√                 1
                                                                                                            √
  ”Mas h´ uma outra raz˜o que explica a elevada rep-
          a                a                                  12.        1 − x2 dx =      2   arcsin x + 1 x 1 − x2 + C
                                                                                                         2
uta¸ao das matem´ticas, ´ que ela leva as ciˆncias nat-
    c˜             a      e                 e
                                                              13.       √ 1   dx    = arcsin x + C
urais exatas uma certa propor¸ao de seguran¸a que,
                               c˜              c                         1−x2
sem ela, essas ciˆncias n˜o poderiam obter” .
                 e       a                                    14.       √ 1    dx   = arccoshx + C
                                                                         x2 −1
  .                                  Albert Einstein 1
                                                              15.       √ 1   dx    = arcsinhx + C
                                                                         1+x2

1        Tabela de derivadas                                  16.         1
                                                                        1+x2 dx = arctan x + C
         d n
                                                                                     √
 1.     dx x   = nxn−1 , n = 0                                17.       arcsin xdx = 1 − x2 + x arcsin x + C
                                                                                                 √
 2.      d x
               = ax ln a, (a > 0)                             18.       arccos xdx = x arccos x − 1 − x2 + C
        dx a

         d            1                                       19.       arctan xdx = x arctan x − 1 ln x2 + 1 + C
 3.     dx   ln x =   x
                                                                                                  2
                                                                        √               √                   √
         d                                                    20.         x2 − 1dx = 1 x x2 − 1 − 1 ln x + x2 − 1 +
                                                                                     2              2
 4.          sin x = cos x
        dx                                                          C
         d                                                              √                               √               √
 5.     dx   cos x = − sin x                                  21.        1 + x2 dx =      1
                                                                                              ln x +                 1
                                                                                                            x2 + 1 + 2 x x2 + 1 +
                                                                                          2
         d                                                          C
 6.     dx   tan x = sec2 x
                                                              22.       ex sin xdx = 1 ex (sin x − cos x) + C
                                                                                     2
         d
 7.     dx   cot x = − sec2 x                                                        1
                                                              23.       ex cos xdx = 2 ex (cos x + sin x) + C
         d
 8.     dx   sinh x = cosh x

 9.      d
        dx   cosh x = sinh x                                  3      F´rmulas trigonom´tricas
                                                                      o               e
10.      d
             arcsin x =           √ 1                          1.
        dx                         1−x2
                                                                             sin (a + b) = cos a sin b + cos b sin a,
         d                  1
11.     dx   arccos x = − √1−x2
                                                                             cos (a + b) = cos a cos b − sin a sin b
         d                          1
12.     dx   arctan x =           x2 +1                        2.
                                                                            a   1 − cos a                             a   1 + cos a
                                                                    sin2      =           ,                    cos2     =
                                                                            2       2                                 2       2
2        Tabela de integrais
                                                               3.
                      xn+1
 1.      xn dx =      n+1          + C, se n = 1                    sin (2a) = 2 sin a cos a,                  cos 2a = cos2 a−sin2 a
 2.      ln x = x ln x − x + C                                 4.
 3.      1
                = ln |x| + C                                                                   a+b       a−b
         x dx                                                           sin a + sin b     =         cos
                                                                                                2 sin
                                                                                                 2          2
                      1
 4.      sin axdx = − a cos ax + C, a = 0
                                                                                              a+b       a−b
                                                                        cos a + cos b = cos        cos
 5.      cos ax =         1
                          a   sin ax + C                                                       2          2
                                                                                               a+b       a−b
 6.      tan xdx = − ln (cos x) + C                                     cos b − cos a = 2 sin       sin
                                                                                                 2         2
 7.      sinh xdx = cosh x + C

 8.      cosh xdx = sinh x + C
                                                              4      Limites fundamentais
                  1
 9.      eax dx = a eax + C, a = 0
                                                                                                lim xx        =   1
10.      sec xdx = ln |sec x + tan x| + C                                                      x→0+
                                                                                                  sin x
11.        1
                      =       1
                                  ln      x+1
                                                +C                                            lim             =   1
         1−x2 dx              2           x−1                                                 x→0   x
                                                                                                      x
                                                                                                  1
                                                                                    lim        1+             = e
    1   H.C.  http://math-ime-hc.blogspot.com.br/                                 x→+∞            x
    https://www.slideshare.net/leinaddd88/


                                                          1

Lista de derivadas e integrais

  • 1.
    1 √ ”Mas h´ uma outra raz˜o que explica a elevada rep- a a 12. 1 − x2 dx = 2 arcsin x + 1 x 1 − x2 + C 2 uta¸ao das matem´ticas, ´ que ela leva as ciˆncias nat- c˜ a e e 13. √ 1 dx = arcsin x + C urais exatas uma certa propor¸ao de seguran¸a que, c˜ c 1−x2 sem ela, essas ciˆncias n˜o poderiam obter” . e a 14. √ 1 dx = arccoshx + C x2 −1 . Albert Einstein 1 15. √ 1 dx = arcsinhx + C 1+x2 1 Tabela de derivadas 16. 1 1+x2 dx = arctan x + C d n √ 1. dx x = nxn−1 , n = 0 17. arcsin xdx = 1 − x2 + x arcsin x + C √ 2. d x = ax ln a, (a > 0) 18. arccos xdx = x arccos x − 1 − x2 + C dx a d 1 19. arctan xdx = x arctan x − 1 ln x2 + 1 + C 3. dx ln x = x 2 √ √ √ d 20. x2 − 1dx = 1 x x2 − 1 − 1 ln x + x2 − 1 + 2 2 4. sin x = cos x dx C d √ √ √ 5. dx cos x = − sin x 21. 1 + x2 dx = 1 ln x + 1 x2 + 1 + 2 x x2 + 1 + 2 d C 6. dx tan x = sec2 x 22. ex sin xdx = 1 ex (sin x − cos x) + C 2 d 7. dx cot x = − sec2 x 1 23. ex cos xdx = 2 ex (cos x + sin x) + C d 8. dx sinh x = cosh x 9. d dx cosh x = sinh x 3 F´rmulas trigonom´tricas o e 10. d arcsin x = √ 1 1. dx 1−x2 sin (a + b) = cos a sin b + cos b sin a, d 1 11. dx arccos x = − √1−x2 cos (a + b) = cos a cos b − sin a sin b d 1 12. dx arctan x = x2 +1 2. a 1 − cos a a 1 + cos a sin2 = , cos2 = 2 2 2 2 2 Tabela de integrais 3. xn+1 1. xn dx = n+1 + C, se n = 1 sin (2a) = 2 sin a cos a, cos 2a = cos2 a−sin2 a 2. ln x = x ln x − x + C 4. 3. 1 = ln |x| + C a+b a−b x dx sin a + sin b = cos 2 sin 2 2 1 4. sin axdx = − a cos ax + C, a = 0 a+b a−b cos a + cos b = cos cos 5. cos ax = 1 a sin ax + C 2 2 a+b a−b 6. tan xdx = − ln (cos x) + C cos b − cos a = 2 sin sin 2 2 7. sinh xdx = cosh x + C 8. cosh xdx = sinh x + C 4 Limites fundamentais 1 9. eax dx = a eax + C, a = 0 lim xx = 1 10. sec xdx = ln |sec x + tan x| + C x→0+ sin x 11. 1 = 1 ln x+1 +C lim = 1 1−x2 dx 2 x−1 x→0 x x 1 lim 1+ = e 1 H.C. http://math-ime-hc.blogspot.com.br/ x→+∞ x https://www.slideshare.net/leinaddd88/ 1