This document presents a study on using deep learning techniques for brain tumor detection from MRI images. It proposes two Convolutional Neural Network models - one without transfer learning that achieves 81.42% accuracy, and one with transfer learning using the VGG16 architecture that achieves significantly higher accuracy of 98.8%. The study uses a dataset of over 5,000 MRI images categorized as normal, benign tumor, or malignant tumor. Data preprocessing techniques like filtering and enhancement are applied before training the models. Transfer learning helps reduce training time and improves model performance for tumor classification compared to training from scratch without transferring learned features.