BAB 1. PERPANGKATAN DAN BENTUK 
AKAR 
A. PANGKAT BULAT POSITIF 
a. Pengertian Pangkat Bulat Positif 
Pengertian berganda dengan faktor-faktor yang sama. Operasinya disebut perpangkatan, 
notasinya disebut notasi eksponen. Bilangan 75 merupakan bilangan berpangkat, dengan 
7 merupakan bilangan pokok dan 5 merupakan pangkat. 
Jika a adalah bilangan riil dan n bilangan bulat positif maka an (dibaca "a pangkat n") 
adalah hasil kali n buah faktor yang masing-masing faktornya adalah a. Jadi, pangkat 
bulat positif secara umum dinyatakan dalam bentuk 
dengan: a = bilangan pokok (basis); 
n = pangkat atau eksponen; 
an = bilangan berpangkat.
b. Sifat-sifat bilangan dengan Pangkat Bulat Positif 
Jika m,n ∈ R dan a,b ∈ R, maka berlaku sifat-sifat berikut : 
 Sifat Perkalian am.an = am+n 
 Sifat Pembagian 
a푚 
푎n= am-n 
 Sifat Pemangkatan (a푚)푛 = am.n 
 Sifat Perkalian dan pemangkatan (a.b)m = am.bm 
 Sifat Pembagian dan pemangkatan (푎 
푏 
) 
푚 
= 
a푚 
푏m , dengan b≠0
B. PANGKAT BULAT NEGATIF DAN NOL 
a. Pengertian Pangkat Bulat Negatif 
Untuk memahami dan mengerti apa definisi pangkat bulat negative, perhatikan contoh 
dibawah ini : 
a. Perhatikan bahwa a4 : a6 = a4-6 = a-2 atau 
푎4 
푎6= 푎×푎 ×푎×푎 
푎×푎×푎 ×푎×푎 ×푎 
= 1 
푎×푎 
= 1 
푎2. 
Jadi, a-2= 1 
푎2. 
Dari contoh diatas, dapat didefinisikan bilangan berpangkat bulat negative sebagai 
berikut : 
Contoh Soal :
b. Pengertian Pangkat Nol 
Jika m,n bilangan bulat positif dan m=n, maka am-n = a0. Untuk menentukan nilai dari 
bilangan pangkat nol, perhatikan uraian berikut : 
Sehingga dapat kita definisikan sebagai berikut : 
C. BILANGAN RASIONAL, IRASIONAL, DAN BENTUK AKAR 
a. Bilangan Rasional 
Bilangan rasional dapat dinyatakan dalam bentuk bilangan decimal, baik berupa bilangan 
decimal berulang atau bilangan decimal tidak berulang. Sebagai contoh : 
3 = 3,0000… → bilangan bulat atau berulang 0 
1 
= 0,25 → tidak berulang tapi terbatas 
4
1 
6 
= 0,1666… → berulang 6 
3 
11 
= 0,2727 → berulang 27 
Penulisan bilangan desimal berulang dapat disingkat dengan membubuhkan tanda garis 
diatas angka yang berulang tersebut. Sebagai contoh 0,2727 = ̅0̅̅,2̅̅7̅. 
Dapat disimpulakan bahwa bilangan rasional meliputi bilangan bulat dan bilangan 
pecahan. 
b. Bilangan Irasional 
Bilangan irasional dapat dinyatakan dalam bentuk bilangan desimal tak berulang tak 
terbatas. Perhatikan bilangan berikut ini! 
√2 = 1,414213… 
−√5 = -2,236067… 
휋 = 3,1415… 
푒 = 2,1782… 
Bilangan-bilangan diatas merupakan bilangan irasional karena bila dinyatakan dalam 
bilangan desimal, bentuknya bilangan desimal tak berulang tak terbatas. Dengan kata 
lain, bilangan-bilangan tersebut tidak dapat dinyatakan dalam bentuk 
푎 
푏 
dengan a,b 
bilangan bulat dan b≠0. Dan tidak selamanya bilangan berakar termasuk bilangan 
irasional, yang dinyatakan sebagai bilangan irasional adalah hasil akar yang tidak 
bilangan bulat. 
c. Bentuk Akar 
Bentuk akar adalah akar bilangan rasional yag hasilnya merupakan bilangan irasional.
Jika a dan b bilangan real serta n bilangan bulat positif, maka : 
an = ↔ √푏 푛 = a 
Dari definisi diatas, apabila 푛 bilangan genap, maka berlaku : 
an = ↔ √푏 푛 = a, dengan a,b ≥ 0. 
d. Menyederhanakan Bentuk Akar 
Bentuk-bentuk akar dapat disederhanakan dengan menggunakan sifat-sifat akar berikut 
ini : 
e. Operasi Aljabar Pada Bentuk Akar 
1. Penjumlahan dan pengurangan 
Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan apabila bentuk 
akar pada bilangan-bilangan yang dijumlahkan atau dikurangkan itu sama.dengan 
demikian, jika a, c ∈ R dan b ≥ 0, berlaku : 
 풂√풃 + 풄√풅 = (풂 + 풃)√풃 
 풂√풃 − 풄√풅 = (풂 − 풃)√풃 
Conto Soal : 
1. Hitung dan sederhanakan bentuk akar berikut ini: 
a. √2 + 3√2 + 5√2 
b. 8√3 + 6 √2 + 12√3 − 4√2 
Pembahasan 
a. √2 + 3√2 + 5√2 = (1 + 3 + 5)√2 
= 9√2 
b. 8√3 + 6 √2 + 12√3 − 4√2 = 8√3 + 12√3 + 6√2 − 4√2 
= (8 + 12)√3 + (4 − 2)√2 
= 20√3 + 2√2 
√푏 푛 disebut akar (radikal) 
푏 disebut radikan (bilangan pokok yang ditarik akarnya) 
푛 disebut indeks (pangkat akar) 
Jika a dan b bilangan real,serta n bilangan bulat positif, maka : 
1. √푎ⁿ 푛 = ( √푎ⁿ 푛 
) = a 
2. √푎 푛 . √푏 푛 = √푎푏 푛 
3. √푎ᵐ ᵐⁿ = √푎 푛
2. Perkalian Bentuk Akar 
Bentuk-bentuk akar yang pangkat akarnya (indeksnya) sama, dapat langsung 
dikalikan dengan menggunakan rumus berikut : 
a푛√푥 . b 푛√푦 = ab 푛√푥푦 
Jika didalam tanda akar terdapat bentuk akar, maka cara menyederhanakannya 
dapat berupa rumus berikut : 
 √(푎 + 푏) + 2√푎√푏 = √푎 + √푏 
 √(푎 + 푏) − 2√푎√푏 = √푎 - √푏, a > b 
Contoh Soal : 
Sederhanakan bentuk-bentuk berikut. 
a. √3 × √2 
b. 2√19 × 10√5 
Penyelesaian: 
a. √3 × √2 = √(3 × 2) 
= √6 
b. 2√19 × 10√5 = (2 × 10)√(19 × 5) 
= 20√95 
3. Pembagian Bentuk Akar 
Bentuk-bentuk akar yang indeksnya sama dapat dibagi secara langsung dengan 
menggunakan rumus berikut : 
푎 푛√푥 
푏푛√푦 = 
Contoh soal : 
푥 
푦 
푛 
Sederhanakan bentuk-bentuk berikut. 
a. 
√6 
√2 
b. 
6√10 
3√5 
푎 
푏 
√
Penyelesaian: 
a. 
√6 
√2 
= √(6 
2 
) = √3 
b. 
6√10 
3√5 
= (6 
3 
) √(10 
5 
) = 2√2 
4. Merasionalkan Penyebut Pecahan Bentuk Akar 
Merasionalkan penyebut pecahan bentuk akar artinya mengubah penyebut pecahan 
yang berbentuk akar menjadi bilangan rasional. 
Cara merasionalkan setiap penyebut berlainan. Akan tetapi, prinsip dasarnya sama, 
yaitu mengalikan penyebut-penyebut tersebut dengan pasangan bentuk akar 
sekawannya sehingga diperoleh penyebut bilangan rasional. 
Untuk lebih jelasnya, pelajari uraian berikut. 
a. Merasionalkan Bentuk 
풂 
√풃 
Cara merasionalkan bentuk 
풂 
√풃 
adalah dengan mengalikan pembilang dan 
penyebut pecahan tersebut dengan bentuk sekawan dari penyebutnya, yaitu: 
Untuk memantapkan pemahaman Anda tentang cara merasionalkan bentuk 
풂 
√풃 
, 
silahkan simak contoh soal 1 di bawah ini.
Contoh Soal 1 
Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah 
a. 
6 
√2 
21 
b. 
√3 
Penyelesaian: 
a. 
6 
√2 
= ( 6 
√2 
) . √2 
√2 
6√2 
= 
√2.√2 
= 
6√2 
2 
= 3√2 
b. 
21 
√3 
= (21 
√3 
) . √3 
√3 
21 √3 
= 
√3.√3 
= 
21√3 
3 
= 7√3 
b. Merasionalkan Bentuk 
풂 
(풃±√풄) 
Cara merasionalkan bentuk 
풂 
(풃±√풄) 
adalah dengan mengalikan pembilang dan 
penyebut pecahan tersebut dengan bentuk sekawan dari penyebut b±√c. Bentuk 
sekawan dari b + √c adalah b – √c , sedangkan bentuk sekawan dari b – √c adalah 
√풂 
b + c. Berikut penjelasanya masing-masing. Untuk merasionalkan bentuk 
(풃±√풄) 
, 
yakni: 
Untuk merasionalkan bentuk 
풂 
(풃±√풄) 
yakni:
Untuk memantapkan pemahaman Anda tentang cara merasionalkan bentuk 
풂 
(풃±√풄) 
, silahkan simak contoh soal 2 di bawah ini. 
Contoh Soal 2 
Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah 
4 
a. 
2+√2 
b. 
4 
4+√3 
Penyelesaian: 
a. 
4 
2+√2 
4 
2+√2 
= {( 
2−√2 
2−√2 
)} . {( 
)} 
= {( 4(2−√2) 
(2+√2)(2−√2) 
)} 
(8−4√2) 
= 
(4−2) 
(8−4√2) 
= 
2 
= 4 – 2√2 
b. 
4 
2+√5 
4 
2+√5 
= {( 
2−√5 
2−√5 
)} . {( 
)} 
= {( 4(2−√5) 
(2+√5)(2−√5) 
)} 
(8−4√5) 
= 
(4−5) 
= 
(8−4√5) 
(−1) 
= 4√5-8
c. Merasionalkan Bentuk 
풂 
(√풃±√풄) 
Cara merasionalkan bentuk 
풂 
(√풃±√풄) 
adalah dengan mengalikan pembilang dan 
penyebut pecahan tersebut dengan bentuk sekawan dari penyebut √풃 ± √풄. 
Bentuk sekawan dari √풃 + √풄 adalah √풃 − √풄, sedangkan bentuk sekawan dari 
√풃 − √풄adalah √풃 + √풄. Berikut penjelasanya masing-masing. Untuk 
풂 
merasionalkan bentuk 
(√풃±√풄) 
yakni: 
Untuk merasionalkan bentuk 
풂 
, yakni: 
(√풃±√풄 ) 
Untuk memantapkan pemahaman Anda tentang cara merasionalkan bentuk 
푎 
(√푏±√푐) 
, silahkan simak contoh soal 3 di bawah ini. 
Contoh Soal 3 
Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah 
2 
a. 
(√3+√2)
b. 
3 
(√6−√5) 
Penyelesaian: 
2 
a. 
(√3+√2) 
= { 2 
√3+√2 
}. {√3−√2 
√3−√2 
} 
= { 2(√3−√2) 
(√3+√2)(√3−√2) 
} 
= (2√3−2√3 
3−2 
) 
= 2(√6 − √5) 
b. 
3 
(√6−√5) 
= { 3 
(√6−√5) 
}. {√6+ √5 
√6+ √5 
} 
= { 3(√6+√5) 
(√6−√5)(√6+√5) 
} 
= (3√6+√5 
6−5 
) 
= 3(√6 + √5) 
5. Pangkat Pecahan 
Bilangan pangkat pecahan dapat dinotasikan sebagai berikut : 
contoh : 
1. 
2. dibaca : akar pangkat 5 dari 7 
3. √4 3 = 3√22 
=2 
2 
3 
untuk sifat-sifatnya operasinya sama dengan bentuk pangkat biasa dapat dilihat 
kembali di materi Bilangan Pangkat tinggal kita operasikan bentuk pangkatnya dalam 
operasi bentuk pecahan. 
Seperti : 
1. 
sehingga : 
contoh : 
2. 
sehingga : 
contoh :
1. sederhanakan ! 
jawab : 
2. nyatakan dalam bentuk pangkat ! 
jawab : 
3. nyatakan dalam bentuk akar ! 
jawab : 
6. Persamaan Pangkat 
Persamaan pangkat atau disebut juga persamaan eksponen adalah persamaan yang 
pangkatnya memuat variable (peubah). Suatu persamaan pangkat akan dapat 
diselesaikan apabila persamaan pangkat tersebut memiliki bilangan pokok yang 
sama, dan dapat menggunakan Sifat berikut : 
Jika ɑ bilangan real tak nol, maka berlaku : 
1. 푎푓 (푥) = 푎푝 jika dan hanya jika f(x) = p 
2. 푎푓 (푥) = 푎푔 (푥) jika dan hanya jika f(x) = g(x)

Kelas x bab 1 SMA

  • 1.
    BAB 1. PERPANGKATANDAN BENTUK AKAR A. PANGKAT BULAT POSITIF a. Pengertian Pangkat Bulat Positif Pengertian berganda dengan faktor-faktor yang sama. Operasinya disebut perpangkatan, notasinya disebut notasi eksponen. Bilangan 75 merupakan bilangan berpangkat, dengan 7 merupakan bilangan pokok dan 5 merupakan pangkat. Jika a adalah bilangan riil dan n bilangan bulat positif maka an (dibaca "a pangkat n") adalah hasil kali n buah faktor yang masing-masing faktornya adalah a. Jadi, pangkat bulat positif secara umum dinyatakan dalam bentuk dengan: a = bilangan pokok (basis); n = pangkat atau eksponen; an = bilangan berpangkat.
  • 2.
    b. Sifat-sifat bilangandengan Pangkat Bulat Positif Jika m,n ∈ R dan a,b ∈ R, maka berlaku sifat-sifat berikut :  Sifat Perkalian am.an = am+n  Sifat Pembagian a푚 푎n= am-n  Sifat Pemangkatan (a푚)푛 = am.n  Sifat Perkalian dan pemangkatan (a.b)m = am.bm  Sifat Pembagian dan pemangkatan (푎 푏 ) 푚 = a푚 푏m , dengan b≠0
  • 3.
    B. PANGKAT BULATNEGATIF DAN NOL a. Pengertian Pangkat Bulat Negatif Untuk memahami dan mengerti apa definisi pangkat bulat negative, perhatikan contoh dibawah ini : a. Perhatikan bahwa a4 : a6 = a4-6 = a-2 atau 푎4 푎6= 푎×푎 ×푎×푎 푎×푎×푎 ×푎×푎 ×푎 = 1 푎×푎 = 1 푎2. Jadi, a-2= 1 푎2. Dari contoh diatas, dapat didefinisikan bilangan berpangkat bulat negative sebagai berikut : Contoh Soal :
  • 4.
    b. Pengertian PangkatNol Jika m,n bilangan bulat positif dan m=n, maka am-n = a0. Untuk menentukan nilai dari bilangan pangkat nol, perhatikan uraian berikut : Sehingga dapat kita definisikan sebagai berikut : C. BILANGAN RASIONAL, IRASIONAL, DAN BENTUK AKAR a. Bilangan Rasional Bilangan rasional dapat dinyatakan dalam bentuk bilangan decimal, baik berupa bilangan decimal berulang atau bilangan decimal tidak berulang. Sebagai contoh : 3 = 3,0000… → bilangan bulat atau berulang 0 1 = 0,25 → tidak berulang tapi terbatas 4
  • 5.
    1 6 =0,1666… → berulang 6 3 11 = 0,2727 → berulang 27 Penulisan bilangan desimal berulang dapat disingkat dengan membubuhkan tanda garis diatas angka yang berulang tersebut. Sebagai contoh 0,2727 = ̅0̅̅,2̅̅7̅. Dapat disimpulakan bahwa bilangan rasional meliputi bilangan bulat dan bilangan pecahan. b. Bilangan Irasional Bilangan irasional dapat dinyatakan dalam bentuk bilangan desimal tak berulang tak terbatas. Perhatikan bilangan berikut ini! √2 = 1,414213… −√5 = -2,236067… 휋 = 3,1415… 푒 = 2,1782… Bilangan-bilangan diatas merupakan bilangan irasional karena bila dinyatakan dalam bilangan desimal, bentuknya bilangan desimal tak berulang tak terbatas. Dengan kata lain, bilangan-bilangan tersebut tidak dapat dinyatakan dalam bentuk 푎 푏 dengan a,b bilangan bulat dan b≠0. Dan tidak selamanya bilangan berakar termasuk bilangan irasional, yang dinyatakan sebagai bilangan irasional adalah hasil akar yang tidak bilangan bulat. c. Bentuk Akar Bentuk akar adalah akar bilangan rasional yag hasilnya merupakan bilangan irasional.
  • 6.
    Jika a danb bilangan real serta n bilangan bulat positif, maka : an = ↔ √푏 푛 = a Dari definisi diatas, apabila 푛 bilangan genap, maka berlaku : an = ↔ √푏 푛 = a, dengan a,b ≥ 0. d. Menyederhanakan Bentuk Akar Bentuk-bentuk akar dapat disederhanakan dengan menggunakan sifat-sifat akar berikut ini : e. Operasi Aljabar Pada Bentuk Akar 1. Penjumlahan dan pengurangan Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan apabila bentuk akar pada bilangan-bilangan yang dijumlahkan atau dikurangkan itu sama.dengan demikian, jika a, c ∈ R dan b ≥ 0, berlaku :  풂√풃 + 풄√풅 = (풂 + 풃)√풃  풂√풃 − 풄√풅 = (풂 − 풃)√풃 Conto Soal : 1. Hitung dan sederhanakan bentuk akar berikut ini: a. √2 + 3√2 + 5√2 b. 8√3 + 6 √2 + 12√3 − 4√2 Pembahasan a. √2 + 3√2 + 5√2 = (1 + 3 + 5)√2 = 9√2 b. 8√3 + 6 √2 + 12√3 − 4√2 = 8√3 + 12√3 + 6√2 − 4√2 = (8 + 12)√3 + (4 − 2)√2 = 20√3 + 2√2 √푏 푛 disebut akar (radikal) 푏 disebut radikan (bilangan pokok yang ditarik akarnya) 푛 disebut indeks (pangkat akar) Jika a dan b bilangan real,serta n bilangan bulat positif, maka : 1. √푎ⁿ 푛 = ( √푎ⁿ 푛 ) = a 2. √푎 푛 . √푏 푛 = √푎푏 푛 3. √푎ᵐ ᵐⁿ = √푎 푛
  • 7.
    2. Perkalian BentukAkar Bentuk-bentuk akar yang pangkat akarnya (indeksnya) sama, dapat langsung dikalikan dengan menggunakan rumus berikut : a푛√푥 . b 푛√푦 = ab 푛√푥푦 Jika didalam tanda akar terdapat bentuk akar, maka cara menyederhanakannya dapat berupa rumus berikut :  √(푎 + 푏) + 2√푎√푏 = √푎 + √푏  √(푎 + 푏) − 2√푎√푏 = √푎 - √푏, a > b Contoh Soal : Sederhanakan bentuk-bentuk berikut. a. √3 × √2 b. 2√19 × 10√5 Penyelesaian: a. √3 × √2 = √(3 × 2) = √6 b. 2√19 × 10√5 = (2 × 10)√(19 × 5) = 20√95 3. Pembagian Bentuk Akar Bentuk-bentuk akar yang indeksnya sama dapat dibagi secara langsung dengan menggunakan rumus berikut : 푎 푛√푥 푏푛√푦 = Contoh soal : 푥 푦 푛 Sederhanakan bentuk-bentuk berikut. a. √6 √2 b. 6√10 3√5 푎 푏 √
  • 8.
    Penyelesaian: a. √6 √2 = √(6 2 ) = √3 b. 6√10 3√5 = (6 3 ) √(10 5 ) = 2√2 4. Merasionalkan Penyebut Pecahan Bentuk Akar Merasionalkan penyebut pecahan bentuk akar artinya mengubah penyebut pecahan yang berbentuk akar menjadi bilangan rasional. Cara merasionalkan setiap penyebut berlainan. Akan tetapi, prinsip dasarnya sama, yaitu mengalikan penyebut-penyebut tersebut dengan pasangan bentuk akar sekawannya sehingga diperoleh penyebut bilangan rasional. Untuk lebih jelasnya, pelajari uraian berikut. a. Merasionalkan Bentuk 풂 √풃 Cara merasionalkan bentuk 풂 √풃 adalah dengan mengalikan pembilang dan penyebut pecahan tersebut dengan bentuk sekawan dari penyebutnya, yaitu: Untuk memantapkan pemahaman Anda tentang cara merasionalkan bentuk 풂 √풃 , silahkan simak contoh soal 1 di bawah ini.
  • 9.
    Contoh Soal 1 Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah a. 6 √2 21 b. √3 Penyelesaian: a. 6 √2 = ( 6 √2 ) . √2 √2 6√2 = √2.√2 = 6√2 2 = 3√2 b. 21 √3 = (21 √3 ) . √3 √3 21 √3 = √3.√3 = 21√3 3 = 7√3 b. Merasionalkan Bentuk 풂 (풃±√풄) Cara merasionalkan bentuk 풂 (풃±√풄) adalah dengan mengalikan pembilang dan penyebut pecahan tersebut dengan bentuk sekawan dari penyebut b±√c. Bentuk sekawan dari b + √c adalah b – √c , sedangkan bentuk sekawan dari b – √c adalah √풂 b + c. Berikut penjelasanya masing-masing. Untuk merasionalkan bentuk (풃±√풄) , yakni: Untuk merasionalkan bentuk 풂 (풃±√풄) yakni:
  • 10.
    Untuk memantapkan pemahamanAnda tentang cara merasionalkan bentuk 풂 (풃±√풄) , silahkan simak contoh soal 2 di bawah ini. Contoh Soal 2 Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah 4 a. 2+√2 b. 4 4+√3 Penyelesaian: a. 4 2+√2 4 2+√2 = {( 2−√2 2−√2 )} . {( )} = {( 4(2−√2) (2+√2)(2−√2) )} (8−4√2) = (4−2) (8−4√2) = 2 = 4 – 2√2 b. 4 2+√5 4 2+√5 = {( 2−√5 2−√5 )} . {( )} = {( 4(2−√5) (2+√5)(2−√5) )} (8−4√5) = (4−5) = (8−4√5) (−1) = 4√5-8
  • 11.
    c. Merasionalkan Bentuk 풂 (√풃±√풄) Cara merasionalkan bentuk 풂 (√풃±√풄) adalah dengan mengalikan pembilang dan penyebut pecahan tersebut dengan bentuk sekawan dari penyebut √풃 ± √풄. Bentuk sekawan dari √풃 + √풄 adalah √풃 − √풄, sedangkan bentuk sekawan dari √풃 − √풄adalah √풃 + √풄. Berikut penjelasanya masing-masing. Untuk 풂 merasionalkan bentuk (√풃±√풄) yakni: Untuk merasionalkan bentuk 풂 , yakni: (√풃±√풄 ) Untuk memantapkan pemahaman Anda tentang cara merasionalkan bentuk 푎 (√푏±√푐) , silahkan simak contoh soal 3 di bawah ini. Contoh Soal 3 Rasionalkan penyebut pecahan-pecahan berikut, kemudian sederhanakanlah 2 a. (√3+√2)
  • 12.
    b. 3 (√6−√5) Penyelesaian: 2 a. (√3+√2) = { 2 √3+√2 }. {√3−√2 √3−√2 } = { 2(√3−√2) (√3+√2)(√3−√2) } = (2√3−2√3 3−2 ) = 2(√6 − √5) b. 3 (√6−√5) = { 3 (√6−√5) }. {√6+ √5 √6+ √5 } = { 3(√6+√5) (√6−√5)(√6+√5) } = (3√6+√5 6−5 ) = 3(√6 + √5) 5. Pangkat Pecahan Bilangan pangkat pecahan dapat dinotasikan sebagai berikut : contoh : 1. 2. dibaca : akar pangkat 5 dari 7 3. √4 3 = 3√22 =2 2 3 untuk sifat-sifatnya operasinya sama dengan bentuk pangkat biasa dapat dilihat kembali di materi Bilangan Pangkat tinggal kita operasikan bentuk pangkatnya dalam operasi bentuk pecahan. Seperti : 1. sehingga : contoh : 2. sehingga : contoh :
  • 13.
    1. sederhanakan ! jawab : 2. nyatakan dalam bentuk pangkat ! jawab : 3. nyatakan dalam bentuk akar ! jawab : 6. Persamaan Pangkat Persamaan pangkat atau disebut juga persamaan eksponen adalah persamaan yang pangkatnya memuat variable (peubah). Suatu persamaan pangkat akan dapat diselesaikan apabila persamaan pangkat tersebut memiliki bilangan pokok yang sama, dan dapat menggunakan Sifat berikut : Jika ɑ bilangan real tak nol, maka berlaku : 1. 푎푓 (푥) = 푎푝 jika dan hanya jika f(x) = p 2. 푎푓 (푥) = 푎푔 (푥) jika dan hanya jika f(x) = g(x)