The document discusses using machine learning methods to estimate heterogeneous causal effects. It proposes an approach of using regression trees on a transformed outcome variable to estimate individual treatment effects. However, this approach is critiqued as it can introduce noise. An improved approach is presented that uses the sample average treatment effect within each leaf as the estimator, and uses the variance of predictions for model fitting criteria and a matching estimator for out-of-sample evaluation. The approach separates the tasks of model selection and treatment effect estimation to enable valid statistical inference on estimated effects in subgroups.