SlideShare a Scribd company logo
. . . . . .
Meshing Periodic Surfaces in CGAL
Vissarion Fisikopoulos
advisor: Monique Teillaud
& )KCKIJ '
. . . . . .
Outline
..1 Preliminaries
Periodic Triangulations [CT09]
Surface Meshing [BO05]
..2 Periodic Surface Meshing
Adjust Algorithm
Adjust Renement Criteria
..3 Examples
..4 Conclusion - Future Work
. . . . . .
Periodic Triangulations
.
.
v3
v1
v1
v2
Periodic Space
• T!
c := R!
/Z!
Denitions
• domain: cube contains exactly one representative of each element
• compute in original domain (one contains the origin)
• offset (ox, oy, oz): the number of periods far from the original domain
Valid Triangulations
• problem: not all point sets have a triangulation in T!
c
• solutions [CT09]:
• compute in 27-sheeted covering space
• insert 36 dummy points at the beginning
. . . . . .
Surface Meshing - Denitions
.
V(P)
S
.
f
c
e
S
Restricted Delaunay triangulation (rDt) 2D complex
in 3D Delaunay triangulation of facets whose dual
Voronoi segments intersect surface
Surface Delaunay ball
ball circumscribing facet with center an intersection
of dual Voronoi edge of facet with the surface
Boundary Facets
facets of restricted Delaunay triangulation
. . . . . .
Surface Meshing - Renement Criteria
.
Criteria
• angular bound
minimum angle
• radius bound
radius of the surface delaunay ball
• distance bound
center of a boundary facet and center of its
surface delaunay ball
Bad Facets: boundary facets not meeting criteria
. . . . . .
Surface Meshing - The Algorithm
Initialization Step
• nd points on surface (ray
shooting, dichotomic search)
• insert points to triangulation
• construct rDt and queue for bad
facets
Renement Step
• for each bad facet:
• insert the center of its surface
delaunay ball
• update rDt and bad facets'
queue
. . . . . .
Periodic Surface Meshing - Algorithm
CGAL 3D Surface Mesher with 3D Periodic
Delaunay Triangulations
Modications
• Point insertion
(Initialization step, Renement step)
translate points inside the domain (use offsets)
. . . . . .
Periodic Surface Meshing - Algorithm
CGAL 3D Surface Mesher with 3D Periodic
Delaunay Triangulations
Modications
• Point insertion
(Initialization step, Renement step)
translate points inside the domain (use offsets)
• Star approach
keep track of offsets during insertion
. . . . . .
Periodic Surface Meshing - Algorithm
CGAL 3D Surface Mesher with 3D Periodic
Delaunay Triangulations
Modications
• Point insertion
(Initialization step, Renement step)
translate points inside the domain (use offsets)
• Star approach
keep track of offsets during insertion
. . . . . .
Periodic Surface Meshing - Algorithm
CGAL 3D Surface Mesher with 3D Periodic
Delaunay Triangulations
Modications
• Point insertion
(Initialization step, Renement step)
translate points inside the domain (use offsets)
• Star approach
keep track of offsets during insertion
. . . . . .
Periodic Surface Meshing - Algorithm
CGAL 3D Surface Mesher with 3D Periodic
Delaunay Triangulations
Modications
• Point insertion
(Initialization step, Renement step)
translate points inside the domain (use offsets)
• Star approach
keep track of offsets during insertion
• Renement Criteria
algorithm might compute the wrong quantity
. . . . . .
Periodic Surface Meshing - Criteria (1)
Aspect Ratio Criterion (Angular Bound) - Edge Length Criterion
.
v2
v3
v3
domain
criterion: translate all points
v1
Angular Bound: Aspect Ratio Criterion
φφ∗
.
Edge Size Criterion
v2
v3
v3
domain
criterion: translate all points
v1
. . . . . .
Periodic Surface Meshing - Criteria (2)
Uniform Size Criterion (Radius Bound)
.
v2
v3
d1
s
d2
v3
domain
criterion1 := min{(s, v1), (s, v2), (s, v3)}
v1
Case 1Radius Bound: Uniform Size Criterion
intersection point
.
v1
domain
criterion2 := min{(s, v1), (s∗
, v1)}
v2
v3
d1
d2
ss∗
Case 2Radius Bound: Uniform Size Criterion
intersection point
criterion: min{(s, v), (s, v ), (s, v!), (s∗
, v)}
. . . . . .
Periodic Surface Meshing - Criteria (3)
Curvature Size Criterion (Distance Bound)
.
v2
v3
d1
s
d2
domain
criterion1 := min{(s, c), (s, c∗
)}
v1
Case 1
cc∗
Distance Bound: Curvature Size Criterion
intersection point
.
v1
domain
criterion2 := min{(s, c), (s∗
, c)}
v2
v3
d1
d2
s∗
Case 2
c
Distance Bound: Curvature Size Criterion
s
intersection point
criterion: min{(s, c), (s, c∗
), (s∗
, c)}
. . . . . .
Examples
double p
0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z)
schwarz p
0 = cosx + cosy + cosz
. .
. . . . . .
criteria: angular = 30 radius = 0.1 distance = 0.1
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
criteria: angular = 30 radius = 0.05 distance = 0.05
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
criteria: angular = 30 radius = 0.01 distance = 0.01
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
Bad Examples
schwarz p: 0 = cos(2πx + π
) + cos(2πy + π
) + cos(2πz + π
)
.
angular = ! radius = . distance = .
.
angular = ! radius = .# distance = .#
. .
. . . . . .
Examples
double p
0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z)
schwarz p
0 = cosx + cosy + cosz
. .
. . . . . .
criteria: angular = 30 radius = 0.1 distance = 0.1
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
criteria: angular = 30 radius = 0.05 distance = 0.05
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
Conclusion - Future Work
Conclusions
• The algorithm terminates for all of the examples
• The algorithm can mesh many periodic minimal surfaces
Future Work
• Improve the renement criteria in order to handle all cases
• Prove the correctness and termination for the new criteria
. . . . . .
.
Thank You for Your Attention!
.
cylinder
.
diamond
.
double p
.
D prime
.
G prime
.
gyroid
.
lidinoid
.
schwarz p
.
split p
.
.
.
.
.
.
. . . . . .
Appendix
cylinder:
0 = x + y
diamond:
0 = sinx · siny · sinz + sinx · cosy · cosz + cosx · siny · cosz + cosx · cosy · sinz
double p:
0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z)
D prime:
0 = 1 · (sinx · siny · sinz) + 1 · (cosx · cosy · cosz) − 1 · (cos2x · cos2y + cos2y ·
cos2z + cos2z · cos2x)) − 0.4
G prime:
0 = 5 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) + 1 · (cos2x ·
cos2y + cos2y · cos2z + cos2z · cos2x)
. . . . . .
Appendix
gyroid:
0 = cosx · siny + cosy · sinz + cosz · sinx
lidinoid:
0 = 1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) − 1 · (cos2x ·
cos2y + cos2y · cos2z + cos2z · cos2x) + 0.3
schwarz p:
0 = cosx + cosy + cosz
split p:
0 = 1.1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) − 0.2 ·
(cos2x · cos2y + cos2y · cos2z + cos2z · cos2x) − 0.4 · (cosx + cosy + cosz)
. . . . . .
References
Jean-Daniel Boissonnat and Steve Oudot.
Provably good sampling and meshing of surfaces.
Graph. Models, 67(5):405–451, 2005.
Manuel Caroli and Monique Teillaud.
Computing 3D Periodic Triangulations.
Research Report RR-6823, INRIA, 2009.

More Related Content

What's hot

7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
dicosmo178
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells
dicosmo178
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178
 
Triangle counting handout
Triangle counting handoutTriangle counting handout
Triangle counting handout
csedays
 

What's hot (17)

Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Introduction to MATLAB
Introduction to MATLAB Introduction to MATLAB
Introduction to MATLAB
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells
 
Moooniiikitha
MoooniiikithaMoooniiikitha
Moooniiikitha
 
ChRistian
ChRistianChRistian
ChRistian
 
2016 10 mathematics_sample_paper_sa2_03_ans_z657f
2016 10 mathematics_sample_paper_sa2_03_ans_z657f2016 10 mathematics_sample_paper_sa2_03_ans_z657f
2016 10 mathematics_sample_paper_sa2_03_ans_z657f
 
ikh323-05
ikh323-05ikh323-05
ikh323-05
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Programming with OpenGL
Programming with OpenGLProgramming with OpenGL
Programming with OpenGL
 
Triangle counting handout
Triangle counting handoutTriangle counting handout
Triangle counting handout
 
Tabela completa de derivadas e integrais
Tabela completa de derivadas e integraisTabela completa de derivadas e integrais
Tabela completa de derivadas e integrais
 

Similar to "Mesh of Periodic Minimal Surfaces in CGAL."

Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
Deepak Kumar
 
Lecture03 p1
Lecture03 p1Lecture03 p1
Lecture03 p1
aa11bb11
 
Tcs 2014 saved in 97-2003 format
Tcs 2014 saved in 97-2003 formatTcs 2014 saved in 97-2003 format
Tcs 2014 saved in 97-2003 format
Veeraragavan Subramaniam
 

Similar to "Mesh of Periodic Minimal Surfaces in CGAL." (20)

2.ppt
2.ppt2.ppt
2.ppt
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph Motif
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
 
Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
 
Asymptotic Notation
Asymptotic NotationAsymptotic Notation
Asymptotic Notation
 
Homomorphic Encryption
Homomorphic EncryptionHomomorphic Encryption
Homomorphic Encryption
 
Computer Graphics Unit 1
Computer Graphics Unit 1Computer Graphics Unit 1
Computer Graphics Unit 1
 
unit_circle_lesson_in trigonometric functions
unit_circle_lesson_in trigonometric functionsunit_circle_lesson_in trigonometric functions
unit_circle_lesson_in trigonometric functions
 
add math form 4/5
add math form 4/5add math form 4/5
add math form 4/5
 
economics
economicseconomics
economics
 
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
 
Lecture03 p1
Lecture03 p1Lecture03 p1
Lecture03 p1
 
Computer graphics 2
Computer graphics 2Computer graphics 2
Computer graphics 2
 
All pair shortest path by Sania Nisar
All pair shortest path by Sania NisarAll pair shortest path by Sania Nisar
All pair shortest path by Sania Nisar
 
Tcs 2014 saved in 97-2003 format
Tcs 2014 saved in 97-2003 formatTcs 2014 saved in 97-2003 format
Tcs 2014 saved in 97-2003 format
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
Applied mathematics for CBE assignment
Applied mathematics for CBE assignmentApplied mathematics for CBE assignment
Applied mathematics for CBE assignment
 
A study on number theory and its applications
A study on number theory and its applicationsA study on number theory and its applications
A study on number theory and its applications
 
A Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature FilterA Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature Filter
 
testpang
testpangtestpang
testpang
 

More from Vissarion Fisikopoulos

A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodies
Vissarion Fisikopoulos
 

More from Vissarion Fisikopoulos (20)

"Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes." "Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes."
 
"Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes." "Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes."
 
"An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop..."An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop...
 
"Faster Geometric Algorithms via Dynamic Determinant Computation."
"Faster Geometric Algorithms via Dynamic Determinant Computation." "Faster Geometric Algorithms via Dynamic Determinant Computation."
"Faster Geometric Algorithms via Dynamic Determinant Computation."
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
 
"Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes""Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes"
 
Efficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by OraclesEfficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by Oracles
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...
 
Working with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost GeometryWorking with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost Geometry
 
High-dimensional sampling and volume computation
High-dimensional sampling and volume computationHigh-dimensional sampling and volume computation
High-dimensional sampling and volume computation
 
Conctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex OracleConctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex Oracle
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...
 
Enumeration of 2-level polytopes
Enumeration of 2-level polytopesEnumeration of 2-level polytopes
Enumeration of 2-level polytopes
 
Polyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationPolyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimization
 
The Newton polytope of the sparse resultant
The Newton polytope of the sparse resultantThe Newton polytope of the sparse resultant
The Newton polytope of the sparse resultant
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensions
 
Efficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope VolumeEfficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope Volume
 
A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodies
 
Volume computation and applications
Volume computation and applications Volume computation and applications
Volume computation and applications
 

Recently uploaded

Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Sérgio Sacani
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursing
Jocelyn Atis
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 

Recently uploaded (20)

GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 
Transport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSETransport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSE
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Tr...
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
FAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesFAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS images
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursing
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 

"Mesh of Periodic Minimal Surfaces in CGAL."

  • 1. . . . . . . Meshing Periodic Surfaces in CGAL Vissarion Fisikopoulos advisor: Monique Teillaud & )KCKIJ '
  • 2. . . . . . . Outline ..1 Preliminaries Periodic Triangulations [CT09] Surface Meshing [BO05] ..2 Periodic Surface Meshing Adjust Algorithm Adjust Renement Criteria ..3 Examples ..4 Conclusion - Future Work
  • 3. . . . . . . Periodic Triangulations . . v3 v1 v1 v2 Periodic Space • T! c := R! /Z! Denitions • domain: cube contains exactly one representative of each element • compute in original domain (one contains the origin) • offset (ox, oy, oz): the number of periods far from the original domain Valid Triangulations • problem: not all point sets have a triangulation in T! c • solutions [CT09]: • compute in 27-sheeted covering space • insert 36 dummy points at the beginning
  • 4. . . . . . . Surface Meshing - Denitions . V(P) S . f c e S Restricted Delaunay triangulation (rDt) 2D complex in 3D Delaunay triangulation of facets whose dual Voronoi segments intersect surface Surface Delaunay ball ball circumscribing facet with center an intersection of dual Voronoi edge of facet with the surface Boundary Facets facets of restricted Delaunay triangulation
  • 5. . . . . . . Surface Meshing - Renement Criteria . Criteria • angular bound minimum angle • radius bound radius of the surface delaunay ball • distance bound center of a boundary facet and center of its surface delaunay ball Bad Facets: boundary facets not meeting criteria
  • 6. . . . . . . Surface Meshing - The Algorithm Initialization Step • nd points on surface (ray shooting, dichotomic search) • insert points to triangulation • construct rDt and queue for bad facets Renement Step • for each bad facet: • insert the center of its surface delaunay ball • update rDt and bad facets' queue
  • 7. . . . . . . Periodic Surface Meshing - Algorithm CGAL 3D Surface Mesher with 3D Periodic Delaunay Triangulations Modications • Point insertion (Initialization step, Renement step) translate points inside the domain (use offsets)
  • 8. . . . . . . Periodic Surface Meshing - Algorithm CGAL 3D Surface Mesher with 3D Periodic Delaunay Triangulations Modications • Point insertion (Initialization step, Renement step) translate points inside the domain (use offsets) • Star approach keep track of offsets during insertion
  • 9. . . . . . . Periodic Surface Meshing - Algorithm CGAL 3D Surface Mesher with 3D Periodic Delaunay Triangulations Modications • Point insertion (Initialization step, Renement step) translate points inside the domain (use offsets) • Star approach keep track of offsets during insertion
  • 10. . . . . . . Periodic Surface Meshing - Algorithm CGAL 3D Surface Mesher with 3D Periodic Delaunay Triangulations Modications • Point insertion (Initialization step, Renement step) translate points inside the domain (use offsets) • Star approach keep track of offsets during insertion
  • 11. . . . . . . Periodic Surface Meshing - Algorithm CGAL 3D Surface Mesher with 3D Periodic Delaunay Triangulations Modications • Point insertion (Initialization step, Renement step) translate points inside the domain (use offsets) • Star approach keep track of offsets during insertion • Renement Criteria algorithm might compute the wrong quantity
  • 12. . . . . . . Periodic Surface Meshing - Criteria (1) Aspect Ratio Criterion (Angular Bound) - Edge Length Criterion . v2 v3 v3 domain criterion: translate all points v1 Angular Bound: Aspect Ratio Criterion φφ∗ . Edge Size Criterion v2 v3 v3 domain criterion: translate all points v1
  • 13. . . . . . . Periodic Surface Meshing - Criteria (2) Uniform Size Criterion (Radius Bound) . v2 v3 d1 s d2 v3 domain criterion1 := min{(s, v1), (s, v2), (s, v3)} v1 Case 1Radius Bound: Uniform Size Criterion intersection point . v1 domain criterion2 := min{(s, v1), (s∗ , v1)} v2 v3 d1 d2 ss∗ Case 2Radius Bound: Uniform Size Criterion intersection point criterion: min{(s, v), (s, v ), (s, v!), (s∗ , v)}
  • 14. . . . . . . Periodic Surface Meshing - Criteria (3) Curvature Size Criterion (Distance Bound) . v2 v3 d1 s d2 domain criterion1 := min{(s, c), (s, c∗ )} v1 Case 1 cc∗ Distance Bound: Curvature Size Criterion intersection point . v1 domain criterion2 := min{(s, c), (s∗ , c)} v2 v3 d1 d2 s∗ Case 2 c Distance Bound: Curvature Size Criterion s intersection point criterion: min{(s, c), (s, c∗ ), (s∗ , c)}
  • 15. . . . . . . Examples double p 0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z) schwarz p 0 = cosx + cosy + cosz . .
  • 16. . . . . . . criteria: angular = 30 radius = 0.1 distance = 0.1 . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 17. . . . . . . criteria: angular = 30 radius = 0.05 distance = 0.05 . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 18. . . . . . . criteria: angular = 30 radius = 0.01 distance = 0.01 . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 19. . . . . . . Bad Examples schwarz p: 0 = cos(2πx + π ) + cos(2πy + π ) + cos(2πz + π ) . angular = ! radius = . distance = . . angular = ! radius = .# distance = .# . .
  • 20. . . . . . . Examples double p 0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z) schwarz p 0 = cosx + cosy + cosz . .
  • 21. . . . . . . criteria: angular = 30 radius = 0.1 distance = 0.1 . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 22. . . . . . . criteria: angular = 30 radius = 0.05 distance = 0.05 . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 23. . . . . . . Conclusion - Future Work Conclusions • The algorithm terminates for all of the examples • The algorithm can mesh many periodic minimal surfaces Future Work • Improve the renement criteria in order to handle all cases • Prove the correctness and termination for the new criteria
  • 24. . . . . . . . Thank You for Your Attention! . cylinder . diamond . double p . D prime . G prime . gyroid . lidinoid . schwarz p . split p . . . . . .
  • 25. . . . . . . Appendix cylinder: 0 = x + y diamond: 0 = sinx · siny · sinz + sinx · cosy · cosz + cosx · siny · cosz + cosx · cosy · sinz double p: 0 = 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx) + 0.2 · (cos2x + cos2y + cos2z) D prime: 0 = 1 · (sinx · siny · sinz) + 1 · (cosx · cosy · cosz) − 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x)) − 0.4 G prime: 0 = 5 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) + 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x)
  • 26. . . . . . . Appendix gyroid: 0 = cosx · siny + cosy · sinz + cosz · sinx lidinoid: 0 = 1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) − 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x) + 0.3 schwarz p: 0 = cosx + cosy + cosz split p: 0 = 1.1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx) − 0.2 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x) − 0.4 · (cosx + cosy + cosz)
  • 27. . . . . . . References Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing of surfaces. Graph. Models, 67(5):405–451, 2005. Manuel Caroli and Monique Teillaud. Computing 3D Periodic Triangulations. Research Report RR-6823, INRIA, 2009.