SlideShare a Scribd company logo
Introduction to
CMOS VLSI
Design
Lecture 4:
DC & Transient Response
Greco/Cin-UFPE
(Material taken/adapted from
Harris’ lecture notes)
CMOS VLSI Design
4: DC and Transient Response Slide 2
Outline
 DC Response
 Logic Levels and Noise Margins
 Transient Response
 Delay Estimation
CMOS VLSI Design
4: DC and Transient Response Slide 3
Activity
1) If the width of a transistor increases, the current will
increase decrease not change
2) If the length of a transistor increases, the current will
increase decrease not change
3) If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
CMOS VLSI Design
4: DC and Transient Response Slide 4
Activity
1) If the width of a transistor increases, the current will
increase decrease not change
2) If the length of a transistor increases, the current will
increase decrease not change
3) If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
CMOS VLSI Design
4: DC and Transient Response Slide 5
DC Response
 DC Response: Vout vs. Vin for a gate
 Ex: Inverter
– When Vin = 0 -> Vout = VDD
– When Vin = VDD -> Vout = 0
– In between, Vout depends on
transistor size and current
– By KCL, must settle such that
Idsn = |Idsp|
– We could solve equations
– But graphical solution gives more insight
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 6
Transistor Operation
 Current depends on region of transistor behavior
 For what Vin and Vout are nMOS and pMOS in
– Cutoff?
– Linear?
– Saturation?
CMOS VLSI Design
4: DC and Transient Response Slide 7
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vgsn >
Vdsn <
Vgsn >
Vdsn >
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 8
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn Vgsn > Vtn
Vdsn < Vgsn – Vtn
Vgsn > Vtn
Vdsn > Vgsn – Vtn
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 9
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn Vgsn > Vtn
Vdsn < Vgsn – Vtn
Vgsn > Vtn
Vdsn > Vgsn – Vtn
Idsn
Idsp
Vout
VDD
Vin
Vgsn = Vin
Vdsn = Vout
CMOS VLSI Design
4: DC and Transient Response Slide 10
nMOS Operation
Cutoff Linear Saturated
Vgsn < Vtn
Vin < Vtn
Vgsn > Vtn
Vin > Vtn
Vdsn < Vgsn – Vtn
Vout < Vin - Vtn
Vgsn > Vtn
Vin > Vtn
Vdsn > Vgsn – Vtn
Vout > Vin - Vtn
Idsn
Idsp
Vout
VDD
Vin
Vgsn = Vin
Vdsn = Vout
CMOS VLSI Design
4: DC and Transient Response Slide 11
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vgsp <
Vdsp >
Vgsp <
Vdsp <
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 12
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp Vgsp < Vtp
Vdsp > Vgsp – Vtp
Vgsp < Vtp
Vdsp < Vgsp – Vtp
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 13
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp Vgsp < Vtp
Vdsp > Vgsp – Vtp
Vgsp < Vtp
Vdsp < Vgsp – Vtp
Idsn
Idsp
Vout
VDD
Vin
Vgsp = Vin - VDD
Vdsp = Vout - VDD
Vtp < 0
CMOS VLSI Design
4: DC and Transient Response Slide 14
pMOS Operation
Cutoff Linear Saturated
Vgsp > Vtp
Vin > VDD + Vtp
Vgsp < Vtp
Vin < VDD + Vtp
Vdsp > Vgsp – Vtp
Vout > Vin - Vtp
Vgsp < Vtp
Vin < VDD + Vtp
Vdsp < Vgsp – Vtp
Vout < Vin - Vtp
Idsn
Idsp
Vout
VDD
Vin
Vgsp = Vin - VDD
Vdsp = Vout - VDD
Vtp < 0
CMOS VLSI Design
4: DC and Transient Response Slide 15
I-V Characteristics
 Make pMOS is wider than nMOS such that bn = bp
Vgsn5
Vgsn4
Vgsn3
Vgsn2
Vgsn1
Vgsp5
Vgsp4
Vgsp3
Vgsp2
Vgsp1
VDD
-VDD
Vdsn
-Vdsp
-Idsp
Idsn
0
CMOS VLSI Design
4: DC and Transient Response Slide 16
Current vs. Vout, Vin
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn
, |Idsp
|
Vout
VDD
CMOS VLSI Design
4: DC and Transient Response Slide 17
Load Line Analysis
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn
, |Idsp
|
Vout
VDD
 For a given Vin:
– Plot Idsn, Idsp vs. Vout
– Vout must be where |currents| are equal in
Idsn
Idsp
Vout
VDD
Vin
CMOS VLSI Design
4: DC and Transient Response Slide 18
Load Line Analysis
Vin0
Vin0
Idsn
, |Idsp
|
Vout
VDD
 Vin = 0
CMOS VLSI Design
4: DC and Transient Response Slide 19
Load Line Analysis
Vin1
Vin1
Idsn
, |Idsp
|
Vout
VDD
 Vin = 0.2VDD
CMOS VLSI Design
4: DC and Transient Response Slide 20
Load Line Analysis
Vin2
Vin2
Idsn
, |Idsp
|
Vout
VDD
 Vin = 0.4VDD
CMOS VLSI Design
4: DC and Transient Response Slide 21
Load Line Analysis
Vin3
Vin3
Idsn
, |Idsp
|
Vout
VDD
 Vin = 0.6VDD
CMOS VLSI Design
4: DC and Transient Response Slide 22
Load Line Analysis
Vin4
Vin4
Idsn
, |Idsp
|
Vout
VDD
 Vin = 0.8VDD
CMOS VLSI Design
4: DC and Transient Response Slide 23
Load Line Analysis
Vin5
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn
, |Idsp
|
Vout
VDD
 Vin = VDD
CMOS VLSI Design
4: DC and Transient Response Slide 24
Load Line Summary
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Idsn
, |Idsp
|
Vout
VDD
CMOS VLSI Design
4: DC and Transient Response Slide 25
DC Transfer Curve
 Transcribe points onto Vin vs. Vout plot
Vin5
Vin4
Vin3
Vin2
Vin1
Vin0
Vin1
Vin2
Vin3
Vin4
Vout
VDD
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
CMOS VLSI Design
4: DC and Transient Response Slide 26
Operating Regions
 Revisit transistor operating regions
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
Region nMOS pMOS
A
B
C
D
E
CMOS VLSI Design
4: DC and Transient Response Slide 27
Operating Regions
 Revisit transistor operating regions
C
Vout
0
Vin
VDD
VDD
A B
D
E
Vtn
VDD
/2 VDD
+Vtp
Region nMOS pMOS
A Cutoff Linear
B Saturation Linear
C Saturation Saturation
D Linear Saturation
E Linear Cutoff
CMOS VLSI Design
4: DC and Transient Response Slide 28
Beta Ratio
 If bp / bn  1, switching point will move from VDD/2
 Called skewed gate
 Other gates: collapse into equivalent inverter
Vout
0
Vin
VDD
VDD
0.5
1
2
10
p
n
b
b

0.1
p
n
b
b

CMOS VLSI Design
4: DC and Transient Response Slide 29
Noise Margins
 How much noise can a gate input see before it does
not recognize the input?
Indeterminate
Region
NML
NMH
Input Characteristics
Output Characteristics
VOH
VDD
VOL
GND
VIH
VIL
Logical High
Input Range
Logical Low
Input Range
Logical High
Output Range
Logical Low
Output Range
CMOS VLSI Design
 By definition, VIH and VIL are the operational points of
the inverter where
4: DC and Transient Response Slide 30
VDD
Vin
Vout
VOH
VDD
VOL
VIL
VIH
Vtn
Unity Gain Points
Slope = -1
VDD
-
|Vtp
|
bp
/bn
> 1
Vin
Vout
0
A high gain (g) is
desirable
CMOS VLSI Design
4: DC and Transient Response Slide 31
Logic Levels
 To maximize noise margins, select logic levels at
VDD
Vin
Vout
VDD
bp
/bn
> 1
Vin
Vout
0
CMOS VLSI Design
4: DC and Transient Response Slide 32
Logic Levels
 To maximize noise margins, select logic levels at
– unity gain point of DC transfer characteristic
VDD
Vin
Vout
VOH
VDD
VOL
VIL
VIH
Vtn
Unity Gain Points
Slope = -1
VDD
-
|Vtp
|
bp
/bn
> 1
Vin
Vout
0
CMOS VLSI Design
4: DC and Transient Response Slide 33
Transient Response
 DC analysis tells us Vout if Vin is constant
 Transient analysis tells us Vout(t) if Vin(t) changes
– Requires solving differential equations
 Input is usually considered to be a step or ramp
– From 0 to VDD or vice versa
CMOS VLSI Design
4: DC and Transient Response Slide 34
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
( )
(
)
)
(
o
i
ut
n
out
V t t
t
V
t
V
d
d
t

 

Vin(t)
Vout
(t)
Cload
Idsn(t)
CMOS VLSI Design
4: DC and Transient Response Slide 35
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
( )
ou
DD
in
t
out
u t t V
d
d
t
t t
V t
V
V
t





Vin(t)
Vout
(t)
Cload
Idsn(t)
CMOS VLSI Design
4: DC and Transient Response Slide 36
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
(
( )
)
(
(
)
)
DD
D
o
i
D
o t
n
ut
u
V t
u t t V
V
d
d
t
t
V
V
t
t
 



Vin(t)
Vout
(t)
Cload
Idsn(t)
CMOS VLSI Design
4: DC and Transient Response Slide 37
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 

 

0
( ) DD t
out
ou
ds
t DD t
n
I t V V
V
V V
V
t t



  

  

Vin(t)
Vout
(t)
Cload
Idsn(t)
CMOS VLSI Design
4: DC and Transient Response Slide 38
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 

 

 
0
2
2
0
2
)
)
(
( )
( DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V
V
t
V t
V t
b
b




   


 
   
  
 

Vin(t)
Vout
(t)
Cload
Idsn(t)
CMOS VLSI Design
4: DC and Transient Response Slide 39
Inverter Step Response
 Ex: find step response of inverter driving load cap
0
0
( )
( )
( )
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
 

 

 
0
2
2
0
2
)
)
(
( )
( DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V
V
t
V t
V t
b
b




   


 
   
  
 

Vout(t)
Vin(t)
t0
t
Vin(t)
Vout
(t)
Cload
Idsn(t)
nMOS – “1” transfer is bad
CMOS VLSI Design
4: DC and Transient Response Slide 40
Delay Definitions
 tpdr: rising propagation delay
– From input to rising output crossing VDD/2 (upper bound)
 tpdf: falling propagation delay
– From input to falling output crossing VDD/2 (upper bound)
 tpd: average propagation delay
– tpd = (tpdr + tpdf)/2
 tr: rise time
– time required for a node to charge from the 10% point to
90% ( 0.1 VDD to 0.9 VDD )
 tf: fall time
– time required for a node to discharge from 90% to 10%
point (0.9 VDD to 0.1 VDD )
CMOS VLSI Design
4: DC and Transient Response Slide 41
Tpdr = TpHL Tcdf = TpHL
tr tf
Delay Definitions
CMOS Inverter Switching
Characteristics
 Define:
– Falling delay tdf = delay time with output falling
– Rising delay tdr = delay time with output rising
43
Trajectory of a n-transistor
operating point
a. Transistor is Cut off
b. Capacitance CL is loaded with VDD
a. Applying a Vgs=VDD
b. Vout -> 0,9 to (VDD-Tth)
a. VDD-Tth -> to 0.1V
Slide 44
Fall-time equivalent circuit
Rise-time equivalent circuit
The fall-time is faster than the rise
time,
tf=tr/2
primarily due to different carrier
mobilities associated with the p and
n- devices:
µn = 2 µp
It is true considering equally
sized n and p transistors
βn = 2 βp
CMOS VLSI Design
 If the designer wants to have both n an p transistor
with the same rise and fall time:
βn / βp = 1
 This implies that channel width for the p-device must
be increased to approximately two to three times of
the n-device:
wp = 2 – 3 wn
4: DC and Transient Response Slide 45
n+ n+
p-type body
W
L
tox
SiO2
gate oxide
(good insulator, ox
= 3.90
)
polysilicon
gate
Trajectory of a n-transistor
operating point
CMOS VLSI Design
4: DC and Transient Response Slide 46
Delay Estimation
 We would like to be able to easily estimate delay
– Not as accurate as simulation
– But easier to ask “What if?”
 The step response usually looks like a 1st order RC
response with a decaying exponential.
 Use RC delay models to estimate delay
– C = total capacitance on output node
– Use effective resistance R
– So that tpd = RC
 Characterize transistors by finding their effective R
– Depends on average current as gate switches
CMOS VLSI Design
4: DC and Transient Response Slide 47
RC Delay Models
 Use equivalent circuits for MOS transistors
– Ideal switch + capacitance and ON resistance
– Unit nMOS has resistance R, capacitance C
– Unit pMOS has resistance 2R, capacitance C
 Capacitance proportional to width
 Resistance inversely proportional to width
k
g
s
d
g
s
d
kC
kC
kC
R/k
k
g
s
d
g
s
d
kC
kC
kC
2R/k
Capacitance
proportional to width
Resistance
inversely
proportional to
width
nMOS pMOS
CMOS VLSI Design
4: DC and Transient Response Slide 48
 Resistance of a uniform slab:
– R =  (l/A) = (/t) (L/W) where  is the
resistivity in ohm-cm, t is the
thickness in cm, L is the length, W is
the width, and A is the cross-sectional
area
– Using the concept of sheet resistance,
R = Rs (L/W) where Rs is called the
sheet resistance and given in ohms
per square
• Rs =  / t
 Gate Capacitance
- Cg = oxWL/tox = oxA/tox
n+ n+
p-type body
W
L
tox
SiO2
gate oxide
(good insulator, ox
= 3.90
)
polysilicon
gate
RC Delay Models
CMOS VLSI Design
MOS device capacitances
 MOS Device capacitances
– Cgs, Cgd = gate-to-channel capacitances, which are lumped at the
source and the drain regions.
– Csb, Cdb = source and drain-duiffusion capacitances to bulk (or
substrate)
– Cgb = gate –to-bulk capacitance
4: DC and Transient Response Slide 49
CMOS VLSI Design
4: DC and Transient Response Slide 50
1. Off region, where Vgs < Vt. There is no channel Cgs, Cgd = 0.
2. Non-saturated region, where Vgs - Vt. > Vds. Cgb = 0
3. Saturated region, where Vgs <-Vt. < Vds. Channel is heavely inverted.
The drain is pinched off causing Cgd = 0.
MOS device capacitances
CMOS VLSI Design
RC Delay Models
4: DC and Transient Response Slide 51
pMOS capacitance
= 2x nMOS
capacitance
CMOS VLSI Design
4: DC and Transient Response Slide 52
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths
chosen to achieve effective rise and fall resistances
equal to a unit inverter (R).
CMOS VLSI Design
4: DC and Transient Response Slide 53
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths
chosen to achieve effective rise and fall resistances
equal to a unit inverter (R).
CMOS VLSI Design
4: DC and Transient Response Slide 54
Example: 3-input NAND
 Sketch a 3-input NAND with transistor widths
chosen to achieve effective rise and fall resistances
equal to a unit inverter (R).
3
3
2
2
2
3
CMOS VLSI Design
4: DC and Transient Response Slide 55
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
2 2 2
3
3
3
CMOS VLSI Design
4: DC and Transient Response Slide 56
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
2 2 2
3
3
3
3C
3C
3C
3C
2C
2C
2C
2C
2C
2C
3C
3C
3C
2C 2C 2C
Resultant capacitance
per gate = 2C+3C = 5C
Parallel capacitances
3x2C+3C = 9C
CMOS VLSI Design
4: DC and Transient Response Slide 57
3-input NAND Caps
 Annotate the 3-input NAND gate with gate and
diffusion capacitance.
9C
3C
3C
3
3
3
2
2
2
5C
5C
5C
CMOS VLSI Design
4: DC and Transient Response Slide 58
Elmore Delay
 ON transistors look like resistors
 Pullup or pulldown network modeled as RC ladder
 Elmore delay of RC ladder
R1
R2
R3
RN
C1
C2
C3
CN
   
nodes
1 1 1 2 2 1 2
... ...
pd i to source i
i
N N
t R C
R C R R C R R R C
 

       

CMOS VLSI Design
4: DC and Transient Response Slide 59
Example: 2-input NAND
 Estimate worst-case rising and falling delay of 2-
input NAND driving h identical gates.
h copies
2
2
2
2
B
A
x
Y
CMOS VLSI Design
4: DC and Transient Response Slide 60
Example: 2-input NAND
 Estimate worst-case rising and falling delay of 2-
input NAND driving h identical gates.
h copies
CMOS VLSI Design
4: DC and Transient Response Slide 61
Example: 2-input NAND
 Estimate worst-case rising and falling delay of 2-
input NAND driving h identical gates.
h copies
Parallel capacitances
2C+2C+2C= 6C
CMOS VLSI Design
4: DC and Transient Response
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
CMOS VLSI Design
4: DC and Transient Response Slide 63
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y
pdr
t 
CMOS VLSI Design
4: DC and Transient Response Slide 64
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y  
6 4
pdr
t h RC
 
Rising time: nMOS - “off”
pMOS - “on”
CMOS VLSI Design
4: DC and Transient Response Slide 65
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
CMOS VLSI Design
4: DC and Transient Response Slide 66
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
pdf
t 
(6+4h)C
2C
R/2
R/2
x Y
Consider that the nMOS resistance = (pMOS resistance)/2 = R/2
CMOS VLSI Design
4: DC and Transient Response Slide 67
Example: 2-input NAND
 Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies
6C
2C
2
2
2
2
4hC
B
A
x
Y
      
 
2 2 2
2 6 4
7 4
R R R
pdf
t C h C
h RC
   
 
 
 
(6+4h)C
2C
R/2
R/2
x Y
CMOS VLSI Design
4: DC and Transient Response Slide 68
Delay Components
 Delay has two parts
– Parasitic delay
• 6 or 7 RC
• Independent of load
– Effort delay
• 4h RC
• Proportional to load capacitance
CMOS VLSI Design
4: DC and Transient Response Slide 69
Contamination Delay
 Best-case (contamination) delay can be substantially
less than propagation delay.
 Ex: If both inputs fall simultaneously
6C
2C
2
2
2
2
4hC
B
A
x
Y
R
(6+4h)C
Y
R
 
3 2
cdr
t h RC
 
CMOS VLSI Design
4: DC and Transient Response Slide 70
7C
3C
3C
3
3
3
2
2
2
3C
2C
2C
3C
3C
Isolated
Contacted
Diffusion
Merged
Uncontacted
Diffusion
Shared
Contacted
Diffusion
Diffusion Capacitance
 we assumed contacted diffusion on every source/drain
 Good layout minimizes diffusion area
 Ex: NAND3 layout shares one diffusion contact
– Reduces output capacitance by 2C
– Merged uncontacted diffusion might help too
Capacitance = 2C+2C+3C = 7C
CMOS VLSI Design
4: DC and Transient Response Slide 71
Layout Comparison
 Which layout is better?
A
VDD
GND
B
Y
A
VDD
GND
B
Y

More Related Content

What's hot

Chap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdfChap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdf
ahmedsalim244821
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
ssuserb4d806
 
Full Custom IC Design Implementation of Priority Encoder
Full Custom IC Design Implementation of Priority EncoderFull Custom IC Design Implementation of Priority Encoder
Full Custom IC Design Implementation of Priority Encoder
BhargavKatkam
 
Vlsi design notes l7 a&b batch , ece , sngce
Vlsi design notes l7 a&b batch , ece , sngceVlsi design notes l7 a&b batch , ece , sngce
Vlsi design notes l7 a&b batch , ece , sngce
Anu Antony
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
Pei-Che Chang
 
Teknik multiplex
Teknik multiplexTeknik multiplex
Teknik multiplex
kolodit
 
CMOS logic circuits
CMOS logic circuitsCMOS logic circuits
CMOS logic circuits
Mahesh_Naidu
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
Sudhanshu Janwadkar
 
EMIR.pdf
EMIR.pdfEMIR.pdf
Switch level modeling
Switch level modelingSwitch level modeling
Switch level modeling
Devi Pradeep Podugu
 
Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers I
ali_craigslist
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
Lee Rather
 
20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt
ASureshkumar13
 
Lecture4 nmos process
Lecture4 nmos processLecture4 nmos process
Lecture4 nmos process
sritulasiadigopula
 
Verilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderVerilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and Encoder
Bharti Airtel Ltd.
 
EC6601 VLSI Design CMOS Fabrication
EC6601 VLSI Design   CMOS FabricationEC6601 VLSI Design   CMOS Fabrication
EC6601 VLSI Design CMOS Fabrication
chitrarengasamy
 
Mos transistor theory
Mos transistor theoryMos transistor theory
Mos transistor theory
Ekta Jolly
 
Working of capacitive SAR ADC
Working of capacitive SAR ADCWorking of capacitive SAR ADC
Working of capacitive SAR ADC
santoshnimbal
 

What's hot (20)

Chap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdfChap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdf
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
Full Custom IC Design Implementation of Priority Encoder
Full Custom IC Design Implementation of Priority EncoderFull Custom IC Design Implementation of Priority Encoder
Full Custom IC Design Implementation of Priority Encoder
 
Vlsi design notes l7 a&b batch , ece , sngce
Vlsi design notes l7 a&b batch , ece , sngceVlsi design notes l7 a&b batch , ece , sngce
Vlsi design notes l7 a&b batch , ece , sngce
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
 
Teknik multiplex
Teknik multiplexTeknik multiplex
Teknik multiplex
 
CMOS logic circuits
CMOS logic circuitsCMOS logic circuits
CMOS logic circuits
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
EMIR.pdf
EMIR.pdfEMIR.pdf
EMIR.pdf
 
Switch level modeling
Switch level modelingSwitch level modeling
Switch level modeling
 
Operational Amplifiers I
Operational Amplifiers IOperational Amplifiers I
Operational Amplifiers I
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
 
20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt20EC602 VLSI Design.ppt
20EC602 VLSI Design.ppt
 
Lecture4 nmos process
Lecture4 nmos processLecture4 nmos process
Lecture4 nmos process
 
Verilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderVerilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and Encoder
 
EC6601 VLSI Design CMOS Fabrication
EC6601 VLSI Design   CMOS FabricationEC6601 VLSI Design   CMOS Fabrication
EC6601 VLSI Design CMOS Fabrication
 
Lecture20
Lecture20Lecture20
Lecture20
 
serdes
serdesserdes
serdes
 
Mos transistor theory
Mos transistor theoryMos transistor theory
Mos transistor theory
 
Working of capacitive SAR ADC
Working of capacitive SAR ADCWorking of capacitive SAR ADC
Working of capacitive SAR ADC
 

Similar to lecture-4_me_v01.pptx

lecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristicslecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristics
BEVARAVASUDEVAAP1813
 
Ppt 2- req portions
Ppt 2- req portionsPpt 2- req portions
Ppt 2- req portions
VidyaRao1224
 
2016 ch4 delay
2016 ch4 delay2016 ch4 delay
2016 ch4 delay
hdainghia194
 
VLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTORVLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTOR
Karthik Vivek
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
MADHUMITHA154
 
Power
PowerPower
Power
AnimSarker
 
CMOS Transistor
CMOS TransistorCMOS Transistor
CMOS Transistor
SubhamMukherjee33
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI Design
Eutectics
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5tuanbk1
 
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.pptFALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
VijaySathappan
 
lec23Concl.ppt
lec23Concl.pptlec23Concl.ppt
lec23Concl.ppt
BhuvanaEshwari1
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
Lecture 9.ppt
Lecture 9.pptLecture 9.ppt
Lecture 9.ppt
TimePresents
 
vlsid.ppt
vlsid.pptvlsid.ppt
vlsid.ppt
eleenaamohapatra
 
lecture_01_upload.ppt
lecture_01_upload.pptlecture_01_upload.ppt
lecture_01_upload.ppt
eleenaamohapatra
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
Hoopeer Hoopeer
 
IC_Lectures_Updated.pdf
IC_Lectures_Updated.pdfIC_Lectures_Updated.pdf
IC_Lectures_Updated.pdf
AbdelazizmohammedZay
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
AravindS273883
 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1
Varun Bansal
 

Similar to lecture-4_me_v01.pptx (20)

lecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristicslecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristics
 
Ppt 2- req portions
Ppt 2- req portionsPpt 2- req portions
Ppt 2- req portions
 
2016 ch4 delay
2016 ch4 delay2016 ch4 delay
2016 ch4 delay
 
VLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTORVLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTOR
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
 
Power
PowerPower
Power
 
CMOS Transistor
CMOS TransistorCMOS Transistor
CMOS Transistor
 
Introduction to COMS VLSI Design
Introduction to COMS VLSI DesignIntroduction to COMS VLSI Design
Introduction to COMS VLSI Design
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5
 
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.pptFALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
FALLSEM2023-24_BECE303L_TH_VL2023240100242_2023-04-24_Reference-Material-I.ppt
 
lec23Concl.ppt
lec23Concl.pptlec23Concl.ppt
lec23Concl.ppt
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
Lecture 9.ppt
Lecture 9.pptLecture 9.ppt
Lecture 9.ppt
 
vlsid.ppt
vlsid.pptvlsid.ppt
vlsid.ppt
 
lecture_01_upload.ppt
lecture_01_upload.pptlecture_01_upload.ppt
lecture_01_upload.ppt
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
 
IC_Lectures_Updated.pdf
IC_Lectures_Updated.pdfIC_Lectures_Updated.pdf
IC_Lectures_Updated.pdf
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1
 

Recently uploaded

June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 

lecture-4_me_v01.pptx

  • 1. Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Greco/Cin-UFPE (Material taken/adapted from Harris’ lecture notes)
  • 2. CMOS VLSI Design 4: DC and Transient Response Slide 2 Outline  DC Response  Logic Levels and Noise Margins  Transient Response  Delay Estimation
  • 3. CMOS VLSI Design 4: DC and Transient Response Slide 3 Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change
  • 4. CMOS VLSI Design 4: DC and Transient Response Slide 4 Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change
  • 5. CMOS VLSI Design 4: DC and Transient Response Slide 5 DC Response  DC Response: Vout vs. Vin for a gate  Ex: Inverter – When Vin = 0 -> Vout = VDD – When Vin = VDD -> Vout = 0 – In between, Vout depends on transistor size and current – By KCL, must settle such that Idsn = |Idsp| – We could solve equations – But graphical solution gives more insight Idsn Idsp Vout VDD Vin
  • 6. CMOS VLSI Design 4: DC and Transient Response Slide 6 Transistor Operation  Current depends on region of transistor behavior  For what Vin and Vout are nMOS and pMOS in – Cutoff? – Linear? – Saturation?
  • 7. CMOS VLSI Design 4: DC and Transient Response Slide 7 nMOS Operation Cutoff Linear Saturated Vgsn < Vgsn > Vdsn < Vgsn > Vdsn > Idsn Idsp Vout VDD Vin
  • 8. CMOS VLSI Design 4: DC and Transient Response Slide 8 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vgsn > Vtn Vdsn > Vgsn – Vtn Idsn Idsp Vout VDD Vin
  • 9. CMOS VLSI Design 4: DC and Transient Response Slide 9 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vgsn > Vtn Vdsn > Vgsn – Vtn Idsn Idsp Vout VDD Vin Vgsn = Vin Vdsn = Vout
  • 10. CMOS VLSI Design 4: DC and Transient Response Slide 10 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vin < Vtn Vgsn > Vtn Vin > Vtn Vdsn < Vgsn – Vtn Vout < Vin - Vtn Vgsn > Vtn Vin > Vtn Vdsn > Vgsn – Vtn Vout > Vin - Vtn Idsn Idsp Vout VDD Vin Vgsn = Vin Vdsn = Vout
  • 11. CMOS VLSI Design 4: DC and Transient Response Slide 11 pMOS Operation Cutoff Linear Saturated Vgsp > Vgsp < Vdsp > Vgsp < Vdsp < Idsn Idsp Vout VDD Vin
  • 12. CMOS VLSI Design 4: DC and Transient Response Slide 12 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vgsp < Vtp Vdsp < Vgsp – Vtp Idsn Idsp Vout VDD Vin
  • 13. CMOS VLSI Design 4: DC and Transient Response Slide 13 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vgsp < Vtp Vdsp < Vgsp – Vtp Idsn Idsp Vout VDD Vin Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0
  • 14. CMOS VLSI Design 4: DC and Transient Response Slide 14 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vin > VDD + Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp > Vgsp – Vtp Vout > Vin - Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp < Vgsp – Vtp Vout < Vin - Vtp Idsn Idsp Vout VDD Vin Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0
  • 15. CMOS VLSI Design 4: DC and Transient Response Slide 15 I-V Characteristics  Make pMOS is wider than nMOS such that bn = bp Vgsn5 Vgsn4 Vgsn3 Vgsn2 Vgsn1 Vgsp5 Vgsp4 Vgsp3 Vgsp2 Vgsp1 VDD -VDD Vdsn -Vdsp -Idsp Idsn 0
  • 16. CMOS VLSI Design 4: DC and Transient Response Slide 16 Current vs. Vout, Vin Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn , |Idsp | Vout VDD
  • 17. CMOS VLSI Design 4: DC and Transient Response Slide 17 Load Line Analysis Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn , |Idsp | Vout VDD  For a given Vin: – Plot Idsn, Idsp vs. Vout – Vout must be where |currents| are equal in Idsn Idsp Vout VDD Vin
  • 18. CMOS VLSI Design 4: DC and Transient Response Slide 18 Load Line Analysis Vin0 Vin0 Idsn , |Idsp | Vout VDD  Vin = 0
  • 19. CMOS VLSI Design 4: DC and Transient Response Slide 19 Load Line Analysis Vin1 Vin1 Idsn , |Idsp | Vout VDD  Vin = 0.2VDD
  • 20. CMOS VLSI Design 4: DC and Transient Response Slide 20 Load Line Analysis Vin2 Vin2 Idsn , |Idsp | Vout VDD  Vin = 0.4VDD
  • 21. CMOS VLSI Design 4: DC and Transient Response Slide 21 Load Line Analysis Vin3 Vin3 Idsn , |Idsp | Vout VDD  Vin = 0.6VDD
  • 22. CMOS VLSI Design 4: DC and Transient Response Slide 22 Load Line Analysis Vin4 Vin4 Idsn , |Idsp | Vout VDD  Vin = 0.8VDD
  • 23. CMOS VLSI Design 4: DC and Transient Response Slide 23 Load Line Analysis Vin5 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn , |Idsp | Vout VDD  Vin = VDD
  • 24. CMOS VLSI Design 4: DC and Transient Response Slide 24 Load Line Summary Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Idsn , |Idsp | Vout VDD
  • 25. CMOS VLSI Design 4: DC and Transient Response Slide 25 DC Transfer Curve  Transcribe points onto Vin vs. Vout plot Vin5 Vin4 Vin3 Vin2 Vin1 Vin0 Vin1 Vin2 Vin3 Vin4 Vout VDD C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp
  • 26. CMOS VLSI Design 4: DC and Transient Response Slide 26 Operating Regions  Revisit transistor operating regions C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp Region nMOS pMOS A B C D E
  • 27. CMOS VLSI Design 4: DC and Transient Response Slide 27 Operating Regions  Revisit transistor operating regions C Vout 0 Vin VDD VDD A B D E Vtn VDD /2 VDD +Vtp Region nMOS pMOS A Cutoff Linear B Saturation Linear C Saturation Saturation D Linear Saturation E Linear Cutoff
  • 28. CMOS VLSI Design 4: DC and Transient Response Slide 28 Beta Ratio  If bp / bn  1, switching point will move from VDD/2  Called skewed gate  Other gates: collapse into equivalent inverter Vout 0 Vin VDD VDD 0.5 1 2 10 p n b b  0.1 p n b b 
  • 29. CMOS VLSI Design 4: DC and Transient Response Slide 29 Noise Margins  How much noise can a gate input see before it does not recognize the input? Indeterminate Region NML NMH Input Characteristics Output Characteristics VOH VDD VOL GND VIH VIL Logical High Input Range Logical Low Input Range Logical High Output Range Logical Low Output Range
  • 30. CMOS VLSI Design  By definition, VIH and VIL are the operational points of the inverter where 4: DC and Transient Response Slide 30 VDD Vin Vout VOH VDD VOL VIL VIH Vtn Unity Gain Points Slope = -1 VDD - |Vtp | bp /bn > 1 Vin Vout 0 A high gain (g) is desirable
  • 31. CMOS VLSI Design 4: DC and Transient Response Slide 31 Logic Levels  To maximize noise margins, select logic levels at VDD Vin Vout VDD bp /bn > 1 Vin Vout 0
  • 32. CMOS VLSI Design 4: DC and Transient Response Slide 32 Logic Levels  To maximize noise margins, select logic levels at – unity gain point of DC transfer characteristic VDD Vin Vout VOH VDD VOL VIL VIH Vtn Unity Gain Points Slope = -1 VDD - |Vtp | bp /bn > 1 Vin Vout 0
  • 33. CMOS VLSI Design 4: DC and Transient Response Slide 33 Transient Response  DC analysis tells us Vout if Vin is constant  Transient analysis tells us Vout(t) if Vin(t) changes – Requires solving differential equations  Input is usually considered to be a step or ramp – From 0 to VDD or vice versa
  • 34. CMOS VLSI Design 4: DC and Transient Response Slide 34 Inverter Step Response  Ex: find step response of inverter driving load cap 0 ( ) ( ) ) ( o i ut n out V t t t V t V d d t     Vin(t) Vout (t) Cload Idsn(t)
  • 35. CMOS VLSI Design 4: DC and Transient Response Slide 35 Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ) ou DD in t out u t t V d d t t t V t V V t      Vin(t) Vout (t) Cload Idsn(t)
  • 36. CMOS VLSI Design 4: DC and Transient Response Slide 36 Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ( ) ) ( ( ) ) DD D o i D o t n ut u V t u t t V V d d t t V V t t      Vin(t) Vout (t) Cload Idsn(t)
  • 37. CMOS VLSI Design 4: DC and Transient Response Slide 37 Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t       0 ( ) DD t out ou ds t DD t n I t V V V V V V t t            Vin(t) Vout (t) Cload Idsn(t)
  • 38. CMOS VLSI Design 4: DC and Transient Response Slide 38 Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t         0 2 2 0 2 ) ) ( ( ) ( DD DD t DD out out out out D t n t ds D I V t t V V V V V V V V V t V t V t b b                       Vin(t) Vout (t) Cload Idsn(t)
  • 39. CMOS VLSI Design 4: DC and Transient Response Slide 39 Inverter Step Response  Ex: find step response of inverter driving load cap 0 0 ( ) ( ) ( ) ( ( ) ) DD DD loa d ou i d t o n ut sn V V u t t V t t V t V d dt C t I t         0 2 2 0 2 ) ) ( ( ) ( DD DD t DD out out out out D t n t ds D I V t t V V V V V V V V V t V t V t b b                       Vout(t) Vin(t) t0 t Vin(t) Vout (t) Cload Idsn(t) nMOS – “1” transfer is bad
  • 40. CMOS VLSI Design 4: DC and Transient Response Slide 40 Delay Definitions  tpdr: rising propagation delay – From input to rising output crossing VDD/2 (upper bound)  tpdf: falling propagation delay – From input to falling output crossing VDD/2 (upper bound)  tpd: average propagation delay – tpd = (tpdr + tpdf)/2  tr: rise time – time required for a node to charge from the 10% point to 90% ( 0.1 VDD to 0.9 VDD )  tf: fall time – time required for a node to discharge from 90% to 10% point (0.9 VDD to 0.1 VDD )
  • 41. CMOS VLSI Design 4: DC and Transient Response Slide 41 Tpdr = TpHL Tcdf = TpHL tr tf Delay Definitions
  • 42. CMOS Inverter Switching Characteristics  Define: – Falling delay tdf = delay time with output falling – Rising delay tdr = delay time with output rising
  • 43. 43 Trajectory of a n-transistor operating point a. Transistor is Cut off b. Capacitance CL is loaded with VDD a. Applying a Vgs=VDD b. Vout -> 0,9 to (VDD-Tth) a. VDD-Tth -> to 0.1V
  • 44. Slide 44 Fall-time equivalent circuit Rise-time equivalent circuit The fall-time is faster than the rise time, tf=tr/2 primarily due to different carrier mobilities associated with the p and n- devices: µn = 2 µp It is true considering equally sized n and p transistors βn = 2 βp
  • 45. CMOS VLSI Design  If the designer wants to have both n an p transistor with the same rise and fall time: βn / βp = 1  This implies that channel width for the p-device must be increased to approximately two to three times of the n-device: wp = 2 – 3 wn 4: DC and Transient Response Slide 45 n+ n+ p-type body W L tox SiO2 gate oxide (good insulator, ox = 3.90 ) polysilicon gate Trajectory of a n-transistor operating point
  • 46. CMOS VLSI Design 4: DC and Transient Response Slide 46 Delay Estimation  We would like to be able to easily estimate delay – Not as accurate as simulation – But easier to ask “What if?”  The step response usually looks like a 1st order RC response with a decaying exponential.  Use RC delay models to estimate delay – C = total capacitance on output node – Use effective resistance R – So that tpd = RC  Characterize transistors by finding their effective R – Depends on average current as gate switches
  • 47. CMOS VLSI Design 4: DC and Transient Response Slide 47 RC Delay Models  Use equivalent circuits for MOS transistors – Ideal switch + capacitance and ON resistance – Unit nMOS has resistance R, capacitance C – Unit pMOS has resistance 2R, capacitance C  Capacitance proportional to width  Resistance inversely proportional to width k g s d g s d kC kC kC R/k k g s d g s d kC kC kC 2R/k Capacitance proportional to width Resistance inversely proportional to width nMOS pMOS
  • 48. CMOS VLSI Design 4: DC and Transient Response Slide 48  Resistance of a uniform slab: – R =  (l/A) = (/t) (L/W) where  is the resistivity in ohm-cm, t is the thickness in cm, L is the length, W is the width, and A is the cross-sectional area – Using the concept of sheet resistance, R = Rs (L/W) where Rs is called the sheet resistance and given in ohms per square • Rs =  / t  Gate Capacitance - Cg = oxWL/tox = oxA/tox n+ n+ p-type body W L tox SiO2 gate oxide (good insulator, ox = 3.90 ) polysilicon gate RC Delay Models
  • 49. CMOS VLSI Design MOS device capacitances  MOS Device capacitances – Cgs, Cgd = gate-to-channel capacitances, which are lumped at the source and the drain regions. – Csb, Cdb = source and drain-duiffusion capacitances to bulk (or substrate) – Cgb = gate –to-bulk capacitance 4: DC and Transient Response Slide 49
  • 50. CMOS VLSI Design 4: DC and Transient Response Slide 50 1. Off region, where Vgs < Vt. There is no channel Cgs, Cgd = 0. 2. Non-saturated region, where Vgs - Vt. > Vds. Cgb = 0 3. Saturated region, where Vgs <-Vt. < Vds. Channel is heavely inverted. The drain is pinched off causing Cgd = 0. MOS device capacitances
  • 51. CMOS VLSI Design RC Delay Models 4: DC and Transient Response Slide 51 pMOS capacitance = 2x nMOS capacitance
  • 52. CMOS VLSI Design 4: DC and Transient Response Slide 52 Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
  • 53. CMOS VLSI Design 4: DC and Transient Response Slide 53 Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
  • 54. CMOS VLSI Design 4: DC and Transient Response Slide 54 Example: 3-input NAND  Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 3 3 2 2 2 3
  • 55. CMOS VLSI Design 4: DC and Transient Response Slide 55 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 3 3
  • 56. CMOS VLSI Design 4: DC and Transient Response Slide 56 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 3 3 3C 3C 3C 3C 2C 2C 2C 2C 2C 2C 3C 3C 3C 2C 2C 2C Resultant capacitance per gate = 2C+3C = 5C Parallel capacitances 3x2C+3C = 9C
  • 57. CMOS VLSI Design 4: DC and Transient Response Slide 57 3-input NAND Caps  Annotate the 3-input NAND gate with gate and diffusion capacitance. 9C 3C 3C 3 3 3 2 2 2 5C 5C 5C
  • 58. CMOS VLSI Design 4: DC and Transient Response Slide 58 Elmore Delay  ON transistors look like resistors  Pullup or pulldown network modeled as RC ladder  Elmore delay of RC ladder R1 R2 R3 RN C1 C2 C3 CN     nodes 1 1 1 2 2 1 2 ... ... pd i to source i i N N t R C R C R R C R R R C            
  • 59. CMOS VLSI Design 4: DC and Transient Response Slide 59 Example: 2-input NAND  Estimate worst-case rising and falling delay of 2- input NAND driving h identical gates. h copies 2 2 2 2 B A x Y
  • 60. CMOS VLSI Design 4: DC and Transient Response Slide 60 Example: 2-input NAND  Estimate worst-case rising and falling delay of 2- input NAND driving h identical gates. h copies
  • 61. CMOS VLSI Design 4: DC and Transient Response Slide 61 Example: 2-input NAND  Estimate worst-case rising and falling delay of 2- input NAND driving h identical gates. h copies Parallel capacitances 2C+2C+2C= 6C
  • 62. CMOS VLSI Design 4: DC and Transient Response Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y
  • 63. CMOS VLSI Design 4: DC and Transient Response Slide 63 Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y pdr t 
  • 64. CMOS VLSI Design 4: DC and Transient Response Slide 64 Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y   6 4 pdr t h RC   Rising time: nMOS - “off” pMOS - “on”
  • 65. CMOS VLSI Design 4: DC and Transient Response Slide 65 Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y
  • 66. CMOS VLSI Design 4: DC and Transient Response Slide 66 Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y pdf t  (6+4h)C 2C R/2 R/2 x Y Consider that the nMOS resistance = (pMOS resistance)/2 = R/2
  • 67. CMOS VLSI Design 4: DC and Transient Response Slide 67 Example: 2-input NAND  Estimate rising and falling propagation delays of a 2- input NAND driving h identical gates. h copies 6C 2C 2 2 2 2 4hC B A x Y          2 2 2 2 6 4 7 4 R R R pdf t C h C h RC           (6+4h)C 2C R/2 R/2 x Y
  • 68. CMOS VLSI Design 4: DC and Transient Response Slide 68 Delay Components  Delay has two parts – Parasitic delay • 6 or 7 RC • Independent of load – Effort delay • 4h RC • Proportional to load capacitance
  • 69. CMOS VLSI Design 4: DC and Transient Response Slide 69 Contamination Delay  Best-case (contamination) delay can be substantially less than propagation delay.  Ex: If both inputs fall simultaneously 6C 2C 2 2 2 2 4hC B A x Y R (6+4h)C Y R   3 2 cdr t h RC  
  • 70. CMOS VLSI Design 4: DC and Transient Response Slide 70 7C 3C 3C 3 3 3 2 2 2 3C 2C 2C 3C 3C Isolated Contacted Diffusion Merged Uncontacted Diffusion Shared Contacted Diffusion Diffusion Capacitance  we assumed contacted diffusion on every source/drain  Good layout minimizes diffusion area  Ex: NAND3 layout shares one diffusion contact – Reduces output capacitance by 2C – Merged uncontacted diffusion might help too Capacitance = 2C+2C+3C = 7C
  • 71. CMOS VLSI Design 4: DC and Transient Response Slide 71 Layout Comparison  Which layout is better? A VDD GND B Y A VDD GND B Y