and y directions. x0 = x(t = 0), y0 = y(t = 0), v0x = vx(t = 0), v0y = vy(t = 0).  Have an axis point along the direction of a if it is constant. Hints for solving problems t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x   
  • 14. February 5-8, 2013  2-D problem and define a coordinate system: x- horizontal, y- vertical (up +)  Try to pick x0 = 0, y0 = 0 at t = 0  Horizontal motion + Vertical motion  Horizontal: ax = 0 , constant velocity motion  Vertical: ay = -g = -9.8 m/s2, v0y = 0  Equations: Projectile Motion 2 2 1 gt t v y y iy i f    t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x    Horizontal Vertical
  • 15. February 5-8, 2013  X and Y motions happen independently, so we can treat them separately  Try to pick x0 = 0, y0 = 0 at t = 0  Horizontal motion + Vertical motion  Horizontal: ax = 0 , constant velocity motion  Vertical: ay = -g = -9.8 m/s2  x and y are connected by time t  y(x) is a parabola Projectile Motion gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0   Horizontal Vertical
  • 16. February 5-8, 2013  2-D problem and define a coordinate system.  Horizontal: ax = 0 and vertical: ay = -g.  Try to pick x0 = 0, y0 = 0 at t = 0.  Velocity initial conditions:  v0 can have x, y components.  v0x is constant usually.  v0y changes continuously.  Equations: Projectile Motion 0 0 0 cos v v x  Horizontal Vertical 0 0 0 sin  v v x  gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0  
  • 17. February 5-8, 2013  Initial conditions (t = 0): x0 = 0, y0 = 0 v0x = v0 cosθ0 and v0y = v0 sinθ0  Horizontal motion:  Vertical motion:  Parabola;  θ0 = 0 and θ0 = 90 ? Trajectory of Projectile Motion 2 2 1 0 0 gt t v y y    x x v x t t v x 0 0 0     2 0 0 0 2                   x x y v x g v x v y 2 0 2 2 0 0 cos 2 tan x v g x y    
  • 18. February 5-8, 2013  Initial conditions (t = 0): x0 = 0, y0 = 0 v0x = v0 cosθ0 and v0x = v0 sinθ0, then What is R and h ? Horizontal Vertical 2 2 1 0 0 0 gt t v y    t v x x 0 0  g v g v v t v x x R x 0 2 0 0 0 0 0 0 0 2 sin sin cos 2         g v g v t y 0 0 0 sin 2 2    2 0 2 2 1 0 0 2 2 2             t g t v gt t v y y h y h h y g v h 2 sin 0 2 2 0   y y y y y v g v g v gt v v 0 0 0 0 2       h gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0  
  • 19. February 5-8, 2013 Projectile Motion at Various Initial Angles  Complementary values of the initial angle result in the same range  The heights will be different  The maximum range occurs at a projection angle of 45o g v R  2 sin 2 0 
  • 20. February 5-8, 2013 Uniform circular motion Constant speed, or, constant magnitude of velocity Motion along a circle: Changing direction of velocity
  • 21. February 5-8, 2013 Circular Motion: Observations  Object moving along a curved path with constant speed  Magnitude of velocity: same  Direction of velocity: changing  Velocity: changing  Acceleration is NOT zero!  Net force acting on the object is NOT zero  “Centripetal force” a m Fnet   
  • 22. February 5-8, 2013  Centripetal acceleration  Direction: Centripetal Uniform Circular Motion r v t v a r v r v t r t v r r v v r r v v r 2 2 so,                 O x y ri R A B vi rf vf Δr vi vf Δv = vf - vi
  • 23. February 5-8, 2013 Uniform Circular Motion  Velocity:  Magnitude: constant v  The direction of the velocity is tangent to the circle  Acceleration:  Magnitude:  directed toward the center of the circle of motion  Period:  time interval required for one complete revolution of the particle r v ac 2  r v ac 2  v r T  2  v ac   
  • 24. February 5-8, 2013  Position  Average velocity  Instantaneous velocity  Acceleration  are not necessarily in the same direction. Summary j y i x t r ˆ ˆ ) (    j a i a j dt dv i dt dv dt v d t v t a y x y x t ˆ ˆ ˆ ˆ lim ) ( 0             j v i v j t y i t x t r v y avg x avg avg ˆ ˆ ˆ ˆ , ,              j v i v j dt dy i dt dx dt r d t r t v y x t ˆ ˆ ˆ ˆ lim ) ( 0             dt dx vx  dt dy vy  2 2 dt x d dt dv a x x   2 2 dt y d dt dv a y y   ) ( and ), ( , t a t v (t) r   
  • 25. February 5-8, 2013  If a particle moves with constant acceleration a, motion equations are  Projectile motion is one type of 2-D motion under constant acceleration, where ax = 0, ay = -g. Summary j t a t v y i t a t v x j y i x r yi yi i xi xi i f f f ˆ ) ( ˆ ) ( ˆ ˆ 2 2 1 2 2 1          j t a v i t a v j v i v t v y iy x ix fy fx f ˆ ) ( ˆ ) ( ˆ ˆ ) (        t a v v i      2 2 1 t a t v r r i i f       