MOLECULAR DOCKING OF
ANAPLASTIC LYMPHOMA KINASE
WITH LIGANDS USING AUTODOCK TOOLS
J. Janiba Jeslin
15/PCHA/508
1
WHAT IS DOCKING?
Computational method that
mimics the binding of a ligand to a
protein
2
Docking depends on main two
components
• Scoring function
• Genetic algorithm
3
SCORING FUNCTION
It predict the strength of interactions
between two molecules after they have
docked
 Emprical scoring function
 Force field scoring function
 Knowledge based scoring function
4
GENETIC ALGORITHM
• Genetic algorithm is one of the
conformational search
• It give scoring function for each
pose of ligand
5
AUTO DOCK
• Autodock is a software used to
predict the interaction of ligands
with bio macromolecular targets
• AutoDock, using the Lamarckian
Genetic Algorithm and force field
scoring function
6
Force field scoring function
Autodock uses force field to evaluate the
conformations during docking .
7
Autodock has several steps
 Retrieving the protein and ligand from
databases
 Preparation of coordinate files
 Preparation of grid parameter file
 Preparation of docking parameter file
 Analysis of results
8
RETRIEVING PROTEIN AND LIGAND
FROM DATABASE
9
Retrieve protein from protein data bank
open it in chimera
Remove water from protein.
save as .pdb
10
Structure of anaplastic lymphoma kinase
11
Appearance of target with water molecule in chimera
12
Retrieve ligand from pubchem
Open it in chimera
Save as .pdb format
Loratinib
Ceritinib
5-chloro-N2-[5-methyl-4-(piperidin-4-yl)-2-
(propan-2-yloxy)phenyl]-N4-[2-(propane-2-
sulfonyl)phenyl]pyrimidine-2,4-diamine.
7-amino-12-fluoro-2,10,16-trimethyl-
15-oxo-10,15,16,17-tetrahydro-2H-8,4-
(metheno)pyrazolo(4,3-
h)(2,5,11)benzoxadiazacyclotetradecine
-3-carbonitrile
13
Crizotinib Alectinib
3-[(1R)-1-(2, 6-dichloro-3-fluorophenyl)
ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol-
4-yl] pyridin-2-amine
9-ethyl-6,6-dimethyl-8-[4-(morpholin-4-
yl)piperidin-1-yl]-11-oxo-5H,6H,11H-
benzo[b]carbazole-3-carbonitrile.
preparation of coordinate files
14
Click edit Hydrogen add. Then select
polar only ok.
Then again click edit charge add
kollmann charge ok
Open grid macromolecule choose
target select molecule ok
Now save target.pdb as target.pdbqt
15
16
Appearance of target.pdbqt in autodock
Ligand torsion tree detect root
Ligand torsion tree choose torsions
Ligand output save as ligand.pdbqt
Appearance of ligand in screen
Preparing grid parameter file
18
Grid set map type choose ligand select
ligand select ligand
Grid Grid box file close saving current
(set the dimensions according to grid box)
Grid output save gpf file
19
Appearance of grid box
To run AutoGrid
Run Run autogrid
20
Run autogrid dialog box
21
After the completion of autogrid running ,it will create different files
namely
List of grid files created by autodock
Preparation of docking
parameter file
22
• Docking macromolecule set rigid file name
select target open
Docking ligand choose ligand select ligand
Docking search parameter genetic algorithm
accept
Docking docking parameters accept
Docking output lamarikan
23
To run autodock
Run run auto dock
24
ANALYSING THE RESULT OF
PROTEIN-LIGAND INTERACTION
25
Analyze docking open
docking log file dialog box will be appear
select target.dlg open
26
Analyse conformations play. Click on show
conformation
27
Binding energy is the sum of the
intermolecular energy and the torsional free-
energy penalty.
Docking energy is the sum of the
intermolecular energy and the ligand’s
internal energy.
Inhib_constant is calculated in
autodock as follows:
Ki=exp ((deltaG*1000.)/ (Rcal*TK)
Where deltaG is docking energy, Rcal is
1.98719 and TK is 298.15
.
. 28
refRMS is rms difference between current
conformation coordinates and current reference
structure.
clRMS is rms difference between current
conformation and the lowest energy conformation in
its cluster.
Torsional_energy is the number of active
torsions .
rseed1 and rseed2 are the specific random
number used for Current conformation’s docking
run.
29
30
conformations Binding energy
Loratinib-1_1 -8.96
Loratinib-1_2 -8.23
Loratinib-1_3 -8.71
Loratinib-1_4 -9.09
Loratinib-1_5 -8.62
Loratinib-1_6 -11.03
Loratinib-1_7 -8.82
Loratinib-1_8 -8.47
Loratinib-1_9 -8.05
Loratinib-1_10 -8.58
conformations Binding energy
Ceritinib-2_1 -7.41
Ceritinib-2_2 -7.04
Ceritinib-2_3 -8.6
Ceritinib-2_4 -7.28
Ceritinib-2_5 -6.09
Ceritinib-2_6 -7.18
Ceritinib-2_7 -7.28
Ceritinib-2_8 -8.22
Ceritinib-2_9 -7.73
Ceritinib-2_10 -8.65
Binding energies for Loratinib and Ceritinib
31
conformations Binding energy
Crizotinib-2_1 -6.8
Crizotinib -2_2 -5.94
Crizotinib -2_3 -6.19
Crizotinib -2_4 -6.01
Crizotinib -2_5 -6.84
Crizotinib -2_6 -6.95
Crizotinib -2_7 -5.6
Crizotinib -2_8 -5.93
Crizotinib -2_9 -6.8
Crizotinib -2_10 -5.57
conformations Binding energy
Alectinib-2_1 -7.55
Alectinib-2_2 -7.5
Alectinib-2_3 -7.28
Alectinib-2_4 -7.53
Alectinib-2_5 -7.67
Alectinib-2_6 -7.72
Alectinib-2_7 -7.33
Alectinib-2_8 -7.49
Alectinib-2_9 -7.5
Alectinib-2_10 -7.54
Binding energies for Crizotinib and Alectinib
VISUALIZING THE RESULTS
32
Analyze Clustering Show
33
CONCLUSION
34
This molecular docking reveals that all
ligands(loratinib, centinib, Crizotinib,
Alectinib ) binding to anaplastic lymphoma
kinase. The most strongest docking will be
between the loratinib and anaplastic
lymphoma kinase which have binding energy
of -11.03. the least docking will be between
the Crizotinib and anaplastic lymphoma
kinase which have binding energy of -7.67.
REFERENCES
35
36
1. Anderson A. Chem Biol 2003; 10:787–97.
2. Gilbert D. Brief Bioinform 2004:300-4.
3. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al. J Comput Chem
1998:1639–62.
4. Kalyaanamoorthy S and Chen YP Drug Discovery Today 2011 :831–839.
5. Blaney, J. A J. Computer. Aided Mol. Des. 2012, 13–14.
6. Berman, H.M. Nucleic Acids Res. 2000, 235–242.
7. Weigelt, J. Exp. Cell Res. 2010, 1332–1338
8. Mandal, S.; Moudgil, M.N.; Mandal, S.K. Eur. J. Pharmacol. 2009, 90–100.
9. Urwyler, S. Pharmacology. Rev. 2011, 59–126.
10. Wilson, G.L.; Lill, M.A. Future Med. Chem. 2011, , 735–750.
11. Fang, Y. ExpertOpin. Drug Discov. 2012, , 969–988.
12. Kahsai, A.W.; Xiao, K.; Rajagopal, S.; Ahn, S.; Shukla, A.K.; Sun, J.; Oas, T.G.;
Lefkowitz, R.J. Nat. Chem. Biol. 2011, , 692–700.
13. Shoichet, B.K.; Kobilka, B.K. Sci. 2012, 33, 268–272.
14. Chandrika, B.R.; Subramanian, J.; Sharma, S.D. Drug Discov. Today 2009, 14, 394–400.
37
15. Durrant, J.D.; McCammon, J.A. Curr. Opin. Pharmacol. 2010, 10, 770– 774.
16. Huang, S.Y.; Grinter, S.Z.; Zou, X. Phys. Chem. Chem. Phys. 2010, 12, 12899–
12908.
17. Englebienne, P.; Moitessier, N. J. Chem. Inf. Model. 2009, 2564–2571.
18. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J.. Nat. Rev. Drug Discov. 2004,
, 935– 949.
19.Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D.
S. and Olson,A. J. J. Comput. Chem., 2009: 2785-2791.
20. Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. J. Comput. Aided Mol. Des.
1996, 10,293–304.

molecular docking

  • 1.
    MOLECULAR DOCKING OF ANAPLASTICLYMPHOMA KINASE WITH LIGANDS USING AUTODOCK TOOLS J. Janiba Jeslin 15/PCHA/508 1
  • 2.
    WHAT IS DOCKING? Computationalmethod that mimics the binding of a ligand to a protein 2
  • 3.
    Docking depends onmain two components • Scoring function • Genetic algorithm 3
  • 4.
    SCORING FUNCTION It predictthe strength of interactions between two molecules after they have docked  Emprical scoring function  Force field scoring function  Knowledge based scoring function 4
  • 5.
    GENETIC ALGORITHM • Geneticalgorithm is one of the conformational search • It give scoring function for each pose of ligand 5
  • 6.
    AUTO DOCK • Autodockis a software used to predict the interaction of ligands with bio macromolecular targets • AutoDock, using the Lamarckian Genetic Algorithm and force field scoring function 6
  • 7.
    Force field scoringfunction Autodock uses force field to evaluate the conformations during docking . 7
  • 8.
    Autodock has severalsteps  Retrieving the protein and ligand from databases  Preparation of coordinate files  Preparation of grid parameter file  Preparation of docking parameter file  Analysis of results 8
  • 9.
    RETRIEVING PROTEIN ANDLIGAND FROM DATABASE 9
  • 10.
    Retrieve protein fromprotein data bank open it in chimera Remove water from protein. save as .pdb 10 Structure of anaplastic lymphoma kinase
  • 11.
    11 Appearance of targetwith water molecule in chimera
  • 12.
    12 Retrieve ligand frompubchem Open it in chimera Save as .pdb format Loratinib Ceritinib 5-chloro-N2-[5-methyl-4-(piperidin-4-yl)-2- (propan-2-yloxy)phenyl]-N4-[2-(propane-2- sulfonyl)phenyl]pyrimidine-2,4-diamine. 7-amino-12-fluoro-2,10,16-trimethyl- 15-oxo-10,15,16,17-tetrahydro-2H-8,4- (metheno)pyrazolo(4,3- h)(2,5,11)benzoxadiazacyclotetradecine -3-carbonitrile
  • 13.
    13 Crizotinib Alectinib 3-[(1R)-1-(2, 6-dichloro-3-fluorophenyl) ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol- 4-yl]pyridin-2-amine 9-ethyl-6,6-dimethyl-8-[4-(morpholin-4- yl)piperidin-1-yl]-11-oxo-5H,6H,11H- benzo[b]carbazole-3-carbonitrile.
  • 14.
  • 15.
    Click edit Hydrogenadd. Then select polar only ok. Then again click edit charge add kollmann charge ok Open grid macromolecule choose target select molecule ok Now save target.pdb as target.pdbqt 15
  • 16.
  • 17.
    Ligand torsion treedetect root Ligand torsion tree choose torsions Ligand output save as ligand.pdbqt Appearance of ligand in screen
  • 18.
  • 19.
    Grid set maptype choose ligand select ligand select ligand Grid Grid box file close saving current (set the dimensions according to grid box) Grid output save gpf file 19 Appearance of grid box
  • 20.
    To run AutoGrid RunRun autogrid 20 Run autogrid dialog box
  • 21.
    21 After the completionof autogrid running ,it will create different files namely List of grid files created by autodock
  • 22.
  • 23.
    • Docking macromoleculeset rigid file name select target open Docking ligand choose ligand select ligand Docking search parameter genetic algorithm accept Docking docking parameters accept Docking output lamarikan 23
  • 24.
    To run autodock Runrun auto dock 24
  • 25.
    ANALYSING THE RESULTOF PROTEIN-LIGAND INTERACTION 25
  • 26.
    Analyze docking open dockinglog file dialog box will be appear select target.dlg open 26 Analyse conformations play. Click on show conformation
  • 27.
  • 28.
    Binding energy isthe sum of the intermolecular energy and the torsional free- energy penalty. Docking energy is the sum of the intermolecular energy and the ligand’s internal energy. Inhib_constant is calculated in autodock as follows: Ki=exp ((deltaG*1000.)/ (Rcal*TK) Where deltaG is docking energy, Rcal is 1.98719 and TK is 298.15 . . 28
  • 29.
    refRMS is rmsdifference between current conformation coordinates and current reference structure. clRMS is rms difference between current conformation and the lowest energy conformation in its cluster. Torsional_energy is the number of active torsions . rseed1 and rseed2 are the specific random number used for Current conformation’s docking run. 29
  • 30.
    30 conformations Binding energy Loratinib-1_1-8.96 Loratinib-1_2 -8.23 Loratinib-1_3 -8.71 Loratinib-1_4 -9.09 Loratinib-1_5 -8.62 Loratinib-1_6 -11.03 Loratinib-1_7 -8.82 Loratinib-1_8 -8.47 Loratinib-1_9 -8.05 Loratinib-1_10 -8.58 conformations Binding energy Ceritinib-2_1 -7.41 Ceritinib-2_2 -7.04 Ceritinib-2_3 -8.6 Ceritinib-2_4 -7.28 Ceritinib-2_5 -6.09 Ceritinib-2_6 -7.18 Ceritinib-2_7 -7.28 Ceritinib-2_8 -8.22 Ceritinib-2_9 -7.73 Ceritinib-2_10 -8.65 Binding energies for Loratinib and Ceritinib
  • 31.
    31 conformations Binding energy Crizotinib-2_1-6.8 Crizotinib -2_2 -5.94 Crizotinib -2_3 -6.19 Crizotinib -2_4 -6.01 Crizotinib -2_5 -6.84 Crizotinib -2_6 -6.95 Crizotinib -2_7 -5.6 Crizotinib -2_8 -5.93 Crizotinib -2_9 -6.8 Crizotinib -2_10 -5.57 conformations Binding energy Alectinib-2_1 -7.55 Alectinib-2_2 -7.5 Alectinib-2_3 -7.28 Alectinib-2_4 -7.53 Alectinib-2_5 -7.67 Alectinib-2_6 -7.72 Alectinib-2_7 -7.33 Alectinib-2_8 -7.49 Alectinib-2_9 -7.5 Alectinib-2_10 -7.54 Binding energies for Crizotinib and Alectinib
  • 32.
  • 33.
  • 34.
    CONCLUSION 34 This molecular dockingreveals that all ligands(loratinib, centinib, Crizotinib, Alectinib ) binding to anaplastic lymphoma kinase. The most strongest docking will be between the loratinib and anaplastic lymphoma kinase which have binding energy of -11.03. the least docking will be between the Crizotinib and anaplastic lymphoma kinase which have binding energy of -7.67.
  • 35.
  • 36.
    36 1. Anderson A.Chem Biol 2003; 10:787–97. 2. Gilbert D. Brief Bioinform 2004:300-4. 3. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al. J Comput Chem 1998:1639–62. 4. Kalyaanamoorthy S and Chen YP Drug Discovery Today 2011 :831–839. 5. Blaney, J. A J. Computer. Aided Mol. Des. 2012, 13–14. 6. Berman, H.M. Nucleic Acids Res. 2000, 235–242. 7. Weigelt, J. Exp. Cell Res. 2010, 1332–1338 8. Mandal, S.; Moudgil, M.N.; Mandal, S.K. Eur. J. Pharmacol. 2009, 90–100. 9. Urwyler, S. Pharmacology. Rev. 2011, 59–126. 10. Wilson, G.L.; Lill, M.A. Future Med. Chem. 2011, , 735–750. 11. Fang, Y. ExpertOpin. Drug Discov. 2012, , 969–988. 12. Kahsai, A.W.; Xiao, K.; Rajagopal, S.; Ahn, S.; Shukla, A.K.; Sun, J.; Oas, T.G.; Lefkowitz, R.J. Nat. Chem. Biol. 2011, , 692–700. 13. Shoichet, B.K.; Kobilka, B.K. Sci. 2012, 33, 268–272. 14. Chandrika, B.R.; Subramanian, J.; Sharma, S.D. Drug Discov. Today 2009, 14, 394–400.
  • 37.
    37 15. Durrant, J.D.;McCammon, J.A. Curr. Opin. Pharmacol. 2010, 10, 770– 774. 16. Huang, S.Y.; Grinter, S.Z.; Zou, X. Phys. Chem. Chem. Phys. 2010, 12, 12899– 12908. 17. Englebienne, P.; Moitessier, N. J. Chem. Inf. Model. 2009, 2564–2571. 18. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J.. Nat. Rev. Drug Discov. 2004, , 935– 949. 19.Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson,A. J. J. Comput. Chem., 2009: 2785-2791. 20. Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. J. Comput. Aided Mol. Des. 1996, 10,293–304.