1.17
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                    Truncation, Rounding,
                       Overflow, and
                      Conversion Error


 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                             Goal

      To be able to explain and demonstrate the concepts of
       truncation, rounding, overflow, and conversion error.




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




       The computer is imperfect




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




       The computer is imperfect
     No matter how large a computer is, it still has a limited
                     amount of storage.




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




       The computer is imperfect
     No matter how large a computer is, it still has a limited
                     amount of storage.
                           Consider the result of dividing 2 by 3.




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




       The computer is imperfect
     No matter how large a computer is, it still has a limited
                     amount of storage.
                           Consider the result of dividing 2 by 3.
                                  0.666666 is a repeating number.




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




       The computer is imperfect
     No matter how large a computer is, it still has a limited
                     amount of storage.
                           Consider the result of dividing 2 by 3.
                                  0.666666 is a repeating number.
       Regardless of how many bits we use to store this
    number, it will get “cut off” at some point. No computer
                can accurately store this number.
                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
                    Truncate the following to 3 significant digits
                                                                0.2349




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
                    Truncate the following to 3 significant digits
                                                                0.234




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
                    Truncate the following to 5 significant digits
                                                                0.666666666666




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
                    Truncate the following to 5 significant digits
                                                                0.66666




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
           Truncate the following to 8 significant binary digits
                                                       0.1010101111000101




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                              Truncation
     To truncate a number means to simply ignore the extra
             digits that the computer cannot store.
           Truncate the following to 8 significant binary digits
                                                       0.10101011




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                      Real Numbers
      0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
      Represent 0.02510 in IEEE standard
       1. 0.02510 = 0.00000112         0.000001100110011
                                         1.100110011001
                                           1.1001 x 2-6
        2. normalized as 1.1001 x 2-6
        3. set the sign bit
        4. store -6 in the exponent section as (-6 + 127 = 121) 011110012
        5. store the normalized binary form




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310




 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610
      + 1310

 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 011111102
      + 1310                                +000011012

 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 011111102
      + 1310                                +000011012
                                             100010112
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 011111102
      + 1310                                +000011012
                                 bit n
                                  sig




                                             100010112
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 011111102                                                 this is -11710 in
                                                                                                    2’s complement, but
                                                                                                   the answer should be
      + 1310                                +000011012                                                       13910.
                                                                                                     What happened?
                                 bit n
                                  sig




                                             100010112
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 01111110sign 7 bits can only store
                                                Remember that the
                                              first bit is used as a
                                                                    2
      + 1310
                                                                      up to 127.
                                            +000011012
                                                          bit.
                                 bit n
                                  sig




                                             100010112
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                  Overflow Error
   Let’s assume that we are using 8 bits and 2’s complement
    to store integers (1 sign bit and 7 bits for the number).
                                             Calculate 12610 + 1310

       12610                                 011111102                  7 bits can only
                                                                       store up to 127.

      + 1310
                                                                      We have an overflow
                                            +000011012                     problem.
                                 bit n
                                  sig




                                             100010112
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits




                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  2.53


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  2.53


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a moreSince 3 is less than 5,
                                       accurate representation
                          of the number. will be like
                                        this
                                                                                          truncation
                      Round the following to 2 significant digits

                                                                  2.53


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a moreSince 3 is less than 5,
                                       accurate representation
                          of the number. will be like
                                        this
                                                                                          truncation
                      Round the following to 2 significant digits

                                                                  2.5


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  2.5


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 3 significant digits

                                                                  17.948


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 3 significant digits

                                                                  17.948


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                                      Since 4 is less than 5,
                          of the number.this will be like
                                                                                             truncation
                      Round the following to 3 significant digits

                                                                  17.948


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 3 significant digits

                                                                  17.9


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  -0.002463


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
                                             Since we are
   digit is “adjusted” to give a more accurate representation
                                            concerned only
                                          about the significant
                          of the number. digits, we will only
                                                                                           consider these
                      Round the following to 2                                       significant digits
                                                                                               digits

                                                                  -0.002463


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  -0.002463


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate 6representation
                                           Since is greater
                                         than or equal to 5, we
                          of the number.“round up” the 4 to its
                                                                                                      left to 5
                      Round the following to 2 significant digits

                                                                  -0.002463


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 2 significant digits

                                                                  -0.0025


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 5 significant digits

                                                                  0.173


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, that this isthe last
                                           Note where a
                                           repeating number.
   digit is “adjusted” to give a more accurateexpand to at least
                                      We should
                                                  representation
                          of the number. significant digits before
                                        6
                                                                                       rounding to 5 significant
                      Round the following to 5                                       significant digits
                                                                                              digits

                                                                  0.173


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, that this isthe last
                                           Note where a
                                           repeating number.
   digit is “adjusted” to give a more accurateexpand to at least
                                      We should
                                                  representation
                          of the number. significant digits before
                                        6
                                                                                       rounding to 5 significant
                      Round the following to 5                                       significant digits
                                                                                              digits

                                                                  0.173737


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 5 significant digits

                                                                  0.173737


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 5 significant digits

                                                                  0.173737


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                                            Since 7 is greater
                                          than or equal to 5, we
                          of the number. “round up” the 3 to its
                                                                                                        left to 4
                      Round the following to 5 significant digits

                                                                  0.173737


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                                                  Rounding
    An alternative to truncation is rounding, where the last
   digit is “adjusted” to give a more accurate representation
                          of the number.
                      Round the following to 5 significant digits

                                                                  0.17374


                                                                                                                                   2/
 MATH1003
                                                                                                                                     3
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
     Let’s represent 0.110 with 4 bytes in IEEE standard form.




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
        1. 0.110 = 0.000112




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
        1. 0.110 = 0.000112
        2. normalize 0.000112 = 1.10011 x 2-4




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit
        4. store -4 in the exponent section




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit                                                                 -4 + 127 = 123
        4. store -4 in the exponent section
                                                                                           123 = 011110112




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit                                                                 -4 + 127 = 123
        4. store -4 in the exponent section
                                                                                           123 = 011110112




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit
        4. store -4 in the exponent section
        5. store the normalized binary form




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
     Let’s represent 0.110 with 4 bytes in IEEE standard form.
      1. 0.110 = 0.000112                    1.10011 x 2-4
        2. normalize 0.000112 = 1.10011 x 2-4
        3. set the sign bit
        4. store -4 in the exponent section
        5. store the normalized binary form




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)
        3. the decimal exponent is 123 - 127 = -4




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)
        3. the decimal exponent is 123 - 127 = -4
        4. from the number section, we have 1.10011001100110011001100




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)
        3. the decimal exponent is 123 - 127 = -4
        4. from the number section, we have 1.10011001100110011001100
        5. therefore the number is 1. 10011001100110011001100 x 2-4




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)
        3. the decimal exponent is 123 - 127 = -4
        4. from the number section, we have 1.10011001100110011001100
        5. therefore the number is 1. 10011001100110011001100 x 2-4
        6. 1. 10011001100110011001100 = 1.59999990463 (approximately)




                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123)
        3. the decimal exponent is 123 - 127 = -4
        4. from the number section, we have 1.10011001100110011001100
        5. therefore the number is 1. 10011001100110011001100 x 2-4
        6. 1. 10011001100110011001100 = 1.59999990463 (approximately)
        7. 1.59999990463 x 2-4 = 0.099999994



                                                                                                                                   0.1
 MATH1003
10110100101011010100101010111010101111011011101111011101110111101110111011110111111010110100101011110110110101111011010100111111011010100110101001




                             Conversion Error
      0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
                         Now, let’s convert this back to decimal
        1. since the sign bit is 0, we know this is a positive number
        2. the exponent section is 01111011 (= 123) This is a
        3. the decimal exponent is 123 - 127 = -4 conversion error:
        4. from the number section, we have 1.10011001100110011001100
                                                      0.099999994 ≠ 0.1
        5. therefore the number is 1. 10011001100110011001100 x 2-4
        6. 1. 10011001100110011001100 = 1.59999990463 (approximately)
        7. 1.59999990463 x 2-4 = 0.099999994



                                                                                                                                   0.1
 MATH1003

Math1003 1.17 - Truncation, Rounding, Overflow, & Conversion Error