This document provides an overview of machine learning algorithms that are commonly used for data science. It discusses both supervised and unsupervised algorithms. For supervised algorithms, it describes decision trees, k-nearest neighbors, and linear regression. Decision trees create a hierarchical structure to classify data, k-nearest neighbors classifies new data based on similarity to existing data, and linear regression finds a linear relationship between variables. Unsupervised algorithms like clustering are also briefly mentioned. The document aims to familiarize data science enthusiasts with basic machine learning techniques.