Introduction:
In this chapter, we derive the kinematic equations from fundamental
definitions of displacement, velocity, and acceleration vectors;
In two dimensions, two special cases are considered: motion with,
constant acceleration , , and UCM (uniform circular motion).
Displacement, velocity, and acceleration vectors:
05/20/25
Abdou Safari Kagabo
1
Motion in two dimensions
st
a C



r


x
y
v0
P, ti
O
Q, tf
i
r

f
r

In the time interval
, the position
vector changes from
to
f i
t t t
  
i
r

f
r

Displacement, velocity, and acceleration vectors (Cont’d)
05/20/25
Abdou Safari Kagabo
2
 From the previous figure we can find that ; so the displacement vector is
expressed as:
(4.1)
 The average velocity is defined as:
(4.2)
 The instantaneous velocity (along the tangent) is expressed like:
(4.3)
 The average acceleration (along ) has as expression:
(4.4)
 Finally, the instantaneous acceleration will have as expression:
(4.5)
f i
r r r
  
  
f i
r r r
  
  
r
v
t



















0
lim
t
r d r
v
t dt
 

 

 

v


f i
f i
v v v
a
t t t
 
 
 
  















2
2
0
lim =
t
v dv d r
a
t dt dt
 

 

  

Motion in two dimensions with constant acceleration
05/20/25
Abdou Safari Kagabo
3
 In the xy-plane, the position vector is written:
(4.6)
where change with time as the particle move;
 By definition, the velocity vector is given by:
(4.7)
 Since ; therefore,
the components of the velocity vector can be written (chapter 3) as:
 Equation (4.7) is then expressed as:
r

r xi y j
 
 

, and
x y r

x y
d r d x di d y dj
v i x j y v v i v j
dt dt dt dt dt
       
 
    
 
its components are also constants
x
st
y
a
a C
a


  


















0 0
and
x x x y y y
v v a t v v a t
   
       
0 0 0 0
0 (4.8)
x x y y x y x y
v v a t i v a t j v i v j a i a j t
v v at
       
  
     

  
Motion in two dimensions with constant acceleration (Cont’d)
05/20/25
Abdou Safari Kagabo
4
 From kinematics and for this case of constant acceleration, the coordinates of a
particle are:
 These expressions into Equation (4.6) give:
 Considering , the component forms for (4.8) and (4.9) are:
2
0 0
2
0 0
1
2
1
2
x x
y y
x x v t a t
y y v t a t

  



   


     
2 2
0 0 0 0
2 2
0 0 0 0 0 0
1 1
2 2
1 1
(4.9)
2 2
x x y y
x y x y
r x v t a t i y v t a t j
x i y j v i v j t a i a j t r r v t at
   
     
   
   
         
 

         
0 0
r 


2
0
0 2
0 0
2
0
0
1
1 2
For ; and for
1
2
2
x x
x x x
y y y
y y
x v t a t
v v a t
v v at r v t at
v v a t
y v t a t

 

 

 
     
 
 

   


     
Projectile motion
05/20/25
5
 In this motion:
 If
is constant and downward directed;
air resistance is neglected;
trajectory is always a parabola;
0
x
y
g
a
a g












 
 
0 0 0 0 0
0 0 0
0 0
0 , at 0 cos
then
sin
,
x
y
x y t v v
v v
Ox v



   




 
















 
 
x
y
O(0, 0)
1
0;
y
v t

0
v

0

0
x
v
0
y
v

0
x x
v v

y
v
v

0
 

0
v v

 
R 0
y y
v v

0
x x
v v

0
x x
v v

h
0 0
t t
 
2 1
2
t t t
 
2
R
Projectile motion (Cont’d 1)
05/20/25
Abdou Safari Kagabo
6
 Substituting those accelerations into the components of equations (4.8) and
(4.9), we get:
 Solving Equation (4.12) for time and substituting its value into equation
(4.13), we get the equation of a parabola:
whose form is:
0 0 0
0 0 0
0 0
cos (4.10);
sin (4.11);
and
st
x x
y y
x
v v v C
v v gt v gt
x v t v


   


   


  
 
0
2 2
0 0 0
cos (4.12);
1 1
sin (4.13).
2 2
y
t
y v t gt v t gt





   


t
  2
0 2 2
0 0
tan (4.14)
2 cos
g
y x x
v


 
   
 
2
y ax bx
 
Projectile motion (Cont’d 2)
05/20/25
7
 At any time it is possible to determine respectively the magnitude and
direction of particle’s velocity, :
Horizontal range, , and the maximum height, :
 We have to find and in terms of :
v

   
2 2
1
(4.15)
, horizontal direction, tan (4.16)
x y
y
x
v v v v
v
Ox v v
v
 
   


  
  
  
  
















  
 
R h
h R 0 0
, and
v g

0 0
1
2 2
0 0
1
2
0 0 0
1
0 0 0
sin
At the peak point: 0 Equation (4.11) gives
sin
into (4.13) gives:
2
2 sin cos
The range horizontal distance travelled in a time 2
Since sin 2 2sin cos ,
y
v
v t
g
v
t h
g
v
R t t R
g


 
  
  

   





2
0 0
2
0 0
0 max
sin 2
then (4.18)
The maximum range is obtained when 45 : .
v
R
g
v
R
g



 

Uniform circular motion
05/20/25
Abdou Safari Kagabo
8
 This is the motion for an object moving in a circular path with constant
speed, ;
 In a circular motion, there are two ways to produce accelerations:
Tangential and radial accelerations in a curvilinear motion:
 This is the motion of a particle moving along a curved path: here the
velocity vector changes both in direction and magnitude:
v v


2
from the of tangential acceleration:
from the of centripetal or radial acceleration: (4.19)
t
c r
d v dv
change in magnitude v a
dt dt
v
change in direction v a a
r
  
  





v

P
Q
r t
a a a
 
  
' ' '
r t
a a a
 
  
Motion in two dimensions (Cont’d)
05/20/25
Abdou Safari Kagabo
9
Tangential and radial accelerations in curvilinear motion (Cont’d):
 From point to point, the total acceleration (previous figure) changes and
can be written as:
(4.20)
where , , and representing the radius of
curvature at a given point;
 Pythagoras theorem gives the magnitude of :
Relative velocity and relative acceleration:
 In this section, we see how observations made by different observers in
different frames of reference are related to each other;
r t
a a a
 
  
a

t
d v dv
a
dt dt
 
 2
c r
v
a a
r
  r
a
 2 2
r t
a a a
 
Relative velocity and relative acceleration (Cont’d)
05/20/25
10
 Example:
More general situation:
 Consider the picture of particle’s motion.At a given time , the particle
will be located at a point P relative to two reference frames
;
 The motion can be described by two observers: (1) related to a fixed
reference frame (with respect to the Earth); and
Observer A
Path seen by A
is a vertical
straight line
Experimenter A throws an object
Observer B
Path
seen by
B is a
parabola
Frame of reference in motion (Observer A) Fixed frame of reference (Observer B)
u

v
 V u v
 
  
u

u

0
t t

'
and
S S
S
05/20/25
Abdou Safari Kagabo
11
(2) related to the moving reference frame relatively to at a constant
velocity .
 We label by:
 The two position vectors are related to each other by:
or (4.23)
 Differentiating (4.23) with respect to time, we get:
'
S S
u

' '
: the position vector in , and
: the position vector in .
r S
r S




'
'
At 0
At
i
f i
t O O
t t t OO ut
  
   















 

u

'
OO















r

'
r

S '
S
O
'
O
P
'
r r ut
 
   '
r r ut
 
  
More general situation (Cont’d 2)
05/20/25
Abdou Safari Kagabo
12
 Equations (4.23) and (4.24) are called “Galilean transformation
equations”;
 Although observers in and measure different displacements and
velocities, they find the same acceleration:
'
'
(4.24)
dr d r
u v v u
dt dt
    
 
   
S '
S
'
'
, since 0.
dv dv du du
a a
dt dt dt dt
    
    
 
2017-2018 IN CLASS EXERCISES_Problem 3
05/20/25
Abdou Safari Kagabo
13
Statement:
If one throws a ball at 21 m / s at an angle of elevation of 30 ° from a roof
top located at 16 m from the ground (Figure 1).
Find:
a) the duration for the trajectory of the ball;
b) its horizontal range;
c) the maximum height;
d) the impact angle of the ball on the ground;
e) its speed at 2 m above the roof top; and
f) its speed at 2 m above the ground.
2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 1)
05/20/25
Abdou Safari Kagabo
14
y
x
16 m
v0
= 21 m/s
R
H
Figure 1
0
0 30
 

v

3
v

1
v

2
v

2 m
2 m
 
0,0
O
2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 2)
05/20/25
Abdou Safari Kagabo
15
Problem solving:
 a) Data: ;
Equations of motion:
 To be found: Duration of the trajectory,
 Equation to be used: ; knowing that at the end of the
trajectory we have
 Solving:
1 0 2
0 0 0 0
0; 16 ; 21 ; 30 ; 9.80
x y m v m s g m s

 
      
 
 
2
18.2 i
16 10.5 4.90 ii
x t
y t t




  


0 1
0 0 0
0 1
0 0 0
cos 21 cos30 18.2
sin 21 sin30 10.5
x
y
v v m s
v v m s




     

 
    


?
t 
2
16 10.5 4.90
y t t
  
0
y 
2 2 2
0 16 10.5 4.90 4.90 -10.5 -16 0 0
t t t t at bt c
        
   
2
2
2
10.5 10.5 4 4.90 16
4
4
2 2 2 4.90
b b b ac
b ac t
a a
     
     
      

2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 3)
05/20/25
Abdou Safari Kagabo
16
 b) Data: ;
To be found: Horizontal range, ;
Equation to be used: (i) ;
Solving:
 c) Data: ;
To be found: Maximum height, ;
Equation to be used: ;
Solving:
10.5 110.25 313.64 10.5 20.59
3.17 to be kept
9.80 9.80
10.5 110.25 313.64 10.5 20.59
1.03 to be rejected: before the motion
9.80 9.80
s
t
s
   
 


 
  
   




3.17
t s

?
R 
18.2
x t

18.2 3.17 57.7
R R m
   
1 2
0 0
10.5 ; 0; 9.80 ; 16
y y
v m s v g m s y m
 
     
?
H 
 
2 2
0 0
2
y y
v v g H y
  
   
2
2 110.25
0 10.5 2 9.80 16 16
19.6
at 21.6 from the ground level, or
21.6
at 5.6 from the roof top.
H H
m
H m
m
       

 


2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 4)
05/20/25
Abdou Safari Kagabo
17
 d) Data: ;
To be found: Impact angle ;
Equations to be used:
Solving:
 e) Data:
To be found: speed at 2 m above the roof top,
Equations to be used:
1
0
3.17 ; 18.2
x x
t s v v m s
   
?
 
 
0
1
10.5 9.80 ;
, tan
y y x y
y
x
v v gt t v v i v j
v
Ox v
v
 
      

  
   

 

 















 

 
1 1
1 0 0
10.5 9.80 3.17 20.6 ; 18.2 20.6
20.6
tan 48.5 or 48.5 under the horizontal direction
18.2
y
v m s v i j m s
 
 

        

 
 
 
  
 

 

 
1 1 2
0 0 0 0
18.2 ; 10.5 ; 9.80 ; 2 18 ; 16
x x y
v v m s v m s g m s y y m y m
  
          
?
v v
 

 
2 2
0 0
2 2
2 ;
y y x y
x y
v v g y y v v i v j
v v v v
     


  


 


2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 5)
Solving:
f) Data: ;
To be found: speed at 2 m above the ground level,
Equation to be used:
Solving:
   
1
1
2
2 2 2
1
2
8.43
10.5 2 9.80 18 16 110.25 19.6 2 71.05
8 43
y
y
y
v m s
v m s
v m s



  

           
  




 
 
       
1
1 1 1
1
2 2 2
2 2 2 2
1 2
(18.2 8.43 ) , for the ascending motion 0
(18.2 8.43 ) , for the descending motion 0 .
18.2 8.43 18.2 8.43
331.24 71.07 20.06
x y y
x y y
v v i v j i j m s v
v v i v j i j m s v
v v v
v v


      

 
     


       
   
   

   

 
 1
m s

1 1 2
0 0 0
18.2 ; 10.5 ; 9.80 ; 2 ; 16
x x y
v v m s v m s g m s y m y m
  
        
?
v v
 

 
2 2
0 0
2 2
2 ;
y y x y
x y
v v g y y v v i v j
v v v v
     


  


 


     
1
4
2
2 2 2
1
3
19.6
10.5 2 9.80 2 16 110.25 19.6 14 384.65
19.6
y
y
y
v m s
v m s
v m s



  

            
 




2017-2018 IN CLASS EXERCISES_Problem 3 (Cont’d 6)
05/20/25
Abdou Safari Kagabo
19
From both solutions, we keep only because it is the sole
to correspond to the downward motion .
Individual problem: Solve yourself the same problem by considering the
origin of coordinates O(0, 0) located at the ball launching point.
1
3 19.6
y
v m s
 

   
1
3 3 3
18.2 19.6 , for the descending motion 0
x y y
v v i v j i j m s v

     
   

   
2 2 1
3 3 18.2 19.6 26.75
v v v v m s
       



Lecture 2_Motion in two dimensions_physics.ppt

  • 1.
    Introduction: In this chapter,we derive the kinematic equations from fundamental definitions of displacement, velocity, and acceleration vectors; In two dimensions, two special cases are considered: motion with, constant acceleration , , and UCM (uniform circular motion). Displacement, velocity, and acceleration vectors: 05/20/25 Abdou Safari Kagabo 1 Motion in two dimensions st a C    r   x y v0 P, ti O Q, tf i r  f r  In the time interval , the position vector changes from to f i t t t    i r  f r 
  • 2.
    Displacement, velocity, andacceleration vectors (Cont’d) 05/20/25 Abdou Safari Kagabo 2  From the previous figure we can find that ; so the displacement vector is expressed as: (4.1)  The average velocity is defined as: (4.2)  The instantaneous velocity (along the tangent) is expressed like: (4.3)  The average acceleration (along ) has as expression: (4.4)  Finally, the instantaneous acceleration will have as expression: (4.5) f i r r r       f i r r r       r v t                    0 lim t r d r v t dt          v   f i f i v v v a t t t                         2 2 0 lim = t v dv d r a t dt dt          
  • 3.
    Motion in twodimensions with constant acceleration 05/20/25 Abdou Safari Kagabo 3  In the xy-plane, the position vector is written: (4.6) where change with time as the particle move;  By definition, the velocity vector is given by: (4.7)  Since ; therefore, the components of the velocity vector can be written (chapter 3) as:  Equation (4.7) is then expressed as: r  r xi y j      , and x y r  x y d r d x di d y dj v i x j y v v i v j dt dt dt dt dt                  its components are also constants x st y a a C a                        0 0 and x x x y y y v v a t v v a t             0 0 0 0 0 (4.8) x x y y x y x y v v a t i v a t j v i v j a i a j t v v at                     
  • 4.
    Motion in twodimensions with constant acceleration (Cont’d) 05/20/25 Abdou Safari Kagabo 4  From kinematics and for this case of constant acceleration, the coordinates of a particle are:  These expressions into Equation (4.6) give:  Considering , the component forms for (4.8) and (4.9) are: 2 0 0 2 0 0 1 2 1 2 x x y y x x v t a t y y v t a t                    2 2 0 0 0 0 2 2 0 0 0 0 0 0 1 1 2 2 1 1 (4.9) 2 2 x x y y x y x y r x v t a t i y v t a t j x i y j v i v j t a i a j t r r v t at                                          0 0 r    2 0 0 2 0 0 2 0 0 1 1 2 For ; and for 1 2 2 x x x x x y y y y y x v t a t v v a t v v at r v t at v v a t y v t a t                                
  • 5.
    Projectile motion 05/20/25 5  Inthis motion:  If is constant and downward directed; air resistance is neglected; trajectory is always a parabola; 0 x y g a a g                 0 0 0 0 0 0 0 0 0 0 0 , at 0 cos then sin , x y x y t v v v v Ox v                                  x y O(0, 0) 1 0; y v t  0 v  0  0 x v 0 y v  0 x x v v  y v v  0    0 v v    R 0 y y v v  0 x x v v  0 x x v v  h 0 0 t t   2 1 2 t t t   2 R
  • 6.
    Projectile motion (Cont’d1) 05/20/25 Abdou Safari Kagabo 6  Substituting those accelerations into the components of equations (4.8) and (4.9), we get:  Solving Equation (4.12) for time and substituting its value into equation (4.13), we get the equation of a parabola: whose form is: 0 0 0 0 0 0 0 0 cos (4.10); sin (4.11); and st x x y y x v v v C v v gt v gt x v t v                    0 2 2 0 0 0 cos (4.12); 1 1 sin (4.13). 2 2 y t y v t gt v t gt            t   2 0 2 2 0 0 tan (4.14) 2 cos g y x x v           2 y ax bx  
  • 7.
    Projectile motion (Cont’d2) 05/20/25 7  At any time it is possible to determine respectively the magnitude and direction of particle’s velocity, : Horizontal range, , and the maximum height, :  We have to find and in terms of : v      2 2 1 (4.15) , horizontal direction, tan (4.16) x y y x v v v v v Ox v v v                                          R h h R 0 0 , and v g  0 0 1 2 2 0 0 1 2 0 0 0 1 0 0 0 sin At the peak point: 0 Equation (4.11) gives sin into (4.13) gives: 2 2 sin cos The range horizontal distance travelled in a time 2 Since sin 2 2sin cos , y v v t g v t h g v R t t R g                     2 0 0 2 0 0 0 max sin 2 then (4.18) The maximum range is obtained when 45 : . v R g v R g      
  • 8.
    Uniform circular motion 05/20/25 AbdouSafari Kagabo 8  This is the motion for an object moving in a circular path with constant speed, ;  In a circular motion, there are two ways to produce accelerations: Tangential and radial accelerations in a curvilinear motion:  This is the motion of a particle moving along a curved path: here the velocity vector changes both in direction and magnitude: v v   2 from the of tangential acceleration: from the of centripetal or radial acceleration: (4.19) t c r d v dv change in magnitude v a dt dt v change in direction v a a r            v  P Q r t a a a      ' ' ' r t a a a     
  • 9.
    Motion in twodimensions (Cont’d) 05/20/25 Abdou Safari Kagabo 9 Tangential and radial accelerations in curvilinear motion (Cont’d):  From point to point, the total acceleration (previous figure) changes and can be written as: (4.20) where , , and representing the radius of curvature at a given point;  Pythagoras theorem gives the magnitude of : Relative velocity and relative acceleration:  In this section, we see how observations made by different observers in different frames of reference are related to each other; r t a a a      a  t d v dv a dt dt    2 c r v a a r   r a  2 2 r t a a a  
  • 10.
    Relative velocity andrelative acceleration (Cont’d) 05/20/25 10  Example: More general situation:  Consider the picture of particle’s motion.At a given time , the particle will be located at a point P relative to two reference frames ;  The motion can be described by two observers: (1) related to a fixed reference frame (with respect to the Earth); and Observer A Path seen by A is a vertical straight line Experimenter A throws an object Observer B Path seen by B is a parabola Frame of reference in motion (Observer A) Fixed frame of reference (Observer B) u  v  V u v      u  u  0 t t  ' and S S S
  • 11.
    05/20/25 Abdou Safari Kagabo 11 (2)related to the moving reference frame relatively to at a constant velocity .  We label by:  The two position vectors are related to each other by: or (4.23)  Differentiating (4.23) with respect to time, we get: ' S S u  ' ' : the position vector in , and : the position vector in . r S r S     ' ' At 0 At i f i t O O t t t OO ut                          u  ' OO                r  ' r  S ' S O ' O P ' r r ut      ' r r ut     
  • 12.
    More general situation(Cont’d 2) 05/20/25 Abdou Safari Kagabo 12  Equations (4.23) and (4.24) are called “Galilean transformation equations”;  Although observers in and measure different displacements and velocities, they find the same acceleration: ' ' (4.24) dr d r u v v u dt dt            S ' S ' ' , since 0. dv dv du du a a dt dt dt dt            
  • 13.
    2017-2018 IN CLASSEXERCISES_Problem 3 05/20/25 Abdou Safari Kagabo 13 Statement: If one throws a ball at 21 m / s at an angle of elevation of 30 ° from a roof top located at 16 m from the ground (Figure 1). Find: a) the duration for the trajectory of the ball; b) its horizontal range; c) the maximum height; d) the impact angle of the ball on the ground; e) its speed at 2 m above the roof top; and f) its speed at 2 m above the ground.
  • 14.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 1) 05/20/25 Abdou Safari Kagabo 14 y x 16 m v0 = 21 m/s R H Figure 1 0 0 30    v  3 v  1 v  2 v  2 m 2 m   0,0 O
  • 15.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 2) 05/20/25 Abdou Safari Kagabo 15 Problem solving:  a) Data: ; Equations of motion:  To be found: Duration of the trajectory,  Equation to be used: ; knowing that at the end of the trajectory we have  Solving: 1 0 2 0 0 0 0 0; 16 ; 21 ; 30 ; 9.80 x y m v m s g m s               2 18.2 i 16 10.5 4.90 ii x t y t t          0 1 0 0 0 0 1 0 0 0 cos 21 cos30 18.2 sin 21 sin30 10.5 x y v v m s v v m s                     ? t  2 16 10.5 4.90 y t t    0 y  2 2 2 0 16 10.5 4.90 4.90 -10.5 -16 0 0 t t t t at bt c              2 2 2 10.5 10.5 4 4.90 16 4 4 2 2 2 4.90 b b b ac b ac t a a                    
  • 16.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 3) 05/20/25 Abdou Safari Kagabo 16  b) Data: ; To be found: Horizontal range, ; Equation to be used: (i) ; Solving:  c) Data: ; To be found: Maximum height, ; Equation to be used: ; Solving: 10.5 110.25 313.64 10.5 20.59 3.17 to be kept 9.80 9.80 10.5 110.25 313.64 10.5 20.59 1.03 to be rejected: before the motion 9.80 9.80 s t s                      3.17 t s  ? R  18.2 x t  18.2 3.17 57.7 R R m     1 2 0 0 10.5 ; 0; 9.80 ; 16 y y v m s v g m s y m         ? H    2 2 0 0 2 y y v v g H y        2 2 110.25 0 10.5 2 9.80 16 16 19.6 at 21.6 from the ground level, or 21.6 at 5.6 from the roof top. H H m H m m             
  • 17.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 4) 05/20/25 Abdou Safari Kagabo 17  d) Data: ; To be found: Impact angle ; Equations to be used: Solving:  e) Data: To be found: speed at 2 m above the roof top, Equations to be used: 1 0 3.17 ; 18.2 x x t s v v m s     ?     0 1 10.5 9.80 ; , tan y y x y y x v v gt t v v i v j v Ox v v                                            1 1 1 0 0 10.5 9.80 3.17 20.6 ; 18.2 20.6 20.6 tan 48.5 or 48.5 under the horizontal direction 18.2 y v m s v i j m s                                 1 1 2 0 0 0 0 18.2 ; 10.5 ; 9.80 ; 2 18 ; 16 x x y v v m s v m s g m s y y m y m               ? v v      2 2 0 0 2 2 2 ; y y x y x y v v g y y v v i v j v v v v                 
  • 18.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 5) Solving: f) Data: ; To be found: speed at 2 m above the ground level, Equation to be used: Solving:     1 1 2 2 2 2 1 2 8.43 10.5 2 9.80 18 16 110.25 19.6 2 71.05 8 43 y y y v m s v m s v m s                                       1 1 1 1 1 2 2 2 2 2 2 2 1 2 (18.2 8.43 ) , for the ascending motion 0 (18.2 8.43 ) , for the descending motion 0 . 18.2 8.43 18.2 8.43 331.24 71.07 20.06 x y y x y y v v i v j i j m s v v v i v j i j m s v v v v v v                                              1 m s  1 1 2 0 0 0 18.2 ; 10.5 ; 9.80 ; 2 ; 16 x x y v v m s v m s g m s y m y m             ? v v      2 2 0 0 2 2 2 ; y y x y x y v v g y y v v i v j v v v v                        1 4 2 2 2 2 1 3 19.6 10.5 2 9.80 2 16 110.25 19.6 14 384.65 19.6 y y y v m s v m s v m s                          
  • 19.
    2017-2018 IN CLASSEXERCISES_Problem 3 (Cont’d 6) 05/20/25 Abdou Safari Kagabo 19 From both solutions, we keep only because it is the sole to correspond to the downward motion . Individual problem: Solve yourself the same problem by considering the origin of coordinates O(0, 0) located at the ball launching point. 1 3 19.6 y v m s        1 3 3 3 18.2 19.6 , for the descending motion 0 x y y v v i v j i j m s v                 2 2 1 3 3 18.2 19.6 26.75 v v v v m s          

Editor's Notes

  • #4 Please, look at Example 4.1 from Raymond A. Serway
  • #5 Question 4.1: What are the assumptions made for a simple analysis of a projectile motion?
  • #7 Please, look at examples 4.2 and 4.4 from Raymond A. Serway Question 4.2: For the projectile motion, what do you understand by “horizontal range” if at the starting time, the projectile is located at the origin?
  • #8 Question 4.3: In a circular motion, give two ways with which you can produce acceleration, the type of acceleration, and the mathematical expression of each acceleration produced. Question 4.4: Can a particle accelerate if its speed is constant? Can it accelerate if its velocity is constant? Explain.
  • #12 Please, look at examples 4.8, 4.9, and 4.10 from Raymond A. Serway