SlideShare a Scribd company logo
Machine LearningMachine Learninggg
Nonparametric Bayesian ModelsNonparametric Bayesian Models
----Learning/Reasoning in Open Possible WorldsLearning/Reasoning in Open Possible Worlds
Eric XingEric Xing
Lecture 17, August 16, 2010
Eric Xing © Eric Xing @ CMU, 2006-2010 1
Lecture 17, August 16, 2010
Reading:
ClusteringClustering
Eric Xing © Eric Xing @ CMU, 2006-2010 2
Image SegmentationImage Segmentation
 How to segment images?
 Manual segmentation (very expensive)
 Algorithm segmentation
 K-means
 Statistical mixture models Statistical mixture models
 Spectral clustering
 Problems with most existing Problems with most existing
algorithms
 Ignore the spatial information
 Perform the segmentation one image at Perform the segmentation one image at
a time
 Need to specify the number of segments
a priori
Eric Xing © Eric Xing @ CMU, 2006-2010 3
Object Recognition and TrackingObject Recognition and Tracking
(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)
(1.9, 6.1, 2.2)( , , )
(0 9 5 8 3 1)
(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)
(0.9, 5.8, 3.1)
Eric Xing © Eric Xing @ CMU, 2006-2010 4
t=1 t=2 t=3
The Evolution of ScienceThe Evolution of Science
ResearchResearch
circlescircles
ResearchResearch
Bio
PhyPhy
topicstopics
CS
PNASPNAS paperspapers
?Eric Xing © Eric Xing @ CMU, 2006-2010 5
1900 2000 ?
A Classical ApproachA Classical Approach
 Clustering as Mixture Modelingg g
Eric Xing © Eric Xing @ CMU, 2006-2010 6
 Then "model selection"
Model Selection vs. Posterior
Inference
 Model selection
"i t lli t" ???
Inference
 "intelligent" guess: ???
 cross validation: data-hungry 
 information theoretic:
 AIC
  AIC
 TIC
 MDL :
 Bayes factor: need to compute data likelihood
 ),ˆ|(|)(minarg KKL MLgf 
Parsimony, Ockam's RazorParsimony, Ockam's Razor
y p
 Posterior inference:
we want to handle uncertainty of model complexity explicitlywe want to handle uncertainty of model complexity explicitly
)()|()|( MpMDpDMp 
 K,M
Eric Xing © Eric Xing @ CMU, 2006-2010 7
 we favor a distribution that does not constrain M in a "closed" space!
OutlineOutline
 Motivation and challengeg
 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm Approximate Inference algorithm
 Example: population clustering
 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clusteri
 Dynamic Dirichlet Processy
 Temporal DPM
 Application: evolutionary clustering of documents
Eric Xing © Eric Xing @ CMU, 2006-2010 8
 Summary
ClusteringClustering
 How to label them ?
Eric Xing © Eric Xing @ CMU, 2006-2010 9
 How many clusters ???
Random Partition of Probability
Space
 66  ,
 
Space
 55  ,
 66
 33  ,
 44  ,
. (event, pevent)
 
 22  ,
 33  ,
centroid :=
Image ele. :=(x, 11  ,
…age e e. : (x,
Eric Xing © Eric Xing @ CMU, 2006-2010 10
Dirichlet ProcessDirichlet Process
 A CDF, G, on possible worlds

of random partitions follows a
Dirichlet Process if for any
measurable finite partition
(   )
1 2
5
6
3
4
a distribution
(1,2, .., m):a distribution
(G(1), G(2), …, G(m) ) ~
Dirichlet( G0(1), …., G0(m) )
th
where G0 is the base measure
and is the scale parameter
another
distribution
Eric Xing © Eric Xing @ CMU, 2006-2010 11
and is the scale parameter
Thus a Dirichlet ProcessThus a Dirichlet Process GG defines a distribution of distributiondefines a distribution of distribution
Stick breaking ProcessStick-breaking Process
0 0.4 0.4
∑
∞
0.6 0.5 0.3
~
)(∑


0
1
k
k
kk
G
G


0.3 0.8 0.24
∑
∞


1
1
0
k
k
k G


Location
)-(∏
-
 1
1
1
1
k
j
kkk
k



Eric Xing © Eric Xing @ CMU, 2006-2010 12
G0),Beta(~  1k
j
Mass
Chinese Restaurant ProcessChinese Restaurant Process
1 2
=)|=( -ii kcP c 1 0 0)|( -ii
+1
1
0

+1
+2
1
+2
1


+2
+3
1
+3
2


+3
1+
1
i
m
1+
2
i
m
1+

i
....
Eric Xing © Eric Xing @ CMU, 2006-2010 13
CRP defines an exchangeable distribution on partitions over an (infinite) sequence
of samples, such a distribution is formally known as the Dirichlet Process (DP)
1-+i 1-+i 1-+i
Graphical Model Representations
f DPof DP
GG00 GG00
G


y
 

xi
N
i
yi
xi
NN N
The Stick-breaking constructionThe CRP construction
Eric Xing © Eric Xing @ CMU, 2006-2010 14
Ancestral InferenceAncestral Inference

Ak k

Gn
Hn1 Hn2
NN
Essentially a clustering problem, but …Essentially a clustering problem, but …
 Better recovery of the ancestors leads to better haplotyping results
(because of more accurate grouping of common haplotypes)
T h l t bt i bl ith hi h t b t th lid t d l
Eric Xing © Eric Xing @ CMU, 2006-2010 15
 True haplotypes are obtainable with high cost, but they can validate model
more subjectively (as opposed to examining saliency of clustering)
 Many other biological/scientific utilities
Example: DP haplotyperExample: DP-haplotyper [Xing et al, 2004]
 Clustering human populationsg p p
G
 G0
DP
A 
K
infinite mixture components
(for population haplotypeshaplotypes)
Gn
Hn1 Hn2
N
Likelihood model
(for individual
haplotypes and genotypesgenotypes)
 Inference: Markov Chain Monte Carlo (MCMC)
Eric Xing © Eric Xing @ CMU, 2006-2010 16
( )
 Gibbs sampling
 Metropolis Hasting
The DP Mixture of Ancestral
HaplotypesHaplotypes
 The customers around a table in CRP form a cluster
 associate a mixture component (i.e., a population haplotype) with a table
 sample {a, } at each table from a base measure G0 to obtain the
population haplotype and nucleotide substitution frequency for that
1
4 8 9
population haplotype and nucleotide substitution frequency for that
component
{A} {A} {A} {A} {A} {A} ……
3
2
4
5
6 7
8 9
5
 With p(h|{ }) and p(g|h1,h2), the CRP yields a posterior distribution on
the number of population haplotypes (and on the haplotype
Eric Xing © Eric Xing @ CMU, 2006-2010 17
the number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)
Inheritance and Observation Models
 Single-locus mutation model
Inheritance and Observation Models
1A
… for ah 
Ancestral
pool
1A
3A
2Aeei iC HA 
1iC
H




.
for
||
for
),|(
probwithah
ah
B
ah
ahP
tt
tt
tt
ttH









1
1 2iC
 Noisy observation model
1iH
Haplotypes
2iH
GHH 
iG Genotype
:),|(
probwithhhg
hhgPG 21

iii GHH 21
,
Eric Xing © Eric Xing @ CMU, 2006-2010 18
i yp.,, probwithhhg ttt 21 
MCMC for Haplotype Inference
 Gibbs sampling for exploring the posterior distribution under
MCMC for Haplotype Inference
p g p g p
the proposed model
 Integrate out the parameters such as or , and sample
and
  ki ac e
,
ihand ei
),|()|(),,|( ][,][][ chcahc eeeeee ikiiiii ahpkcpkcp  
Posterior Prior x Likelihood
CRP

Eric Xing © Eric Xing @ CMU, 2006-2010 19
 Gibbs sampling algorithm: draw samples of each random variable to be
sampled given values of all the remaining variables
MCMC for Haplotype InferenceMCMC for Haplotype Inference
1. Sample cie
(j), fromie
2. Sample ak from
3. Sample hie
(j) from
Eric Xing © Eric Xing @ CMU, 2006-2010 20
 For DP scale parameter : a vague inverse Gamma prior
Convergence of Ancestral InferenceConvergence of Ancestral Inference
Eric Xing © Eric Xing @ CMU, 2006-2010 21
DP vs Finite Mixture via EMDP vs. Finite Mixture via EM
0.35
0.4
0.45
r
0 15
0.2
0.25
0.3
0.35
ividualerror
Series1
Series2
DP
EM
0
0.05
0.1
0.15
indi
1 2 3 4 5
data sets
Eric Xing © Eric Xing @ CMU, 2006-2010 22
OutlineOutline
 Motivation and challengeg
 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithm Approximate Inference algorithm
 Example: population clustering
 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering
 Dynamic Dirichlet Processy
 Temporal DPM
 Application: evolutionary clustering of documents
Eric Xing © Eric Xing @ CMU, 2006-2010 23
 Summary
Multi-population Genetic
DemographyDemography
1 211 2 2
1 211 2 2
1 211 2 2
1 211 2 2
1 211 2 2
 Pool everything together and solve 1 hap problem?
 --- ignore population structures
 Solve 4 hap problems separately?
Eric Xing © Eric Xing @ CMU, 2006-2010 24
 --- data fragmentation
 Co-clustering … solve 4 coupled hap problems jointly
Hierarchical Dirichlet Process
 Two level Pólya urn scheme
 At the i th step in j th "group"
[Teh et al., 2005, Xing et al. 2005]
Hierarchical Dirichlet Process
 At the i-th step in j-th group ,
1 211 2
1 211 2 2 1 211 2 2 1 211 2 2





jk
k
m
m
probwithChoose .
 kn
probwithChoose
Oracle
0
0



k jk
probwith
DPlevelupperthetoGo
m
 

k
k
samplenewaDraw
n
probwithChoose .
Eric Xing © Eric Xing @ CMU, 2006-2010 25
0k jkm
probwith .
 

kn
probwith .
Results Simulated DataResults - Simulated Data
 5 populations with 20 individuals each (two kinds of mutationp p (
rates)
 5 populations share parts of their ancestral haplotypes
th l th 10 the sequence length = 10
Eric Xing © Eric Xing @ CMU, 2006-2010 26
Haplotype errorHaplotype error
Results - International HapMap
DBDB
 Different sample sizes, and different # of sub-populationsp p p
Eric Xing © Eric Xing @ CMU, 2006-2010 27
Topic Models for ImagesTopic Models for Images
“beach”
Latent Dirichlet Allocation (LDA)
w
N
c z
Eric Xing © Eric Xing @ CMU, 2006-2010 28
N
D
Image RepresentationImage Representation
cat, grass, tiger, water
][,][ ||1111 Vd wwrr 
][][
 annotation vector
(binary, same for each segment)
representation vector
(real, 1 per image segment)
Eric Xing © Eric Xing @ CMU, 2006-2010 29
][,][ ||11 Vndn wwrr 
Infinite Topic Model for ImageInfinite Topic Model for Image

 HH
Dirichlet

 HH
Stick
breaking

HH
zi
j 
k 
zi
j 
zi
j 

wi
N
wi
N
wi
N
A single image
with k topic
A single image
with inf-topic
J
J images
with inf-topic
Eric Xing © Eric Xing @ CMU, 2006-2010 30
An LDA A DP An HDP
Problem with HDPProblem with HDP
 Every group (i.e., image) has exactly the same set of visual-y g p ( g ) y
vocabulary topics, albeit with different frequency
HH
HH G0

zi
j


Gj
i
k
i
wi
N
wi
N
i
Eric Xing © Eric Xing @ CMU, 2006-2010 31
J J
Transformed Dirichlet ProcessTransformed Dirichlet Process
A t i f HDP i hi h l b l i t t
[Sudderth et al, 2005]
 An extension of HDP in which global mixture components
undergo a set of random transformations before being reused
in each group
HH HH
zi
j k


yi
j
 k
ki
wi
N
yi
wiN

RR
jk
Eric Xing © Eric Xing @ CMU, 2006-2010 32
J J
Synthetic Data ResultsSynthetic Data Results
 HDP uses a large set of global clusters to discretize the transformations
underlying the data, and may have poor generalization for modeling visual
scenes
Eric Xing © Eric Xing @ CMU, 2006-2010 33
scenes.
Analyzing Street ScenesAnalyzing Street Scenes
Eric Xing © Eric Xing @ CMU, 2006-2010 34
OutlineOutline
 Motivation and challengeg
 Dirichlet Process and Infinite Mixture
 Formulation
 Approximate Inference algorithmpp g
 Example: population clustering
 Hierarchical Dirichlet Process and Multi-Task Clustering
 Formulation
 Application: joint multiple population clustering
 Dynamic Dirichlet Process
 Temporal DPMp
 Application: evolutionary clustering of documents
 Summary
Eric Xing © Eric Xing @ CMU, 2006-2010 35
y
Evolutionary Clustering
 Adapts the number of mixture components over time
Evolutionary Clustering
p p
 Mixture components can die out
 New mixture components are born at any time
 Retained mixture components parameters evolve according to a Markovian
dynamics
CS
BioPhyPhy
Research 
Topics
1900 2000
Papers
Eric Xing © Eric Xing @ CMU, 2006-2010 36
1900 2000
Temporal DPM [Ah d d Xi 2008]Temporal DPM [Ahmed and Xing 2008]
 The Recurrent Chinese Restaurant Process
 The restaurant operates in epochs
 The restaurant is closed at the end of each epoch
 The state of the restaurant at time epoch t depends on that at time epoch t-1p p p
 Can be extended to higher-order dependencies.
Eric Xing © Eric Xing @ CMU, 2006-2010 37
2,11,1 3,1 T=1
N1,1=2 N2,1=3 N3,1=1
T=2
2,21,2 3,1 4,2
N2,3
T=3
2,21,2 4,2
Eric Xing © Eric Xing @ CMU, 2006-2010 38
N2,3 =
TDPM Generative Power
W=T
DPM

W=4
  
TDPM Power‐law
curve

W= 0
Independent 
DPMs
Eric Xing © Eric Xing @ CMU, 2006-2010 39
any)
Eric Xing © Eric Xing @ CMU, 2006-2010 40
The Big Picture TimeTime
 
K‐means Dynamic clusteringFixed-dimensions Dynamic clustering
ci


xi
N
ensionension

G
DPM TDPM

del Dimedel Dime
ci
 

 
Eric Xing © Eric Xing @ CMU, 2006-2010 41
MoMo
xi
N
Summary
 A non-parametric Bayesian model for Pattern Uncovery
Summary
p y y
 Finite mixture model of latent patterns (e.g., image segments, objects)
 infinite mixture of propotypes: alternative to model selection
 hi hi l i fi it i t hierarchical infinite mixture
 temporal infinite mixture model
 Applications in general data-mining …
Eric Xing © Eric Xing @ CMU, 2006-2010 42
F B f W d t T t l SFrom Bag‐of‐Words to Total Scene 
Understanding:
Evolutions of Topic Models in Vision
‐ Part 2 ‐‐ Part 2 ‐
L. Fei‐Fei
Computer Science Dept.
f dStanford University
Machine learning in computer vision
• Aug 15+16, Lecture 14 + 17: Topic modelsAug 15+16, Lecture 14 + 17: Topic models
– Object recognition
– Scene classification, image annotation, large‐scale image clustering
l d d– Total scene understanding
Aug 16: Part 2 – nonparametric topic models
8/8/2010 44L. Fei-Fei, Dragon Star 2010, Stanford
Case studies in visualCase studies in visual
• Sudderth et al:Sudderth et al:
– HDP for object recognition
• OPTIMOL• OPTIMOL:
– HDP for object recognition: incremental learning
• Li et al:
– CRP for large‐scale image clustering
Case studies in visualCase studies in visual
• Sudderth et al:Sudderth et al:
– HDP for object recognition
• OPTIMOL• OPTIMOL:
– HDP for object recognition: incremental learning
• Li et al:
– CRP for large‐scale image clustering
Describing Objects with Parts
Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973
Cascaded SVM Detectors
Heisele, Poggio, et. al., NIPS 2001
Constellation Model
Fergus, Perona, & Zisserman, CVPR 2003
Model-Guided Segmentation
Mori, Ren, Efros, & Malik, CVPR 2004
Counting Objects & Parts
How many parts? How many objects?
From Images to Features
Affinely Adapted Maximally Stable Linked SequencesAffinely Adapted
Harris Corners
y
Extremal Regions
q
of Canny Edges
• Some invariance to lighting & pose variationsSome invariance to lighting & pose variations
• Dense, multiscale, over-segmentation of image
A Discrete Feature Vocabulary
• Normalized histograms
SIFT Descriptors
Normalized histograms
of orientation energy
• Compute ~1,000 word Lowe IJCV 2004Compute 1,000 word
dictionary via K-means
• Map each feature to
appearance of
feature i in image j
Lowe, IJCV 2004
p
nearest visual word 2D position of
feature i in image j
Generative Model for Objects
For each image: Sample a reference position
For each feature:
 Randomly choose one part
 Sample from that part’s feature distribution
Objects as Mixture Models
• For a fixed reference position, our generative
model is equivalent to a finite mixture model:q
Feature Pr(part)
appearance
Feature
position
( )
Pr(appearance | part)
Pr(position | part)
• How many parts should we choose?
 Too few reduces model accuracy Too few reduces model accuracy
 Too many causes overfitting & poor generalization
Dirichlet Process Mixtures
• Dirichlet processes define a prior distribution
i ht i d t i t ton weights assigned to mixture components:
0 1
concentration
parameter
Stick-Breaking Construction: Sethuraman, 1994
Objects as Distributions
Feature
appearance
Feature
position
Pr(appearance | part) Pr(position | part)
• Parts are defined by parameters, which
encode distributions on visual features:
Obj t d fi d b di t ib ti th• Objects are defined by distributions on the
infinitely many potential part parameters:
Dirichlet Process Object Model
H RPart-based object model
sampled from DP prior:
G 

For each of J
images, sample a
reference position:

For each of N features,
sample part parameters:
JN
w vSample multinomial
feature appearance:
Sample Gaussian
feature position:Jfeature appearance: p
Learning DPs: Gibbs Sampling
P t S l &
H R
Image Scale
(insensitive)
Part Scale &
Visual Sparsity
(insensitive)
G Sample Integrate
 Sample
Integrate parameters
defining feature distributions
Sample assignments
clustering features to parts
JN
w v
J
Dirichlet processes have many desirable analytic properties,
which lead to efficient Rao-Blackwellized learning algorithms
Decomposing Faces into Parts
4 Images 16 Images 64 Images
Generalizing Across Categories
Can we transfer knowledge from one object category to another?
Learning Shared Parts
• Objects are often locally similar in appearance
• Discover parts shared across categories
 How many total parts should we share?y p
 How many parts should each category use?
Hierarchical DP Object Model
HH
RG0 R
G0
G 1G G2


JN
w v
L
Hierarchical DP Object Model
HH
R
Discrete Data:
Teh et. al., 2004
G0 R
G0
G 1G G2


JN
w v
L
Sharing Parts: 16 Categories
• Caltech 101 Dataset (Li & Perona)
• Horses (Borenstein & Ullman)
• Cat & dog faces (Vidal-Naquet & Ullman)
• Bikes from Graz-02 (Opelt & Pinz)
• Google…
Visualization of Shared Parts
P ( | )
Pr(position | part)
Pr(appearance | part)
Visualization of Shared Parts
P ( | )
Pr(position | part)
Pr(appearance | part)
Visualization of Shared Parts
P ( | )
Pr(position | part)
Pr(appearance | part)
Visualization of Part Densities
MDS Embedding of Pr(part | object)
Visualization of Part Densities
Horse Face
Llama Body
Wheelchair
Dog Face
Cow Face
Llama Face
Cat Face
Cougar Face
Leopard Face
g
Motorbike
Bicycle
Cannon
Cat Face
Rhino Body
Horse Body
Leopard Body
Motorbike
Hierarchical Clustering of Pr(part | object)
Elephant Body
Rhino Body
Detection Task
Detection Results
Shared Parts
more accurate than
Unshared PartsUnshared Parts
Modeling feature positions
improves shared detection, but
hurts unshared detectionhurts unshared detection
6 Training Images per Category
(ROC Curves)
Detection Results
6 Training Images per Category Detection vs. Training Set Size
(ROC Curves) (Area Under ROC)
Sharing Simplifies Models
450
500
350
400
alParts
250
300
rofGlobalP
Position & Appearance, HDP
Position & Appearance, DP
Appearance Only, HDP
150
200
Numbero
Appearance Only, HDP
50
100
N
5 10 15 20 25 30
0
Number of Training Images
Recognition Task
Recognition Results
6 Training Images per Category
(ROC C )
Detection vs. Training Set Size
(ROC Curves) (Area Under ROC)
Case studies in visualCase studies in visual
• Sudderth et al:Sudderth et al:
– HDP for object recognition
• OPTIMOL• OPTIMOL:
– HDP for object recognition: incremental learning
• Li et al:
– CRP for large‐scale image clustering
a chicken and egg problem…OPTIMOLOPTIMOL
…among users, researchers, and data
OPTIMOLOPTIMOL
researcher
e.g. Caltech101,
LabelMe, LHI
ImagesImages
LabelMe, LHI
Internet user
Related workOPTIMOLOPTIMOL
• Feng & Chua (2003)• Feng & Chua (2003)
• Fergus, Fei-Fei, Perona & Zisserman (2005)
• Yanai & Barnard (2005)• Yanai & Barnard (2005)
• Berg, Berg & Forsyth (‘Animals on the web’,
2006)2006)
• Schroff, Criminisi, Zisserman (2007)
• Collins Deng Li & Fei Fei (2008)• Collins, Deng, Li & Fei-Fei (2008)
• …
OPTIMOL in a glanceOPTIMOLOPTIMOL
Category
Dataset
Category
model
Classification
Keyword: accordion Li, Wang & Fei-Fei, CVPR 2007
D t t
OPTIMOL in a glanceOPTIMOLOPTIMOL
Category
Dataset
Category
model
Classification
Keyword: accordion Li, Wang & Fei-Fei, CVPR 2007
Image representationOPTIMOLOPTIMOL
Kadir&Brady interest
i t d t tpoint detector
Codewords
representation
…
representation
Compute SIFT
descriptor
[Lowe’99]
Nonparametric topic model
‐Hierarchical Dirichlet Process (HDP)( )
Each
image
N
Each
patch
M
Teh, et al. 2004; Sudderth et al. CVPR 2006; Wang, Zhang & Fei-Fei, CVPR 2006
Nonparametric topic model
‐Hierarchical Dirichlet Process (HDP)( )
N
M
Teh, et al. 2004; Sudderth et al. CVPR 2006; Wang, Zhang & Fei-Fei, CVPR 2006
ClassificationOPTIMOLOPTIMOL
Category likelihood for I:
Likelihood ratio for decision:Likelihood ratio for decision:
Li, Wang & Fei-Fei, CVPR 2007
AnnotationOPTIMOLOPTIMOL
Li, Wang & Fei-Fei, CVPR 2007
OPTIMOLOPTIMOL Pitfall: model over‐specializationPitfall: model over specialization
Object Model…
Good Images “Bad” Images
Li, Wang & Fei-Fei, CVPR 2007
The “cache set”OPTIMOLOPTIMOL
pyodelentropMo
Li, Wang & Fei-Fei, CVPR 2007
The “cache set”OPTIMOLOPTIMOL
pyodelentropMo
Li, Wang & Fei-Fei, CVPR 2007
The “cache set”OPTIMOLOPTIMOL
C h S tC h S t C h S tC h S td t td t t d t td t t
Li, Wang & Fei-Fei, CVPR 2007
Cache SetCache Set Cache SetCache Setdatasetdataset datasetdataset
C t
learn
Seed images
Category
Model
Initialization
classification
Rejecte
images
ed
s
Raw image dataset
C t
Incremental
learning
Seed images
Category
Model
Cache
Enlarged dataset
classification
Raw image dataset
Experiments and ResultsOPTIMOLOPTIMOL
• DatasetDataset
• Object categorization
A l i• Analysis
– Batch vs. incremental
– Diversity
– Polysemy
• OPTIMOL wins robotic competition!
Li, Wang & Fei-Fei, CVPR 2007
DatasetOPTIMOLOPTIMOL
Li, Wang & Fei-Fei, CVPR 2007
Li, Wang & Fei-Fei, CVPR 2007
Object categorization
OPTIMOLOPTIMOL
Li, Wang & Fei-Fei, CVPR 2007
Testing dataset: Fergus et al. ICCV 2005
Analysis: batch vs. incremental 
learning
OPTIMOLOPTIMOL
learning
Li & Fei-Fei, IJCV, in press
Analysis: diversity
OPTIMOLOPTIMOL
Analysis: diversity
OPTIMOLOPTIMOL
Analysis: diversity
OPTIMOLOPTIMOL
Analysis: polysemy
OPTIMOLOPTIMOL
Analysis: polysemy
OPTIMOLOPTIMOL
OPTIMOLOPTIMOLOPTIMOLOPTIMOL
Mouse (animal) Mouse (computer)Mouse (animal) Mouse (computer)
Analysis: polysemy
OPTIMOLOPTIMOL
OPTIMOLOPTIMOLOPTIMOLOPTIMOL
Bass (fish)Bass (instrument) Bass (fish)Bass (instrument)
Team OPTIMOL (UIUC‐Princeton)
1st Place in the software leagueOPTIMOLOPTIMOL
1st Place in the software league
Case studies in visualCase studies in visual
• Sudderth et al:Sudderth et al:
– HDP for object recognition
• OPTIMOL• OPTIMOL:
– HDP for object recognition: incremental learning
• Li et al:
– CRP for large‐scale image clustering
From 1 image ‐> 100…0000 imagesFrom 1 image  > 100…0000 images
70GB; 10^5‐10^6 images
10^7 or 10^810^7 or 10^8
To organize lots of data & many concepts, 
hierarchy is usefulhierarchy is useful
(Miller et al. 1995; Fellbaum et al. 1998)( ; )
Semantic hierarchy
G l i l f iS Geological formationSport event
Snow boarding Snow mountain
(purely) visual hierarchy
Nested‐CRP, Blei et al. NIPS 2004
Sivic, Russell, Zisserman, Freeman, Efros, CVPR 2008 Bart, Porteous, Perona, Welling, CVPR 2008
A “semantivisual” hierarchy of images
My Pictures
vacationwork
more… more…
… … …
Hawaii Paris Ski
more more more
……
more… more… more…
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
A “semantivisual” hierarchy of images
R:   Region Appearance
W: Words
N:   Node in the tree
T:    Tree
w1 = parrot
p(N_ik|R _i, W_k)
p
w2 = beak
w3 = zoo
p(R_i|R_rest,T)
p(W_k|W_rest,T,R_i)
p(N_ik|T, N_ik_rest)
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
A “semantivisual” hierarchy of images
R:   Region Appearance
W: Words
N:   Node in the tree
T:    Tree
p(N_ik|R _i, W_k)
p(R_i|R_rest,T)
p(W_k|W_rest,T,R_i)
N* = argmax (N_{R})
N {R} h
p(N_ik|T, N_ik_rest)
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
N_{R}: No. Regions assigned to the node
A “semantivisual” hierarchy of images
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
animal, bride, building, cake, child, christmas,
church, city, clouds, dessert, dinner, flower,
spring, friends, fruit, green, high‐school, calcio,
40 tags, 4000 images
spring, friends, fruit, green, high school, calcio,
italy, europe, london, love, nature, landscape,
macro, paris, party, present, sea, sun, sky,
seagull, soccer, reflection, sushi, vacation, trip,
water, silhouette, and wife.water, silhouette, and wife.
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
4000 images
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
4000 images
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
4000 images
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
4000 images
VPR, 2010& Fei‐Fei, CVLim, Blei&Li, Wang, 
Evaluating and using the hierarchy
Evaluate the quality of image concept clustering by path
Evaluate the quality of hierarchy given a path of the tree
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
Evaluating and using the hierarchy
• Hierarchical annotation
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
Evaluating and using the hierarchy
• Hierarchical annotation
• Image labeling (annotation)
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010
Evaluating and using the hierarchy
• Hierarchical annotation
• Image labeling (annotation)
• Image classificationImage classification
Li, Wang, Lim, Blei & Fei‐Fei, CVPR, 2010

More Related Content

What's hot

Data-Driven Recommender Systems
Data-Driven Recommender SystemsData-Driven Recommender Systems
Data-Driven Recommender Systems
recsysfr
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practice
tuxette
 
Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"
tuxette
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...
tuxette
 
DTLC-GAN
DTLC-GANDTLC-GAN
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
FedorNikolaev
 
Enhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points AnalysisEnhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points Analysis
jfrchicanog
 
ShawnQuinnCSS581FinalProjectReport
ShawnQuinnCSS581FinalProjectReportShawnQuinnCSS581FinalProjectReport
ShawnQuinnCSS581FinalProjectReportShawn Quinn
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
tuxette
 
2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading
Shinagawa Seitaro
 
Learning to Reconstruct
Learning to ReconstructLearning to Reconstruct
Learning to Reconstruct
Jonas Adler
 
Towards new solutions for scientific computing: the case of Julia
Towards new solutions for scientific computing: the case of JuliaTowards new solutions for scientific computing: the case of Julia
Towards new solutions for scientific computing: the case of Julia
Maurizio Tomasi
 
ICPR 2012
ICPR 2012ICPR 2012
ICPR 2012
BOUWMANS Thierry
 
PSIVT2015_slide
PSIVT2015_slidePSIVT2015_slide
PSIVT2015_slide
norikinishida
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity data
tuxette
 
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
AMIDST Toolbox
 
Likelihood free computational statistics
Likelihood free computational statisticsLikelihood free computational statistics
Likelihood free computational statistics
Pierre Pudlo
 
Diversity mechanisms for evolutionary populations in Search-Based Software En...
Diversity mechanisms for evolutionary populations in Search-Based Software En...Diversity mechanisms for evolutionary populations in Search-Based Software En...
Diversity mechanisms for evolutionary populations in Search-Based Software En...
Annibale Panichella
 
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper reviewReviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
changedaeoh
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
changedaeoh
 

What's hot (20)

Data-Driven Recommender Systems
Data-Driven Recommender SystemsData-Driven Recommender Systems
Data-Driven Recommender Systems
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practice
 
Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...
 
DTLC-GAN
DTLC-GANDTLC-GAN
DTLC-GAN
 
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
 
Enhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points AnalysisEnhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points Analysis
 
ShawnQuinnCSS581FinalProjectReport
ShawnQuinnCSS581FinalProjectReportShawnQuinnCSS581FinalProjectReport
ShawnQuinnCSS581FinalProjectReport
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
 
2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading
 
Learning to Reconstruct
Learning to ReconstructLearning to Reconstruct
Learning to Reconstruct
 
Towards new solutions for scientific computing: the case of Julia
Towards new solutions for scientific computing: the case of JuliaTowards new solutions for scientific computing: the case of Julia
Towards new solutions for scientific computing: the case of Julia
 
ICPR 2012
ICPR 2012ICPR 2012
ICPR 2012
 
PSIVT2015_slide
PSIVT2015_slidePSIVT2015_slide
PSIVT2015_slide
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity data
 
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block De...
 
Likelihood free computational statistics
Likelihood free computational statisticsLikelihood free computational statistics
Likelihood free computational statistics
 
Diversity mechanisms for evolutionary populations in Search-Based Software En...
Diversity mechanisms for evolutionary populations in Search-Based Software En...Diversity mechanisms for evolutionary populations in Search-Based Software En...
Diversity mechanisms for evolutionary populations in Search-Based Software En...
 
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper reviewReviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
 

Viewers also liked

Lecture4 xing
Lecture4 xingLecture4 xing
Lecture4 xing
Tianlu Wang
 
Lecture2 xing
Lecture2 xingLecture2 xing
Lecture2 xing
Tianlu Wang
 
Lecture19 xing
Lecture19 xingLecture19 xing
Lecture19 xing
Tianlu Wang
 
Lecture18 xing
Lecture18 xingLecture18 xing
Lecture18 xing
Tianlu Wang
 
Lecture20 xing
Lecture20 xingLecture20 xing
Lecture20 xing
Tianlu Wang
 
Lecture15 xing
Lecture15 xingLecture15 xing
Lecture15 xing
Tianlu Wang
 
Lecture7 xing fei-fei
Lecture7 xing fei-feiLecture7 xing fei-fei
Lecture7 xing fei-fei
Tianlu Wang
 
Lecture8 xing
Lecture8 xingLecture8 xing
Lecture8 xing
Tianlu Wang
 
Lecture11 xing
Lecture11 xingLecture11 xing
Lecture11 xing
Tianlu Wang
 
Lecture6 xing
Lecture6 xingLecture6 xing
Lecture6 xing
Tianlu Wang
 
Lecture14 xing fei-fei
Lecture14 xing fei-feiLecture14 xing fei-fei
Lecture14 xing fei-fei
Tianlu Wang
 
Lecture16 xing
Lecture16 xingLecture16 xing
Lecture16 xing
Tianlu Wang
 
Lecture5 xing
Lecture5 xingLecture5 xing
Lecture5 xing
Tianlu Wang
 
Lecture1 xing fei-fei
Lecture1 xing fei-feiLecture1 xing fei-fei
Lecture1 xing fei-fei
Tianlu Wang
 
Lecture12 xing
Lecture12 xingLecture12 xing
Lecture12 xing
Tianlu Wang
 
Lecture9 xing
Lecture9 xingLecture9 xing
Lecture9 xing
Tianlu Wang
 
Lecture3 xing fei-fei
Lecture3 xing fei-feiLecture3 xing fei-fei
Lecture3 xing fei-fei
Tianlu Wang
 
Lecture13 xing fei-fei
Lecture13 xing fei-feiLecture13 xing fei-fei
Lecture13 xing fei-fei
Tianlu Wang
 

Viewers also liked (18)

Lecture4 xing
Lecture4 xingLecture4 xing
Lecture4 xing
 
Lecture2 xing
Lecture2 xingLecture2 xing
Lecture2 xing
 
Lecture19 xing
Lecture19 xingLecture19 xing
Lecture19 xing
 
Lecture18 xing
Lecture18 xingLecture18 xing
Lecture18 xing
 
Lecture20 xing
Lecture20 xingLecture20 xing
Lecture20 xing
 
Lecture15 xing
Lecture15 xingLecture15 xing
Lecture15 xing
 
Lecture7 xing fei-fei
Lecture7 xing fei-feiLecture7 xing fei-fei
Lecture7 xing fei-fei
 
Lecture8 xing
Lecture8 xingLecture8 xing
Lecture8 xing
 
Lecture11 xing
Lecture11 xingLecture11 xing
Lecture11 xing
 
Lecture6 xing
Lecture6 xingLecture6 xing
Lecture6 xing
 
Lecture14 xing fei-fei
Lecture14 xing fei-feiLecture14 xing fei-fei
Lecture14 xing fei-fei
 
Lecture16 xing
Lecture16 xingLecture16 xing
Lecture16 xing
 
Lecture5 xing
Lecture5 xingLecture5 xing
Lecture5 xing
 
Lecture1 xing fei-fei
Lecture1 xing fei-feiLecture1 xing fei-fei
Lecture1 xing fei-fei
 
Lecture12 xing
Lecture12 xingLecture12 xing
Lecture12 xing
 
Lecture9 xing
Lecture9 xingLecture9 xing
Lecture9 xing
 
Lecture3 xing fei-fei
Lecture3 xing fei-feiLecture3 xing fei-fei
Lecture3 xing fei-fei
 
Lecture13 xing fei-fei
Lecture13 xing fei-feiLecture13 xing fei-fei
Lecture13 xing fei-fei
 

Similar to Lecture17 xing fei-fei

Nature-Inspired Optimization Algorithms
Nature-Inspired Optimization Algorithms Nature-Inspired Optimization Algorithms
Nature-Inspired Optimization Algorithms
Xin-She Yang
 
Introduction to Genetic Algorithms
Introduction to Genetic AlgorithmsIntroduction to Genetic Algorithms
Introduction to Genetic Algorithms
Premsankar Chakkingal
 
Object Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet IIIObject Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet III
Wanjin Yu
 
NIPS読み会2013: One-shot learning by inverting a compositional causal process
NIPS読み会2013: One-shot learning by inverting  a compositional causal processNIPS読み会2013: One-shot learning by inverting  a compositional causal process
NIPS読み会2013: One-shot learning by inverting a compositional causal processnozyh
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Umberto Picchini
 
生態文化ニッチモデリングによる分布推定
生態文化ニッチモデリングによる分布推定生態文化ニッチモデリングによる分布推定
生態文化ニッチモデリングによる分布推定
Yasuhisa Kondo
 
lecture1-Introduction introduction to graphical modeling
lecture1-Introduction introduction to graphical modelinglecture1-Introduction introduction to graphical modeling
lecture1-Introduction introduction to graphical modeling
sophiapartpwrggw
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf
수철 박
 
Using AI Planning to Automate the Performance Analysis of Simulators
Using AI Planning to Automate the Performance Analysis of SimulatorsUsing AI Planning to Automate the Performance Analysis of Simulators
Using AI Planning to Automate the Performance Analysis of Simulators
Roland Ewald
 
Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...
哲东 郑
 
Metaheuristic Algorithms: A Critical Analysis
Metaheuristic Algorithms: A Critical AnalysisMetaheuristic Algorithms: A Critical Analysis
Metaheuristic Algorithms: A Critical Analysis
Xin-She Yang
 
ct_meeting_final_jcy (1).pdf
ct_meeting_final_jcy (1).pdfct_meeting_final_jcy (1).pdf
ct_meeting_final_jcy (1).pdf
ssuser2c7393
 
Introduction to Julia
Introduction to JuliaIntroduction to Julia
Introduction to Julia
岳華 杜
 
fully convolutional networks for semantic segmentation
fully convolutional networks for semantic segmentationfully convolutional networks for semantic segmentation
fully convolutional networks for semantic segmentation
XinyangLi16
 
HOP-Rec_RecSys18
HOP-Rec_RecSys18HOP-Rec_RecSys18
HOP-Rec_RecSys18
Matt Yang
 
Master Thesis Defense
Master Thesis DefenseMaster Thesis Defense
Master Thesis Defense
Filipo Mór
 
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Association for Computational Linguistics
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
ssuser165ef9
 
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Antonio Lieto
 
Chap 8. Optimization for training deep models
Chap 8. Optimization for training deep modelsChap 8. Optimization for training deep models
Chap 8. Optimization for training deep models
Young-Geun Choi
 

Similar to Lecture17 xing fei-fei (20)

Nature-Inspired Optimization Algorithms
Nature-Inspired Optimization Algorithms Nature-Inspired Optimization Algorithms
Nature-Inspired Optimization Algorithms
 
Introduction to Genetic Algorithms
Introduction to Genetic AlgorithmsIntroduction to Genetic Algorithms
Introduction to Genetic Algorithms
 
Object Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet IIIObject Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet III
 
NIPS読み会2013: One-shot learning by inverting a compositional causal process
NIPS読み会2013: One-shot learning by inverting  a compositional causal processNIPS読み会2013: One-shot learning by inverting  a compositional causal process
NIPS読み会2013: One-shot learning by inverting a compositional causal process
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
 
生態文化ニッチモデリングによる分布推定
生態文化ニッチモデリングによる分布推定生態文化ニッチモデリングによる分布推定
生態文化ニッチモデリングによる分布推定
 
lecture1-Introduction introduction to graphical modeling
lecture1-Introduction introduction to graphical modelinglecture1-Introduction introduction to graphical modeling
lecture1-Introduction introduction to graphical modeling
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf
 
Using AI Planning to Automate the Performance Analysis of Simulators
Using AI Planning to Automate the Performance Analysis of SimulatorsUsing AI Planning to Automate the Performance Analysis of Simulators
Using AI Planning to Automate the Performance Analysis of Simulators
 
Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...Cross-domain complementary learning with synthetic data for multi-person part...
Cross-domain complementary learning with synthetic data for multi-person part...
 
Metaheuristic Algorithms: A Critical Analysis
Metaheuristic Algorithms: A Critical AnalysisMetaheuristic Algorithms: A Critical Analysis
Metaheuristic Algorithms: A Critical Analysis
 
ct_meeting_final_jcy (1).pdf
ct_meeting_final_jcy (1).pdfct_meeting_final_jcy (1).pdf
ct_meeting_final_jcy (1).pdf
 
Introduction to Julia
Introduction to JuliaIntroduction to Julia
Introduction to Julia
 
fully convolutional networks for semantic segmentation
fully convolutional networks for semantic segmentationfully convolutional networks for semantic segmentation
fully convolutional networks for semantic segmentation
 
HOP-Rec_RecSys18
HOP-Rec_RecSys18HOP-Rec_RecSys18
HOP-Rec_RecSys18
 
Master Thesis Defense
Master Thesis DefenseMaster Thesis Defense
Master Thesis Defense
 
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
Jindřich Libovický - 2017 - Attention Strategies for Multi-Source Sequence-...
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
 
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...Commonsense reasoning as a key feature for dynamic knowledge invention and co...
Commonsense reasoning as a key feature for dynamic knowledge invention and co...
 
Chap 8. Optimization for training deep models
Chap 8. Optimization for training deep modelsChap 8. Optimization for training deep models
Chap 8. Optimization for training deep models
 

More from Tianlu Wang

14 pro resolution
14 pro resolution14 pro resolution
14 pro resolution
Tianlu Wang
 
13 propositional calculus
13 propositional calculus13 propositional calculus
13 propositional calculus
Tianlu Wang
 
12 adversal search
12 adversal search12 adversal search
12 adversal search
Tianlu Wang
 
11 alternative search
11 alternative search11 alternative search
11 alternative search
Tianlu Wang
 
21 situation calculus
21 situation calculus21 situation calculus
21 situation calculus
Tianlu Wang
 
20 bayes learning
20 bayes learning20 bayes learning
20 bayes learning
Tianlu Wang
 
19 uncertain evidence
19 uncertain evidence19 uncertain evidence
19 uncertain evidence
Tianlu Wang
 
18 common knowledge
18 common knowledge18 common knowledge
18 common knowledge
Tianlu Wang
 
17 2 expert systems
17 2 expert systems17 2 expert systems
17 2 expert systems
Tianlu Wang
 
17 1 knowledge-based system
17 1 knowledge-based system17 1 knowledge-based system
17 1 knowledge-based system
Tianlu Wang
 
16 2 predicate resolution
16 2 predicate resolution16 2 predicate resolution
16 2 predicate resolution
Tianlu Wang
 
16 1 predicate resolution
16 1 predicate resolution16 1 predicate resolution
16 1 predicate resolution
Tianlu Wang
 
09 heuristic search
09 heuristic search09 heuristic search
09 heuristic search
Tianlu Wang
 
08 uninformed search
08 uninformed search08 uninformed search
08 uninformed search
Tianlu Wang
 

More from Tianlu Wang (20)

L7 er2
L7 er2L7 er2
L7 er2
 
L8 design1
L8 design1L8 design1
L8 design1
 
L9 design2
L9 design2L9 design2
L9 design2
 
14 pro resolution
14 pro resolution14 pro resolution
14 pro resolution
 
13 propositional calculus
13 propositional calculus13 propositional calculus
13 propositional calculus
 
12 adversal search
12 adversal search12 adversal search
12 adversal search
 
11 alternative search
11 alternative search11 alternative search
11 alternative search
 
10 2 sum
10 2 sum10 2 sum
10 2 sum
 
22 planning
22 planning22 planning
22 planning
 
21 situation calculus
21 situation calculus21 situation calculus
21 situation calculus
 
20 bayes learning
20 bayes learning20 bayes learning
20 bayes learning
 
19 uncertain evidence
19 uncertain evidence19 uncertain evidence
19 uncertain evidence
 
18 common knowledge
18 common knowledge18 common knowledge
18 common knowledge
 
17 2 expert systems
17 2 expert systems17 2 expert systems
17 2 expert systems
 
17 1 knowledge-based system
17 1 knowledge-based system17 1 knowledge-based system
17 1 knowledge-based system
 
16 2 predicate resolution
16 2 predicate resolution16 2 predicate resolution
16 2 predicate resolution
 
16 1 predicate resolution
16 1 predicate resolution16 1 predicate resolution
16 1 predicate resolution
 
15 predicate
15 predicate15 predicate
15 predicate
 
09 heuristic search
09 heuristic search09 heuristic search
09 heuristic search
 
08 uninformed search
08 uninformed search08 uninformed search
08 uninformed search
 

Recently uploaded

Fashionista Chic Couture Mazes and Coloring AdventureA
Fashionista Chic Couture Mazes and Coloring AdventureAFashionista Chic Couture Mazes and Coloring AdventureA
Fashionista Chic Couture Mazes and Coloring AdventureA
julierjefferies8888
 
HOW TO USE PINTEREST_by: Clarissa Credito
HOW TO USE PINTEREST_by: Clarissa CreditoHOW TO USE PINTEREST_by: Clarissa Credito
HOW TO USE PINTEREST_by: Clarissa Credito
ClarissaAlanoCredito
 
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
zeyhe
 
My storyboard for a sword fight scene with lightsabers
My storyboard for a sword fight scene with lightsabersMy storyboard for a sword fight scene with lightsabers
My storyboard for a sword fight scene with lightsabers
AlejandroGuarnGutirr
 
Cream and Brown Illustrative Food Journal Presentation.pptx
Cream and Brown Illustrative Food Journal Presentation.pptxCream and Brown Illustrative Food Journal Presentation.pptx
Cream and Brown Illustrative Food Journal Presentation.pptx
cndywjya001
 
Award template for beginner students of DVBS
Award template for beginner students of DVBSAward template for beginner students of DVBS
Award template for beginner students of DVBS
RodilynColampit
 
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
KendraJohnson54
 
Cherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintingsCherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintings
sandamichaela *
 
Codes n Conventions Website Media studies.pptx
Codes n Conventions Website Media studies.pptxCodes n Conventions Website Media studies.pptx
Codes n Conventions Website Media studies.pptx
ZackSpencer3
 
This is a certificate template for Daily Vacation Bible School Awards Can edi...
This is a certificate template for Daily Vacation Bible School Awards Can edi...This is a certificate template for Daily Vacation Bible School Awards Can edi...
This is a certificate template for Daily Vacation Bible School Awards Can edi...
RodilynColampit
 
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdfWEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
AntonetteLaurio1
 
Dino Ranch Storyboard / Kids TV Advertising
Dino Ranch Storyboard / Kids TV AdvertisingDino Ranch Storyboard / Kids TV Advertising
Dino Ranch Storyboard / Kids TV Advertising
Alessandro Occhipinti
 
My storyboard for the short film "Maatla".
My storyboard for the short film "Maatla".My storyboard for the short film "Maatla".
My storyboard for the short film "Maatla".
AlejandroGuarnGutirr
 
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvnFinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
abbieharman
 
Domino Express Storyboard - TV Adv Toys 30"
Domino Express Storyboard - TV Adv Toys 30"Domino Express Storyboard - TV Adv Toys 30"
Domino Express Storyboard - TV Adv Toys 30"
Alessandro Occhipinti
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
2024 MATFORCE Youth Poster Contest Winners
2024 MATFORCE Youth Poster Contest Winners2024 MATFORCE Youth Poster Contest Winners
2024 MATFORCE Youth Poster Contest Winners
matforce
 
Fed by curiosity and beauty - Remembering Myrsine Zorba
Fed by curiosity and beauty - Remembering Myrsine ZorbaFed by curiosity and beauty - Remembering Myrsine Zorba
Fed by curiosity and beauty - Remembering Myrsine Zorba
mariavlachoupt
 
A Brief Introduction About Hadj Ounis
A Brief  Introduction  About  Hadj OunisA Brief  Introduction  About  Hadj Ounis
A Brief Introduction About Hadj Ounis
Hadj Ounis
 
FinalFinalSelf-PortraiturePowerPoint.pptx
FinalFinalSelf-PortraiturePowerPoint.pptxFinalFinalSelf-PortraiturePowerPoint.pptx
FinalFinalSelf-PortraiturePowerPoint.pptx
abbieharman
 

Recently uploaded (20)

Fashionista Chic Couture Mazes and Coloring AdventureA
Fashionista Chic Couture Mazes and Coloring AdventureAFashionista Chic Couture Mazes and Coloring AdventureA
Fashionista Chic Couture Mazes and Coloring AdventureA
 
HOW TO USE PINTEREST_by: Clarissa Credito
HOW TO USE PINTEREST_by: Clarissa CreditoHOW TO USE PINTEREST_by: Clarissa Credito
HOW TO USE PINTEREST_by: Clarissa Credito
 
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
一比一原版(UniSA毕业证)南澳大学毕业证成绩单如何办理
 
My storyboard for a sword fight scene with lightsabers
My storyboard for a sword fight scene with lightsabersMy storyboard for a sword fight scene with lightsabers
My storyboard for a sword fight scene with lightsabers
 
Cream and Brown Illustrative Food Journal Presentation.pptx
Cream and Brown Illustrative Food Journal Presentation.pptxCream and Brown Illustrative Food Journal Presentation.pptx
Cream and Brown Illustrative Food Journal Presentation.pptx
 
Award template for beginner students of DVBS
Award template for beginner students of DVBSAward template for beginner students of DVBS
Award template for beginner students of DVBS
 
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
Brushstrokes of Inspiration: Four Major Influences in Victor Gilbert’s Artist...
 
Cherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintingsCherries 32 collection of colorful paintings
Cherries 32 collection of colorful paintings
 
Codes n Conventions Website Media studies.pptx
Codes n Conventions Website Media studies.pptxCodes n Conventions Website Media studies.pptx
Codes n Conventions Website Media studies.pptx
 
This is a certificate template for Daily Vacation Bible School Awards Can edi...
This is a certificate template for Daily Vacation Bible School Awards Can edi...This is a certificate template for Daily Vacation Bible School Awards Can edi...
This is a certificate template for Daily Vacation Bible School Awards Can edi...
 
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdfWEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
WEEK 11 PART 1- SOULMAKING (ARTMAKING) (1).pdf
 
Dino Ranch Storyboard / Kids TV Advertising
Dino Ranch Storyboard / Kids TV AdvertisingDino Ranch Storyboard / Kids TV Advertising
Dino Ranch Storyboard / Kids TV Advertising
 
My storyboard for the short film "Maatla".
My storyboard for the short film "Maatla".My storyboard for the short film "Maatla".
My storyboard for the short film "Maatla".
 
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvnFinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
FinalA1LessonPlanMaking.docxdvdnlskdnvsldkvnsdkvn
 
Domino Express Storyboard - TV Adv Toys 30"
Domino Express Storyboard - TV Adv Toys 30"Domino Express Storyboard - TV Adv Toys 30"
Domino Express Storyboard - TV Adv Toys 30"
 
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
➒➌➎➏➑➐➋➑➐➐ Dpboss Satta Matka Matka Guessing Kalyan Chart Indian Matka Satta ...
 
2024 MATFORCE Youth Poster Contest Winners
2024 MATFORCE Youth Poster Contest Winners2024 MATFORCE Youth Poster Contest Winners
2024 MATFORCE Youth Poster Contest Winners
 
Fed by curiosity and beauty - Remembering Myrsine Zorba
Fed by curiosity and beauty - Remembering Myrsine ZorbaFed by curiosity and beauty - Remembering Myrsine Zorba
Fed by curiosity and beauty - Remembering Myrsine Zorba
 
A Brief Introduction About Hadj Ounis
A Brief  Introduction  About  Hadj OunisA Brief  Introduction  About  Hadj Ounis
A Brief Introduction About Hadj Ounis
 
FinalFinalSelf-PortraiturePowerPoint.pptx
FinalFinalSelf-PortraiturePowerPoint.pptxFinalFinalSelf-PortraiturePowerPoint.pptx
FinalFinalSelf-PortraiturePowerPoint.pptx
 

Lecture17 xing fei-fei