SlideShare a Scribd company logo
EEEC6430312
Measurements and Instrumentation
Faculty of Engineering and Computer Technology
Laboratory Manual
Lecturer: Ravandran Muttiah BEng (Hons) MSc MIET
Year/Semester: Year 2 / Semester 1
Academic Session: 2020/2021
The information in this documentis important and should be noted by all students undertaking the
Bachelor of Engineering (Honours) in Electrical and Electronic Engineering
Approved by Coordinator: Endorsed By Dean:
------------------------------------------ __________________
AIMST University Faculty of Engineering and Computer Technology
BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 1
Mini Project 2 - Wien Bridge Oscillator
Theory
Wien bridge oscillator is one of the most popular types of oscillators used in audio and
sub-audio frequency ranges from 20 Hz to 20 KHz. This type of oscillator is simple in
design, compact in size, and remarkably stable in its frequency output. Furthermore, its
output is relatively free from distortion and its frequency can be varied easily. However,
the maximum frequency output of a typical Wien bridge oscillator is only about 1 MHz.
This is also, in fact, a phase-shift oscillator.
The Wien bridge oscillator uses a feedback circuit consisting of a series RC circuit
connected with a parallel RC of the same component values producing a phase delay or
phase advance circuit depending upon the frequency. At the resonant frequency 𝑓r the
phase shift is 0
o
. Consider the circuit as shown in figure 1.
Figure 1: Wien bridge
A Wien bridge oscillator is a type of electronic oscillator that generates sine waves. It can
generate a large range of frequencies. The oscillator is based on a bridge circuit originally
developed by Max Wien in 1891 for the measurement of impedances. The bridge
comprises four resistors and two capacitors. The oscillator can also be viewed as a
positive gain amplifier combined with a bandpass filter that provides positive feedback.
Automatic gain control, intentional non-linearity and incidental non-linearity limit the
output amplitude in various implementations of the oscillator. The circuit shown in figure
2 depicts a once-common implementation of the oscillator, with automatic gain control.
𝑅1 𝐶1
𝑅2 𝐶2
𝑅1 = 𝑅2 𝐶1 = 𝐶2
High Pass Filter Stage
Low Pass
Filter Stage
𝑉in
𝑉out
AIMST University Faculty of Engineering and Computer Technology
BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 2
Under the condition that 𝑅1 = 𝑅2 = 𝑅 and 𝐶1 = 𝐶2 = 𝐶, the frequency of oscillation is
given by,
𝑓r =
1
2π𝑅𝐶
and the condition of stable oscillation is given by,
𝑅b =
𝑅f
2
Objectives
The objective of this experiment is to become acquainted with Wien bridge oscillator
circuit. Demonstrate your ability to design and construct the Wien bridge oscillator
circuit and to view the function of the circuit.
The Wien bridge oscillator circuit diagram is shown in figure 2 to how you can make an
oscillation circuit. A Wien bridge oscillator circuit is required to generate a sinusoidal
waveform of 5.2 KHz.
Figure 2: Wien bridge oscillator
+
−
A
𝑅1
10.2 KΩ
𝐶1
3 nF
𝑅3
𝑅4
47 KΩ
𝑉out = 5.2 KHz
100 KΩ
𝑅2
10.2 KΩ
𝐶2
3 nF
Op Amp
AIMST University Faculty of Engineering and Computer Technology
BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 3
Specification
Operational Amplifier 741
2 Capacitors 3 nF
2 Resistors 10.2 KΩ
Resistor 100 KΩ
Resistor 47 KΩ
It must be able to measure the audio frequency and must able to designs the long range of
frequencies.
The Function of Wien Bridge Oscillator Circuit
Then for oscillations to occur in a Wien bridge oscillator circuit the following conditions
must apply:
• With no input signal a Wien bridge oscillator produces continuous output oscillations.
• The Wien bridge oscillator can produce a large range of frequencies.
• The Voltage gain of the amplifier must be greater than 3.
• The RC network can be used with a non-inverting amplifier.
• The input resistance of the amplifier must be high compared to R so that
the RC network is not overloaded and alter the required conditions.
• The output resistance of the amplifier must be low so that the effect of external
loading is minimised.
• Some method of stabilizing the amplitude of the oscillations must be provided. If the
voltage gain of the amplifier is too small the desired oscillation will decay and stop. If
it is too large the output will saturate to the value of the supply rails and distort.
• With amplitude stabilisation in the form of feedback diodes, oscillations from the
Wien Bridge oscillator can continue indefinitely.
Report
Write a laboratory report on this project.
(1) Explain in detail about the theory and their method of calculations of Wien bridge
for the designed circuit with the component values.
(2) Discuss the obtained results of oscillations and how it was achieved and state if any
improvements can be made.
(3) Prepare slides for presentation and demonstration of this project.

More Related Content

What's hot

Automatic Street Light On/Off
Automatic Street Light On/OffAutomatic Street Light On/Off
Automatic Street Light On/Off
kishan619
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
yoga prabha
 
Electronics Quiz
Electronics QuizElectronics Quiz
Electronics Quiz
Naveen Kumar
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
@zenafaris91
 
Oscillator
OscillatorOscillator
Oscillator
sarunkutti
 
Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devices
GS Virdi
 
Metal semiconductor contacts
Metal semiconductor contactsMetal semiconductor contacts
Metal semiconductor contacts
Kasif Nabi
 
Ic tester of 555 and 741 ICs
Ic tester of 555 and 741 ICsIc tester of 555 and 741 ICs
Ic tester of 555 and 741 ICsAkshay Bhagwat
 
Automatic night lamp
Automatic night lampAutomatic night lamp
Automatic night lamp
ABUBAKKAR SIDDIKI
 
Automatic led night lamp
Automatic led night lampAutomatic led night lamp
Automatic led night lamp
pratik parekh
 
Voltage series feedback
Voltage series feedbackVoltage series feedback
Voltage series feedback
PRAVEENA N G
 
Transformer construction,types and working
Transformer construction,types and workingTransformer construction,types and working
Transformer construction,types and working
maharshi dayanand university rohtak
 
Planar fabrication technology
Planar fabrication technologyPlanar fabrication technology
Planar fabrication technology
Prathamesh Gardi
 
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
RMK ENGINEERING COLLEGE, CHENNAI
 
Op amp
Op ampOp amp
Electronic Devices and Circuits Manual
Electronic Devices and Circuits ManualElectronic Devices and Circuits Manual
Electronic Devices and Circuits Manual
Shashank Thawkar
 
Avr based smart electricity meter
Avr based smart electricity meterAvr based smart electricity meter
Avr based smart electricity meter
Logic Mind Technologies
 
Electricity theft control
Electricity theft controlElectricity theft control
Electricity theft control
Affable Mee
 
Oscillators
OscillatorsOscillators
Oscillators
12nitin
 

What's hot (20)

Automatic Street Light On/Off
Automatic Street Light On/OffAutomatic Street Light On/Off
Automatic Street Light On/Off
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Electronics Quiz
Electronics QuizElectronics Quiz
Electronics Quiz
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
 
Oscillator
OscillatorOscillator
Oscillator
 
Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devices
 
Metal semiconductor contacts
Metal semiconductor contactsMetal semiconductor contacts
Metal semiconductor contacts
 
Ic tester of 555 and 741 ICs
Ic tester of 555 and 741 ICsIc tester of 555 and 741 ICs
Ic tester of 555 and 741 ICs
 
Automatic night lamp
Automatic night lampAutomatic night lamp
Automatic night lamp
 
Automatic led night lamp
Automatic led night lampAutomatic led night lamp
Automatic led night lamp
 
Voltage series feedback
Voltage series feedbackVoltage series feedback
Voltage series feedback
 
Transformer construction,types and working
Transformer construction,types and workingTransformer construction,types and working
Transformer construction,types and working
 
Planar fabrication technology
Planar fabrication technologyPlanar fabrication technology
Planar fabrication technology
 
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
 
Op amp
Op ampOp amp
Op amp
 
Electronic Devices and Circuits Manual
Electronic Devices and Circuits ManualElectronic Devices and Circuits Manual
Electronic Devices and Circuits Manual
 
Avr based smart electricity meter
Avr based smart electricity meterAvr based smart electricity meter
Avr based smart electricity meter
 
Electricity theft control
Electricity theft controlElectricity theft control
Electricity theft control
 
Oscillators
OscillatorsOscillators
Oscillators
 
Structures of led
Structures of ledStructures of led
Structures of led
 

Similar to Mini Project 2 - Wien Bridge Oscillator

A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistorA High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
VLSICS Design
 
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistorA High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
VLSICS Design
 
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUTDYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
IRJET Journal
 
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
IJECEIAES
 
Experiment no 2 setb118
Experiment no 2    setb118Experiment no 2    setb118
Experiment no 2 setb118
Omkar Rane
 
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
IRJET Journal
 
Unit-III Waveform Generator
Unit-III Waveform GeneratorUnit-III Waveform Generator
Unit-III Waveform Generator
Dr.Raja R
 
BJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptxBJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptx
Emroz Sardar
 
Thermistor temperature sensing alarm report
Thermistor temperature sensing alarm reportThermistor temperature sensing alarm report
Thermistor temperature sensing alarm report
BhargavChowdary39
 
NEET coaching class in Mumbai
NEET coaching class in MumbaiNEET coaching class in Mumbai
NEET coaching class in Mumbai
Ekeeda
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
Innovative Electronics Ideas
 
Review paper
Review paperReview paper
Review paper
Avani Patel
 
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
IRJET Journal
 
E010523539
E010523539E010523539
E010523539
IOSR Journals
 
LIC UNIT V.pptx
LIC UNIT V.pptxLIC UNIT V.pptx
LIC UNIT V.pptx
ArunS118525
 
Design of ring vco using nine stages of differential amplifier
Design of ring vco using nine stages of differential amplifierDesign of ring vco using nine stages of differential amplifier
Design of ring vco using nine stages of differential amplifier
eSAT Publishing House
 
Transistor Amplifire.pptx
Transistor Amplifire.pptxTransistor Amplifire.pptx
Transistor Amplifire.pptx
ProfVilasShamraoPati
 
Design of vco using current mode logic with low supply
Design of vco using current mode logic with low supplyDesign of vco using current mode logic with low supply
Design of vco using current mode logic with low supply
eSAT Publishing House
 
Design of vco using current mode logic with low supply sensitivity
Design of vco using current mode logic with low supply sensitivityDesign of vco using current mode logic with low supply sensitivity
Design of vco using current mode logic with low supply sensitivity
eSAT Journals
 

Similar to Mini Project 2 - Wien Bridge Oscillator (20)

Oscillators
OscillatorsOscillators
Oscillators
 
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistorA High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
 
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistorA High-Swing OTA with wide Linearity for design of self-tunable linear resistor
A High-Swing OTA with wide Linearity for design of self-tunable linear resistor
 
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUTDYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
DYNAMICS OF AN OSCILLATOR FOR SINUSOIDAL INPUT
 
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
 
Experiment no 2 setb118
Experiment no 2    setb118Experiment no 2    setb118
Experiment no 2 setb118
 
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
IRJET- Design and Analysis of Current Starved and Differential Pair VCO for L...
 
Unit-III Waveform Generator
Unit-III Waveform GeneratorUnit-III Waveform Generator
Unit-III Waveform Generator
 
BJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptxBJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptx
 
Thermistor temperature sensing alarm report
Thermistor temperature sensing alarm reportThermistor temperature sensing alarm report
Thermistor temperature sensing alarm report
 
NEET coaching class in Mumbai
NEET coaching class in MumbaiNEET coaching class in Mumbai
NEET coaching class in Mumbai
 
ELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITSELECTRONICS DEVICES AND CIRCUITS
ELECTRONICS DEVICES AND CIRCUITS
 
Review paper
Review paperReview paper
Review paper
 
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
Simulation of H6 full bridge Inverter for grid connected PV system using SPWM...
 
E010523539
E010523539E010523539
E010523539
 
LIC UNIT V.pptx
LIC UNIT V.pptxLIC UNIT V.pptx
LIC UNIT V.pptx
 
Design of ring vco using nine stages of differential amplifier
Design of ring vco using nine stages of differential amplifierDesign of ring vco using nine stages of differential amplifier
Design of ring vco using nine stages of differential amplifier
 
Transistor Amplifire.pptx
Transistor Amplifire.pptxTransistor Amplifire.pptx
Transistor Amplifire.pptx
 
Design of vco using current mode logic with low supply
Design of vco using current mode logic with low supplyDesign of vco using current mode logic with low supply
Design of vco using current mode logic with low supply
 
Design of vco using current mode logic with low supply sensitivity
Design of vco using current mode logic with low supply sensitivityDesign of vco using current mode logic with low supply sensitivity
Design of vco using current mode logic with low supply sensitivity
 

More from AIMST University

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
AIMST University
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
AIMST University
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
AIMST University
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
AIMST University
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
AIMST University
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
AIMST University
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
AIMST University
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
AIMST University
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
AIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
AIMST University
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
AIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
AIMST University
 

More from AIMST University (20)

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
 

Recently uploaded

Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 

Recently uploaded (20)

Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 

Mini Project 2 - Wien Bridge Oscillator

  • 1. EEEC6430312 Measurements and Instrumentation Faculty of Engineering and Computer Technology Laboratory Manual Lecturer: Ravandran Muttiah BEng (Hons) MSc MIET Year/Semester: Year 2 / Semester 1 Academic Session: 2020/2021 The information in this documentis important and should be noted by all students undertaking the Bachelor of Engineering (Honours) in Electrical and Electronic Engineering Approved by Coordinator: Endorsed By Dean: ------------------------------------------ __________________
  • 2. AIMST University Faculty of Engineering and Computer Technology BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 1 Mini Project 2 - Wien Bridge Oscillator Theory Wien bridge oscillator is one of the most popular types of oscillators used in audio and sub-audio frequency ranges from 20 Hz to 20 KHz. This type of oscillator is simple in design, compact in size, and remarkably stable in its frequency output. Furthermore, its output is relatively free from distortion and its frequency can be varied easily. However, the maximum frequency output of a typical Wien bridge oscillator is only about 1 MHz. This is also, in fact, a phase-shift oscillator. The Wien bridge oscillator uses a feedback circuit consisting of a series RC circuit connected with a parallel RC of the same component values producing a phase delay or phase advance circuit depending upon the frequency. At the resonant frequency 𝑓r the phase shift is 0 o . Consider the circuit as shown in figure 1. Figure 1: Wien bridge A Wien bridge oscillator is a type of electronic oscillator that generates sine waves. It can generate a large range of frequencies. The oscillator is based on a bridge circuit originally developed by Max Wien in 1891 for the measurement of impedances. The bridge comprises four resistors and two capacitors. The oscillator can also be viewed as a positive gain amplifier combined with a bandpass filter that provides positive feedback. Automatic gain control, intentional non-linearity and incidental non-linearity limit the output amplitude in various implementations of the oscillator. The circuit shown in figure 2 depicts a once-common implementation of the oscillator, with automatic gain control. 𝑅1 𝐶1 𝑅2 𝐶2 𝑅1 = 𝑅2 𝐶1 = 𝐶2 High Pass Filter Stage Low Pass Filter Stage 𝑉in 𝑉out
  • 3. AIMST University Faculty of Engineering and Computer Technology BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 2 Under the condition that 𝑅1 = 𝑅2 = 𝑅 and 𝐶1 = 𝐶2 = 𝐶, the frequency of oscillation is given by, 𝑓r = 1 2π𝑅𝐶 and the condition of stable oscillation is given by, 𝑅b = 𝑅f 2 Objectives The objective of this experiment is to become acquainted with Wien bridge oscillator circuit. Demonstrate your ability to design and construct the Wien bridge oscillator circuit and to view the function of the circuit. The Wien bridge oscillator circuit diagram is shown in figure 2 to how you can make an oscillation circuit. A Wien bridge oscillator circuit is required to generate a sinusoidal waveform of 5.2 KHz. Figure 2: Wien bridge oscillator + − A 𝑅1 10.2 KΩ 𝐶1 3 nF 𝑅3 𝑅4 47 KΩ 𝑉out = 5.2 KHz 100 KΩ 𝑅2 10.2 KΩ 𝐶2 3 nF Op Amp
  • 4. AIMST University Faculty of Engineering and Computer Technology BEng (Hons) in Electrical and Electronic Engineering Measurements and Instrumentation 3 Specification Operational Amplifier 741 2 Capacitors 3 nF 2 Resistors 10.2 KΩ Resistor 100 KΩ Resistor 47 KΩ It must be able to measure the audio frequency and must able to designs the long range of frequencies. The Function of Wien Bridge Oscillator Circuit Then for oscillations to occur in a Wien bridge oscillator circuit the following conditions must apply: • With no input signal a Wien bridge oscillator produces continuous output oscillations. • The Wien bridge oscillator can produce a large range of frequencies. • The Voltage gain of the amplifier must be greater than 3. • The RC network can be used with a non-inverting amplifier. • The input resistance of the amplifier must be high compared to R so that the RC network is not overloaded and alter the required conditions. • The output resistance of the amplifier must be low so that the effect of external loading is minimised. • Some method of stabilizing the amplitude of the oscillations must be provided. If the voltage gain of the amplifier is too small the desired oscillation will decay and stop. If it is too large the output will saturate to the value of the supply rails and distort. • With amplitude stabilisation in the form of feedback diodes, oscillations from the Wien Bridge oscillator can continue indefinitely. Report Write a laboratory report on this project. (1) Explain in detail about the theory and their method of calculations of Wien bridge for the designed circuit with the component values. (2) Discuss the obtained results of oscillations and how it was achieved and state if any improvements can be made. (3) Prepare slides for presentation and demonstration of this project.