SlideShare a Scribd company logo
Multicomponent Distillation
Introduction to multicomponent distillation
• Most of the distillation processes deal with 
multicomponent  mixtures
• Multicomponent phase behaviour is much more 
complex than that for the binary mixtures
• Rigorous design requires computers
• Short cut methods exist to outline the scope and 
limitations of a particular process
Rigorous methods (Aspen)
Stage j
Short‐cut methods:
Fenske‐Underwood‐Gilliland
(+Kirkbride)
Introduction to multicomponent distillation
Multicomponent distillation in tray towers
• Objective of any distillation process is to recover pure products
• In case of multicomponent mixtures we 
may be interested in one, two or more components
• Unlike in binary distillation, fixing mole 
fraction of one of the components in a 
product does not fix the mole fraction of other 
components
• On the other hand fixing compositions of all
the components in the distillate and the bottoms
product, makes almost impossible to meet 
specifications exactly
D
B
y1,y2,y3,y4…
Key components
• In practice we usually choose two components
separation of which serves as a good indication
that a desired degree of separation is achieved
These two components are called key components
‐ light key
‐ heavy key
• There are different strategies to select these key 
components
• Choosing two components that are next to each other
on the relative volatility: sharp separation
Distributed and undistributed components
• Components that are present in both the distillate and 
the bottoms product are called distributed components
‐ The key components are always distributed components
• Components with negligible concentration (<10‐6) in one 
of the products are called undistributed  
A B C D E G
key 
components
heavy non‐distributed components
(will end up in bottoms product)
light non‐distributed components
(will end up in the overhead product)
Complete design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
a) Design a distillation process
F, zf
condenser
boiler
n‐pentane: 0.04
n‐hexane:0.40
n‐heptane: 0.50
n‐octane: 0.06
100kmol/h
Complete design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
‐ Design a distillation process
F, zf
condenser
boiler
n‐pentane: 0.04
n‐hexane:0.40
n‐heptane: 0.50
n‐octane: 0.06
100kmol/h
What is design of
a column?
‐ P (pressure)
‐ N (stages)
‐ R (reflux)
‐ D (diameter)
‐ auxilary 
equipment 
(condenser, boiler)
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
‐ Pressure consideration: 
‐ what if you were not given P=1atm, how would you choose it? 
‐ how do you validate that P=1atm is appropriate?
F, zf
condenser
boiler
‐ condenser uses cooling water
(20C). Let say the exit water 
temperature is 30C. 
‐ To maintain the temperature delta 
at 10C, the dew point can not be 
lower than 40C. 
‐ Thus, the dew point of the distillate
has to be at least 40C.
‐ If not, will need higher pressure 
Complete design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
‐ Design a distillation process
F, zf
condenser
boiler
n‐pentane: 0.04
n‐hexane:0.40
n‐heptane: 0.50
n‐octane: 0.06
100kmol/h
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 3.62
Hexane 0.4 40 1.39
Heptane 0.5 50 0.56
Octane 0.06 6 0.23
100
‐ Material balance conisderations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 3.62
Hexane 0.4 40 39.2 1.39
Heptane 0.5 50 0.5 0.56
Octane 0.06 6 0.23
100
‐ Material balance considerations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 4 3.62
Hexane
LK
0.4 40 39.2 1.39
Heptane
HK
0.5 50 0.5 0.56
Octane 0.06 6 0 0.23
100
‐ Sharp split: components lighter than the Light Key (LK) will end up completely
in the overheads 
‐ Material balance considerations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 4 0.092 3.62
Hexane
LK
0.4 40 39.2 0.897 1.39
Heptane
HK
0.5 50 0.5 0.011 0.56
Octane 0.06 6 0 0 0.23
100 D=43.7
‐ Material balance considerations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 4 0.092 3.62
Hexane
LK
0.4 40 39.2 0.897 0.8 1.39
Heptane
HK
0.5 50 0.5 0.011 49.5 0.56
Octane 0.06 6 0 0 0.23
100 D=43.7
‐ Material balance considerations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 4 0.092 0 3.62
Hexane
LK
0.4 40 39.2 0.897 0.8 1.39
Heptane
HK
0.5 50 0.5 0.011 49.5 0.56
Octane 0.06 6 0 0 6 0.23
100 D=43.7 B=56.3
‐ Sharp split: components heavier than the Heavy Key (HK) will 
end up completely in the bottoms
‐ Material balance considerations
LK
HK
HNK
LNK
Complete short cut design
A mixture of 4% n‐pentane, 40% n‐hexane, 50% n‐heptane and 6% 
n‐octane is distilled at 1 atm. The goal is to recover 98%of hexane and 
1% of heptane in the distillate. The feed is boiling liquid.
xF F xF Moles in D xD Moles in B xB Ki
Pentane 0.04 4 4 0.092 0 0 3.62
Hexane
LK
0.4 40 39.2 0.897 0.8 0.014 1.39
Heptane
HK
0.5 50 0.5 0.011 49.5 0.879 0.56
Octane 0.06 6 0 0 6 0.107 0.23
100 D=43.7 B=56.3
‐ Sharp split: components heavier than the Heavy Key (HK) will 
end up completely in the bottoms
‐ Material balance considerations
LK
HK
HNK
LNK
Minimum reflux ratio analysis
• At the minimum reflux ratio 
condition there are invariant zones 
that occur above and below the 
feed plate, where the number of 
plates is infinite and the liquid and 
vapour compositions do not 
change from plate to plate
• Unlike in binary distillations, in 
multicomponent mixtures these 
zones  are not necessarily adjacent 
to the feed plate location 
y
x
zf
zf
xB xD
y1
yB
xN
Minimum reflux ratio analysis
• At the minimum reflux ratio condition 
there are invariant zones that occur  
above and below the feed plate, where 
the number of plates is infinite and the 
liquid and vapour compositions do not 
change from plate to plate
• Unlike in binary distillations, in 
multicomponent mixtures these zones 
are not necessarily adjacent to the feed 
plate location 
y
x
zf
zf
xB xD
y1
yB
xN
Minimum reflux ratio analysis
F, zf
condenser
boiler
Invariant zones: presence of heavy and light non‐distributed 
components
Minimum reflux ratio analysis
F, zf
condenser
boiler
Invariant zones: only light non‐distributed 
components
Minimum reflux ratio analysis
F, zf
condenser
boiler
Invariant zones: only heavy non‐distributed 
components
Minimum reflux ratio analysis
F, zf
condenser
boiler
Invariant zones: no non‐distributed 
components
xi
1 2 3 4 5 6 7 8 9 10
hexane LK
heptane HK
octane
pentane
Feed stage
Distribution of components in 
multicomponent distillation process
Non‐distributed
heavy non‐key
component
Non‐distributed
Light non‐key
component
Gilliland correlation: Number of ideal 
plates at the operating reflux  GP‐A
Fenske equation for multicomponent
Distillations GP‐B
Non key component distribution from 
the Fenske equation GP‐C
Minimum reflux ratio analysis:
Underwood equations GP‐D
Kirkbride equation: Feed stage location GP‐E
Stage efficiency analysis  GP‐F
Stage efficiency analysis: O’Connell  (1946)
Stage efficiency analysis: Van Winkle (1972)
Column diameter GP‐G
Gilliland correlation: Number of ideal 
plates at the operating reflux
Gilliland correlation: Number of ideal 
plates at the operating reflux
Nmin
Rmin
R=1.5Rmin
N
Fenske equation for multicomponent
distillations
Assumption: relative volatilities of components remain constant
throughout the column 
LK – light component
HK – heavy component
Fenske equation for multicomponent
distillations
Choices for relative volatility: 
D
B
T
1) Relative volatility at saturated feed condition
2) Geometric mean relative volatility
why geometric mean?
Non key component distribution from 
the Fenske equation
Convince yourself and
derive for 
Minimum reflux ratio analysis:
Underwood equations
For a given q, and the feed composition 
we are looking for A satisfies this equation
(usually      is between αLK and αHK)
Once      is found, we can calculate the
minimum reflux ratio
Minimum reflux ratio analysis:
Underwood equations
Minimum reflux ratio analysis:
Underwood equations
1.48
Minimum reflux ratio analysis:
Underwood equations
Minimum reflux ratio analysis:
Underwood equations
1.48
2.33
xi
1 2 3 4 5 6 7 8 9 10
hexane LK
heptane HK
octane
pentane
Feed stage
Distribution of components in 
multicomponent distillation process
Non‐distributed
heavy non‐key
component
Non‐distributed
Light non‐key
component
Kirkbride equation: Feed stage location
Complete short cut design: 
Fenske‐Underwood‐Gilliland method
Given a multicomponent distillation problem:
a) Identify light and heavy key components
b) Guess splits of the non‐key components and compositions
of the distillate and bottoms products
c) Calculate 
d) Use Fenske equation to find Nmin
e) Use Underwood method to find RDm
f) Use Gilliland correlation to find actual number of ideal stages
given operating reflux
g) Use Kirkbride equation to locate the feed stage 
Stage efficiency analysis
In general the overall efficiency will depend:
1) Geometry and design of contact stages
2) Flow rates and patterns on the tray
3) Composition and properties of vapour and 
liquid streams
Stage efficiency analysis
Lin,xin
Lout,xout
Vout,yout
Vin,yin
Local efficiency
Actual separation
Separation that 
would have been 
achieved on an 
ideal tray  
What are the sources of inefficiencies?
For this we need to look at what actually happens
on the tray 
Point efficiency
Stage efficiency analysis
Depending on the location on the tray 
the point efficiency will vary 
high concentration
gradients
low concentration
gradients
stagnation points
The overall plate efficiency can 
be characterized by the Murphree
plate efficiency:
When both the vapour and liquid
phases are perfectly mixed the plate
efficiency is equal to the point 
efficiency  
Stage efficiency analysis
In general a number of 
empirical correlations exist 
that relate point and plate 
efficiencies
Peclet number
length of liquid 
flow path
eddy diffusivity residence time of liquid
on the tray
Stage efficiency analysis: O’Connell  (1946)
(Sinnott)
Stage efficiency analysis: Van Winkle (1972)
(Sinnott)
Stage efficiency analysis
‐ AICHE method
‐ Fair‐Chan
Chan, H., J.R. Fair,” Prediction of Point Efficiencies for Sieve Trays, 1. Binary Systems”,
Ind Eng. Chem. .Process Des. Dev., 23, 814‐819 (1984)
Chan, H., J.R. Fair, ,” Prediction of Point Efficiencies for Sieve Trays, 1. Multi‐component Systems”,
Ind Eng. Chem. .Process Des. Dev., 23, 820‐827 (1984)
(Sinnott)
Stage efficiency analysis
Finally the overall efficiency of the process defined as 
If no access to the data: E0=0.5 (i.e. double the number of plates)
Column diameter, etc
Sinnott,
Jim Douglas, Conceptual design of chemical process
Column diameter, etc
Column diameter, etc
Multi‐Component Distillation 
Phase equilibrium For multi‐components 
Bubble point calculations 
Given the total pressure and liquid mole 
fraction ‐‐> T and y 
Iterate over temperature till solution is found  calculate the vapor mole fraction from 
component xi Ki αι α ιxi
Butane
Pentane
Hexane
Heptane
0.4
0.25
0.2
0.15
1.68
0.63
0.245
0.093
6.857
2.571
1.0
0.38
2.743
0.643
0.2
0.057
Total 3.643
A liquid stream at 405.3 kPa with 40% butane, 25% pentane, 30% hexane and 15%
heptane is fed to a distillation column. Find the bubble point and the corresponding
vapor composition in equilibrium with the liquid.
Using the K-value diagram we build this Table:
Let K-hexane be the reference component
Let T = 65 oC
A liquid stream at 405.3 kPa and 100 mole/h with 40% butane (A), 25% 
pentane (B), 30% hexane (C) and 15% hepatne (D) is fed to a distillation 
column.  90% of B is recovered in distillate and 90% of C is the bottom, 
calculate 
(a)  mole and composition of distillate and bottom 
(b) Dew point of the distillate and bubble point of the bottom 
(c) minimum stages for total reflux 
(d) minimum reflux ratio 
(e) number of theoretical stage working at 1.5Rm 
(f) location of feed tray 
(a) solve the material balance 
mole balance on butane 
25 = nBD + nBB
Q nBD = 0.9(25) = 22.5 mole ‐‐> nDD = 2.5 mole 
mole balance on hexane 
30 = nCD + nCB
• Q ncB = 0.9(20) = 18 mole ‐‐>  nCD = 2 mole 
• Assume all A in distillate ‐‐> nAD = 40 mole ‐‐> nAB = 0 
• Assume all D in bottom ‐‐> nAD = 40 mole ‐‐> nAB = 0 
• Part b)
• part ( c) 
• let B  light component; let C  heavy component 
• αLD = 2.5; αLB = 2.04 
part (d) 
Solve by trial‐and‐error 
 θ = 1.2096 
part (d) 
R = 1.5Rm = 1.5(0.395) = 0.593 
R/(R+1) = 0.3723 
Rm/(Rm+1) = 0.283 
Using the chart  Nm/N = 0.49  N = Nm/0.49  N = 5.4/0.49 = 11 
part (e) 
 Ne/Ns = 1.184 
 Ne+Ns = 11 
Ne = 6 ; Ns = 5 

More Related Content

What's hot

2.1 Material balances
2.1 Material balances2.1 Material balances
Distillation Column Design
Distillation Column DesignDistillation Column Design
Distillation Column Design
EPIC Systems
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columns
alsyourih
 
Absorption stripping
Absorption strippingAbsorption stripping
Absorption stripping
jogeman
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
Chemical Engineering Guy
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Vikram Sharma
 
Reflux ratio
Reflux ratioReflux ratio
Reflux ratio
chemicalengppt
 
Design principles in mass transfer processes
Design principles in mass transfer processesDesign principles in mass transfer processes
Design principles in mass transfer processes
South-Eastern Finland University of Applied Sciences
 
Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger design
hossie
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical Operations
Gerard B. Hawkins
 
Ammonia CO2 Removal Systems
Ammonia CO2 Removal SystemsAmmonia CO2 Removal Systems
Ammonia CO2 Removal Systems
Gerard B. Hawkins
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bed
Preeti Birwal
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculations
MANJUNATH N
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
Joy Mukherjee
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat Integration
SAJJAD KHUDHUR ABBAS
 
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Chemical Engineering Guy
 
Cooling Towers - An Extensive Approach
Cooling Towers - An Extensive ApproachCooling Towers - An Extensive Approach
Cooling Towers - An Extensive Approach
Noaman Ahmed
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
Naveen Kushwaha
 

What's hot (20)

2.1 Material balances
2.1 Material balances2.1 Material balances
2.1 Material balances
 
Distillation Column Design
Distillation Column DesignDistillation Column Design
Distillation Column Design
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columns
 
Absorption stripping
Absorption strippingAbsorption stripping
Absorption stripping
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
2.2 McCabe-Thiele method
 
Design of condenser
Design of condenserDesign of condenser
Design of condenser
 
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
 
Reflux ratio
Reflux ratioReflux ratio
Reflux ratio
 
Design principles in mass transfer processes
Design principles in mass transfer processesDesign principles in mass transfer processes
Design principles in mass transfer processes
 
Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger design
 
Steam Reforming - Practical Operations
Steam Reforming - Practical OperationsSteam Reforming - Practical Operations
Steam Reforming - Practical Operations
 
Ammonia CO2 Removal Systems
Ammonia CO2 Removal SystemsAmmonia CO2 Removal Systems
Ammonia CO2 Removal Systems
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bed
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculations
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat Integration
 
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
 
Cooling Towers - An Extensive Approach
Cooling Towers - An Extensive ApproachCooling Towers - An Extensive Approach
Cooling Towers - An Extensive Approach
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
 

Similar to multi component distillation 20130408

Microsoft PowerPoint - Ch120884.PDF
Microsoft PowerPoint - Ch120884.PDFMicrosoft PowerPoint - Ch120884.PDF
Microsoft PowerPoint - Ch120884.PDF
hesam ahmadian
 
Lecture 1 distillation (introduction)
Lecture 1  distillation (introduction)Lecture 1  distillation (introduction)
Lecture 1 distillation (introduction)
Nihad Zain
 
Lecture 09
Lecture 09Lecture 09
Lecture 09
Usman Shah
 
terpenoidpptt-171110062616 [Autosaved] final.pptx
terpenoidpptt-171110062616 [Autosaved] final.pptxterpenoidpptt-171110062616 [Autosaved] final.pptx
terpenoidpptt-171110062616 [Autosaved] final.pptx
usharani940073
 
Synthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoSynthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoDr Robert Craig PhD
 
Microsoft PowerPoint - Ch120886.PDF
Microsoft PowerPoint - Ch120886.PDFMicrosoft PowerPoint - Ch120886.PDF
Microsoft PowerPoint - Ch120886.PDF
hesam ahmadian
 
Distillation and its types
Distillation and its typesDistillation and its types
Distillation and its types
Anees u Rehman Hafiz 10-Batch
 
14 titration of h2 o2
14 titration of h2 o214 titration of h2 o2
14 titration of h2 o2Student
 
Refinery basics
Refinery basicsRefinery basics
Refinery basics
Arnab Chakraborty
 
Kh pacidbaseneutralization[1]slide onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)
Kh pacidbaseneutralization[1]slide  onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)Kh pacidbaseneutralization[1]slide  onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)
Kh pacidbaseneutralization[1]slide onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)Dr Robert Craig PhD
 
SAPONIFICATION VALUE
SAPONIFICATION VALUESAPONIFICATION VALUE
SAPONIFICATION VALUE
DR AJITH KUMAR
 
Natural Gas to Olefins, Symposium[2]
Natural Gas to Olefins, Symposium[2]Natural Gas to Olefins, Symposium[2]
Natural Gas to Olefins, Symposium[2]Scott Chase
 
15synthpp.ppt
15synthpp.ppt15synthpp.ppt
15synthpp.ppt
NajmedinAzizi
 
Heterocyclic Chemistry
Heterocyclic ChemistryHeterocyclic Chemistry
Heterocyclic Chemistry
DrSSreenivasa
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
Chemical Engineering Guy
 
02 petrochemical processes
02 petrochemical processes02 petrochemical processes
02 petrochemical processes
Naveen Choudhary
 
Presentation 2015
Presentation 2015Presentation 2015
Presentation 2015Mark Cooney
 
Simulation of separation of DMSO.pptx
Simulation of separation of DMSO.pptxSimulation of separation of DMSO.pptx
Simulation of separation of DMSO.pptx
AditiThaker1
 
Distillation
DistillationDistillation
Distillation
Pratik Dhola
 
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
Dr Robert Craig PhD
 

Similar to multi component distillation 20130408 (20)

Microsoft PowerPoint - Ch120884.PDF
Microsoft PowerPoint - Ch120884.PDFMicrosoft PowerPoint - Ch120884.PDF
Microsoft PowerPoint - Ch120884.PDF
 
Lecture 1 distillation (introduction)
Lecture 1  distillation (introduction)Lecture 1  distillation (introduction)
Lecture 1 distillation (introduction)
 
Lecture 09
Lecture 09Lecture 09
Lecture 09
 
terpenoidpptt-171110062616 [Autosaved] final.pptx
terpenoidpptt-171110062616 [Autosaved] final.pptxterpenoidpptt-171110062616 [Autosaved] final.pptx
terpenoidpptt-171110062616 [Autosaved] final.pptx
 
Synthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoSynthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry two
 
Microsoft PowerPoint - Ch120886.PDF
Microsoft PowerPoint - Ch120886.PDFMicrosoft PowerPoint - Ch120886.PDF
Microsoft PowerPoint - Ch120886.PDF
 
Distillation and its types
Distillation and its typesDistillation and its types
Distillation and its types
 
14 titration of h2 o2
14 titration of h2 o214 titration of h2 o2
14 titration of h2 o2
 
Refinery basics
Refinery basicsRefinery basics
Refinery basics
 
Kh pacidbaseneutralization[1]slide onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)
Kh pacidbaseneutralization[1]slide  onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)Kh pacidbaseneutralization[1]slide  onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)
Kh pacidbaseneutralization[1]slide onechm 240xxxxxxxxxxxxxxxxxxdont let go (2)
 
SAPONIFICATION VALUE
SAPONIFICATION VALUESAPONIFICATION VALUE
SAPONIFICATION VALUE
 
Natural Gas to Olefins, Symposium[2]
Natural Gas to Olefins, Symposium[2]Natural Gas to Olefins, Symposium[2]
Natural Gas to Olefins, Symposium[2]
 
15synthpp.ppt
15synthpp.ppt15synthpp.ppt
15synthpp.ppt
 
Heterocyclic Chemistry
Heterocyclic ChemistryHeterocyclic Chemistry
Heterocyclic Chemistry
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
 
02 petrochemical processes
02 petrochemical processes02 petrochemical processes
02 petrochemical processes
 
Presentation 2015
Presentation 2015Presentation 2015
Presentation 2015
 
Simulation of separation of DMSO.pptx
Simulation of separation of DMSO.pptxSimulation of separation of DMSO.pptx
Simulation of separation of DMSO.pptx
 
Distillation
DistillationDistillation
Distillation
 
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
Khpacidbaseneutralization1slideonechm240xxxxxxxxxxxxxxxxxxdontletgo2 14011010...
 

Recently uploaded

Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 

Recently uploaded (20)

Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 

multi component distillation 20130408