The document presents a new hybrid model for detecting brain tumors in MRI images. It uses a combination of discrete cosine transform (DCT), discrete wavelet transform (DWT), principal component analysis (PCA), and fuzzy c-means clustering. DCT and DWT are applied to extract features from MRI images. PCA is then used to reduce the dimensions of the extracted features. Finally, fuzzy c-means clustering is used to segment and detect tumors. The proposed hybrid model is evaluated using objective metrics like RMSE, PSNR, correlation, contrast and entropy. Results show the hybrid model achieves better values for these metrics compared to using DCT or DWT alone, indicating it more accurately detects and segments tumors in MRI images.