SlideShare a Scribd company logo
Heapsort
Why study Heapsort?
• It is a well-known, traditional sorting
algorithm you will be expected to know
• Heapsort is always O(n log n)
– Quicksort is usually O(n log n) but in the worst
case slows to O(n2
)
– Quicksort is generally faster, but Heapsort is
better in time-critical applications
• Heapsort is a really cool algorithm!
What is a “heap”?
• Definitions of heap:
1. A large area of memory from which the
programmer can allocate blocks as needed, and
deallocate them (or allow them to be garbage
collected) when no longer needed
2. A balanced, left-justified binary tree in which
no node has a value greater than the value in its
parent
• These two definitions have little in common
• Heapsort uses the second definition
Balanced binary trees
• Recall:
– The depth of a node is its distance from the root
– The depth of a tree is the depth of the deepest node
• A binary tree of depth n is balanced if all the
nodes at depths 0 through n-2 have two children
Balanced Balanced Not balanced
n-2
n-1
n
Left-justified binary trees
• A balanced binary tree is left-justified if:
– all the leaves are at the same depth, or
– all the leaves at depth n+1 are to the left of all
the nodes at depth n
Left-justified Not left-justified
Plan of attack
• First, we will learn how to turn a binary tree into a
heap
• Next, we will learn how to turn a binary tree back
into a heap after it has been changed in a certain
way
• Finally (this is the cool part) we will see how to
use these ideas to sort an array
The heap property
• A node has the heap property if the value in the
node is as large as or larger than the values in its
children
• All leaf nodes automatically have the heap property
• A binary tree is a heap if all nodes in it have the
heap property
12
8 3
Blue node has
heap property
12
8 12
Blue node has
heap property
12
8 14
Blue node does not
have heap property
siftUp
• Given a node that does not have the heap property, you can
give it the heap property by exchanging its value with the
value of the larger child
• This is sometimes called sifting up
• Notice that the child may have lost the heap property
14
8 12
Blue node has
heap property
12
8 14
Blue node does not
have heap property
Constructing a heap I
• A tree consisting of a single node is automatically
a heap
• We construct a heap by adding nodes one at a time:
– Add the node just to the right of the rightmost node in
the deepest level
– If the deepest level is full, start a new level
• Examples:
Add a new
node here
Add a new
node here
Constructing a heap II
• Each time we add a node, we may destroy the
heap property of its parent node
• To fix this, we sift up
• But each time we sift up, the value of the topmost
node in the sift may increase, and this may destroy
the heap property of its parent node
• We repeat the sifting up process, moving up in the
tree, until either
– We reach nodes whose values don’t need to be
swapped (because the parent is still larger than both
children), or
– We reach the root
Constructing a heap III
8 8
10
10
8
10
8 5
10
8 5
12
10
12 5
8
12
10 5
8
1 2 3
4
Other children are not affected
• The node containing 8 is not affected because its parent gets larger,
not smaller
• The node containing 5 is not affected because its parent gets larger,
not smaller
• The node containing 8 is still not affected because, although its
parent got smaller, its parent is still greater than it was originally
12
10 5
8 14
12
14 5
8 10
14
12 5
8 10
A sample heap
• Here’s a sample binary tree after it has been heapified
• Notice that heapified does not mean sorted
• Heapifying does not change the shape of the binary tree;
this binary tree is balanced and left-justified because it
started out that way
19
1418
22
321
14
119
15
25
1722
Removing the root
• Notice that the largest number is now in the root
• Suppose we discard the root:
• How can we fix the binary tree so it is once again balanced
and left-justified?
• Solution: remove the rightmost leaf at the deepest level
and use it for the new root
19
1418
22
321
14
119
15
1722
11
The reHeap method I
• Our tree is balanced and left-justified, but no longer a heap
• However, only the root lacks the heap property
• We can siftUp() the root
• After doing this, one and only one of its children may have
lost the heap property
19
1418
22
321
14
9
15
1722
11
The reHeap method II
• Now the left child of the root (still the number 11) lacks
the heap property
• We can siftUp() this node
• After doing this, one and only one of its children may have
lost the heap property
19
1418
22
321
14
9
15
1711
22
The reHeap method III
• Now the right child of the left child of the root (still the
number 11) lacks the heap property:
• We can siftUp() this node
• After doing this, one and only one of its children may have
lost the heap property —but it doesn’t, because it’s a leaf
19
1418
11
321
14
9
15
1722
22
The reHeap method IV
• Our tree is once again a heap, because every node in it has
the heap property
• Once again, the largest (or a largest) value is in the root
• We can repeat this process until the tree becomes empty
• This produces a sequence of values in order largest to smallest
19
1418
21
311
14
9
15
1722
22
Sorting
• What do heaps have to do with sorting an array?
• Here’s the neat part:
– Because the binary tree is balanced and left justified, it
can be represented as an array
– All our operations on binary trees can be represented as
operations on arrays
– To sort:
heapify the array;
while the array isn’t empty {
remove and replace the root;
reheap the new root node;
}
Mapping into an array
• Notice:
– The left child of index i is at index 2*i+1
– The right child of index i is at index 2*i+2
– Example: the children of node 3 (19) are 7 (18) and 8 (14)
19
1418
22
321
14
119
15
25
1722
25 22 17 19 22 14 15 18 14 21 3 9 11
0 1 2 3 4 5 6 7 8 9 10 11 12
Removing and replacing the root
• The “root” is the first element in the array
• The “rightmost node at the deepest level” is the last
element
• Swap them...
• ...And pretend that the last element in the array no longer
exists—that is, the “last index” is 11 (9)
25 22 17 19 22 14 15 18 14 21 3 9 11
0 1 2 3 4 5 6 7 8 9 10 11 12
11 22 17 19 22 14 15 18 14 21 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12
Reheap and repeat
• Reheap the root node (index 0, containing 11)...
• ...And again, remove and replace the root node
• Remember, though, that the “last” array index is changed
• Repeat until the last becomes first, and the array is sorted!
22 22 17 19 21 14 15 18 14 11 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12
9 22 17 19 22 14 15 18 14 21 3 22 25
0 1 2 3 4 5 6 7 8 9 10 11 12
11 22 17 19 22 14 15 18 14 21 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12
Analysis I
• Here’s how the algorithm starts:
heapify the array;
• Heapifying the array: we add each of n nodes
– Each node has to be sifted up, possibly as far as the root
• Since the binary tree is perfectly balanced, sifting up
a single node takes O(log n) time
– Since we do this n times, heapifying takes n*O(log n)
time, that is, O(n log n) time
Analysis II
• Here’s the rest of the algorithm:
while the array isn’t empty {
remove and replace the root;
reheap the new root node;
}
• We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time
• Removing and replacing the root takes O(1) time
• Therefore, the total time is n times however long it
takes the reheap method
Analysis III
• To reheap the root node, we have to follow one
path from the root to a leaf node (and we might
stop before we reach a leaf)
• The binary tree is perfectly balanced
• Therefore, this path is O(log n) long
– And we only do O(1) operations at each node
– Therefore, reheaping takes O(log n) times
• Since we reheap inside a while loop that we do n
times, the total time for the while loop is
n*O(log n), or O(n log n)
Analysis IV
• Here’s the algorithm again:
heapify the array;
while the array isn’t empty {
remove and replace the root;
reheap the new root node;
}
• We have seen that heapifying takes O(n log n) time
• The while loop takes O(n log n) time
• The total time is therefore O(n log n) + O(n log n)
• This is the same as O(n log n) time
The End

More Related Content

What's hot

Lecture 11.1 : heaps
Lecture 11.1 :  heapsLecture 11.1 :  heaps
Lecture 11.1 : heaps
Vivek Bhargav
 
Quick and Heap Sort with examples
Quick and Heap Sort with examplesQuick and Heap Sort with examples
Quick and Heap Sort with examples
Bst Ali
 
Heapsort quick sort
Heapsort quick sortHeapsort quick sort
Heapsort quick sort
Dr Sandeep Kumar Poonia
 
Heap Sort in Design and Analysis of algorithms
Heap Sort in Design and Analysis of algorithmsHeap Sort in Design and Analysis of algorithms
Heap Sort in Design and Analysis of algorithms
samairaakram
 
Heap Sort Algorithm
Heap Sort Algorithm Heap Sort Algorithm
Heap Sort Algorithm
Musaddiq Khan
 
Heap sort
Heap sortHeap sort
Heap sort
Ayesha Tahir
 

What's hot (6)

Lecture 11.1 : heaps
Lecture 11.1 :  heapsLecture 11.1 :  heaps
Lecture 11.1 : heaps
 
Quick and Heap Sort with examples
Quick and Heap Sort with examplesQuick and Heap Sort with examples
Quick and Heap Sort with examples
 
Heapsort quick sort
Heapsort quick sortHeapsort quick sort
Heapsort quick sort
 
Heap Sort in Design and Analysis of algorithms
Heap Sort in Design and Analysis of algorithmsHeap Sort in Design and Analysis of algorithms
Heap Sort in Design and Analysis of algorithms
 
Heap Sort Algorithm
Heap Sort Algorithm Heap Sort Algorithm
Heap Sort Algorithm
 
Heap sort
Heap sortHeap sort
Heap sort
 

Viewers also liked

What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
What Every Client Should Do On Their Oracle SOA Projects (whitepaper)What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
Revelation Technologies
 
Presentataion
Presentataion Presentataion
Presentataion
maamir farooq
 
Poscat seminar 9
Poscat seminar 9Poscat seminar 9
Poscat seminar 9
Hyungyu Shin
 
Mahlobo Foundation Pty Ltd
Mahlobo Foundation Pty LtdMahlobo Foundation Pty Ltd
Mahlobo Foundation Pty Ltd
Thabo Mahlobo
 
Informe ejecutivo fase2
Informe ejecutivo fase2Informe ejecutivo fase2
Informe ejecutivo fase2
wilfredo sanchez
 
Movimento colecaojovemcientista
Movimento colecaojovemcientistaMovimento colecaojovemcientista
Movimento colecaojovemcientista
straraposa
 
Getting started with Raspberry Pi - By Ibrahim
Getting started with Raspberry Pi - By IbrahimGetting started with Raspberry Pi - By Ibrahim
Getting started with Raspberry Pi - By Ibrahim
Murugadoss Balasubramanian
 
Full disclosure in financial reporting
Full disclosure in financial reportingFull disclosure in financial reporting
Full disclosure in financial reporting
A. K. M. Anwar Hossain
 
Non obvious relationship awareness (nora)
Non obvious relationship awareness (nora)Non obvious relationship awareness (nora)
Non obvious relationship awareness (nora)
A. K. M. Anwar Hossain
 
Review and evaluations of shortest path algorithms
Review and evaluations of shortest path algorithmsReview and evaluations of shortest path algorithms
Review and evaluations of shortest path algorithms
Pawan Kumar Tiwari
 
The Imperium at Capitol Commons
The Imperium at Capitol CommonsThe Imperium at Capitol Commons
The Imperium at Capitol Commons
The Ortigas Specialists
 
Rationality and Decision-Making
Rationality and Decision-MakingRationality and Decision-Making
Rationality and Decision-Making
Richard Veryard
 

Viewers also liked (15)

What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
What Every Client Should Do On Their Oracle SOA Projects (whitepaper)What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
What Every Client Should Do On Their Oracle SOA Projects (whitepaper)
 
Presentataion
Presentataion Presentataion
Presentataion
 
Poscat seminar 9
Poscat seminar 9Poscat seminar 9
Poscat seminar 9
 
RIP TIDE SCRIPT
RIP TIDE SCRIPTRIP TIDE SCRIPT
RIP TIDE SCRIPT
 
Mahlobo Foundation Pty Ltd
Mahlobo Foundation Pty LtdMahlobo Foundation Pty Ltd
Mahlobo Foundation Pty Ltd
 
Informe ejecutivo fase2
Informe ejecutivo fase2Informe ejecutivo fase2
Informe ejecutivo fase2
 
Movimento colecaojovemcientista
Movimento colecaojovemcientistaMovimento colecaojovemcientista
Movimento colecaojovemcientista
 
Getting started with Raspberry Pi - By Ibrahim
Getting started with Raspberry Pi - By IbrahimGetting started with Raspberry Pi - By Ibrahim
Getting started with Raspberry Pi - By Ibrahim
 
Full disclosure in financial reporting
Full disclosure in financial reportingFull disclosure in financial reporting
Full disclosure in financial reporting
 
Capstone_Project.ppt
Capstone_Project.pptCapstone_Project.ppt
Capstone_Project.ppt
 
Non obvious relationship awareness (nora)
Non obvious relationship awareness (nora)Non obvious relationship awareness (nora)
Non obvious relationship awareness (nora)
 
Review and evaluations of shortest path algorithms
Review and evaluations of shortest path algorithmsReview and evaluations of shortest path algorithms
Review and evaluations of shortest path algorithms
 
The Imperium at Capitol Commons
The Imperium at Capitol CommonsThe Imperium at Capitol Commons
The Imperium at Capitol Commons
 
Dynamic pgmming
Dynamic pgmmingDynamic pgmming
Dynamic pgmming
 
Rationality and Decision-Making
Rationality and Decision-MakingRationality and Decision-Making
Rationality and Decision-Making
 

Similar to Heapsort

CSE680-06HeapSort.ppt
CSE680-06HeapSort.pptCSE680-06HeapSort.ppt
CSE680-06HeapSort.ppt
AmitShou
 
Heapsortokkay
HeapsortokkayHeapsortokkay
HeapsortokkayRemesha
 
Tree traversal techniques
Tree traversal techniquesTree traversal techniques
Tree traversal techniques
Syed Zaid Irshad
 
C++ UNIT4.pptx
C++ UNIT4.pptxC++ UNIT4.pptx
Heap sort
Heap sort Heap sort
Trees
TreesTrees
HEAP SORT .pptx
HEAP SORT .pptxHEAP SORT .pptx
HEAP SORT .pptx
Fazlullah28
 
Ch2 Part III-Advanced Sorting algorithms.pptx
Ch2 Part III-Advanced Sorting algorithms.pptxCh2 Part III-Advanced Sorting algorithms.pptx
Ch2 Part III-Advanced Sorting algorithms.pptx
Mohammed472103
 
BTrees-fall2010.ppt
BTrees-fall2010.pptBTrees-fall2010.ppt
BTrees-fall2010.ppt
zalanmvb
 
B Tree, Introduction ,example,Splay tree
B Tree, Introduction ,example,Splay treeB Tree, Introduction ,example,Splay tree
B Tree, Introduction ,example,Splay tree
VikasNirgude2
 
ADS_Lec1_Linear_lists_Stacks
ADS_Lec1_Linear_lists_StacksADS_Lec1_Linear_lists_Stacks
ADS_Lec1_Linear_lists_Stacks
Hemanth Kumar
 
Splay tree
Splay treeSplay tree
Splay tree
Rajendran
 
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNNsplaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
ratnapatil14
 
Advanced Trees
Advanced TreesAdvanced Trees
Advanced Trees
Selvaraj Seerangan
 
Splay tree
Splay treeSplay tree
Splay tree
hina firdaus
 
Heap Data Structure
 Heap Data Structure Heap Data Structure
Heap Data Structure
Saumya Som
 
Heaps and tries power point this is an educational material
Heaps and tries power point this is an educational materialHeaps and tries power point this is an educational material
Heaps and tries power point this is an educational material
AymericTaylor
 

Similar to Heapsort (20)

Heapsort
HeapsortHeapsort
Heapsort
 
CSE680-06HeapSort.ppt
CSE680-06HeapSort.pptCSE680-06HeapSort.ppt
CSE680-06HeapSort.ppt
 
Heapsortokkay
HeapsortokkayHeapsortokkay
Heapsortokkay
 
Tree traversal techniques
Tree traversal techniquesTree traversal techniques
Tree traversal techniques
 
C++ UNIT4.pptx
C++ UNIT4.pptxC++ UNIT4.pptx
C++ UNIT4.pptx
 
Heap sort
Heap sort Heap sort
Heap sort
 
Trees
TreesTrees
Trees
 
HEAP SORT .pptx
HEAP SORT .pptxHEAP SORT .pptx
HEAP SORT .pptx
 
Smooth Sort
Smooth SortSmooth Sort
Smooth Sort
 
Ch2 Part III-Advanced Sorting algorithms.pptx
Ch2 Part III-Advanced Sorting algorithms.pptxCh2 Part III-Advanced Sorting algorithms.pptx
Ch2 Part III-Advanced Sorting algorithms.pptx
 
BTrees-fall2010.ppt
BTrees-fall2010.pptBTrees-fall2010.ppt
BTrees-fall2010.ppt
 
16 mergesort
16 mergesort16 mergesort
16 mergesort
 
B Tree, Introduction ,example,Splay tree
B Tree, Introduction ,example,Splay treeB Tree, Introduction ,example,Splay tree
B Tree, Introduction ,example,Splay tree
 
ADS_Lec1_Linear_lists_Stacks
ADS_Lec1_Linear_lists_StacksADS_Lec1_Linear_lists_Stacks
ADS_Lec1_Linear_lists_Stacks
 
Splay tree
Splay treeSplay tree
Splay tree
 
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNNsplaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
splaytree-171227043127.pptx NNNNNNNNNNNNNNNNNNNNNNN
 
Advanced Trees
Advanced TreesAdvanced Trees
Advanced Trees
 
Splay tree
Splay treeSplay tree
Splay tree
 
Heap Data Structure
 Heap Data Structure Heap Data Structure
Heap Data Structure
 
Heaps and tries power point this is an educational material
Heaps and tries power point this is an educational materialHeaps and tries power point this is an educational material
Heaps and tries power point this is an educational material
 

More from Gopi Saiteja

Trees gt(1)
Trees gt(1)Trees gt(1)
Trees gt(1)
Gopi Saiteja
 
Topic11 sortingandsearching
Topic11 sortingandsearchingTopic11 sortingandsearching
Topic11 sortingandsearching
Gopi Saiteja
 
Hashing gt1
Hashing gt1Hashing gt1
Hashing gt1
Gopi Saiteja
 
Ee693 sept2014quizgt2
Ee693 sept2014quizgt2Ee693 sept2014quizgt2
Ee693 sept2014quizgt2
Gopi Saiteja
 
Ee693 sept2014quizgt1
Ee693 sept2014quizgt1Ee693 sept2014quizgt1
Ee693 sept2014quizgt1
Gopi Saiteja
 
Ee693 sept2014quiz1
Ee693 sept2014quiz1Ee693 sept2014quiz1
Ee693 sept2014quiz1
Gopi Saiteja
 
Ee693 sept2014midsem
Ee693 sept2014midsemEe693 sept2014midsem
Ee693 sept2014midsem
Gopi Saiteja
 
Ee693 questionshomework
Ee693 questionshomeworkEe693 questionshomework
Ee693 questionshomework
Gopi Saiteja
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
Gopi Saiteja
 
Cs105 l15-bucket radix
Cs105 l15-bucket radixCs105 l15-bucket radix
Cs105 l15-bucket radix
Gopi Saiteja
 
Chapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiencyChapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiency
Gopi Saiteja
 
Answers withexplanations
Answers withexplanationsAnswers withexplanations
Answers withexplanations
Gopi Saiteja
 
Sorting
SortingSorting
Sorting
Gopi Saiteja
 
Solution(1)
Solution(1)Solution(1)
Solution(1)
Gopi Saiteja
 
Pthread
PthreadPthread
Pthread
Gopi Saiteja
 
Open mp
Open mpOpen mp
Open mp
Gopi Saiteja
 
Introduction
IntroductionIntroduction
Introduction
Gopi Saiteja
 
Cuda
CudaCuda
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
Gopi Saiteja
 
Statistical signal processing(1)
Statistical signal processing(1)Statistical signal processing(1)
Statistical signal processing(1)
Gopi Saiteja
 

More from Gopi Saiteja (20)

Trees gt(1)
Trees gt(1)Trees gt(1)
Trees gt(1)
 
Topic11 sortingandsearching
Topic11 sortingandsearchingTopic11 sortingandsearching
Topic11 sortingandsearching
 
Hashing gt1
Hashing gt1Hashing gt1
Hashing gt1
 
Ee693 sept2014quizgt2
Ee693 sept2014quizgt2Ee693 sept2014quizgt2
Ee693 sept2014quizgt2
 
Ee693 sept2014quizgt1
Ee693 sept2014quizgt1Ee693 sept2014quizgt1
Ee693 sept2014quizgt1
 
Ee693 sept2014quiz1
Ee693 sept2014quiz1Ee693 sept2014quiz1
Ee693 sept2014quiz1
 
Ee693 sept2014midsem
Ee693 sept2014midsemEe693 sept2014midsem
Ee693 sept2014midsem
 
Ee693 questionshomework
Ee693 questionshomeworkEe693 questionshomework
Ee693 questionshomework
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
 
Cs105 l15-bucket radix
Cs105 l15-bucket radixCs105 l15-bucket radix
Cs105 l15-bucket radix
 
Chapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiencyChapter11 sorting algorithmsefficiency
Chapter11 sorting algorithmsefficiency
 
Answers withexplanations
Answers withexplanationsAnswers withexplanations
Answers withexplanations
 
Sorting
SortingSorting
Sorting
 
Solution(1)
Solution(1)Solution(1)
Solution(1)
 
Pthread
PthreadPthread
Pthread
 
Open mp
Open mpOpen mp
Open mp
 
Introduction
IntroductionIntroduction
Introduction
 
Cuda
CudaCuda
Cuda
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Statistical signal processing(1)
Statistical signal processing(1)Statistical signal processing(1)
Statistical signal processing(1)
 

Recently uploaded

Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 

Recently uploaded (20)

Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 

Heapsort

  • 2. Why study Heapsort? • It is a well-known, traditional sorting algorithm you will be expected to know • Heapsort is always O(n log n) – Quicksort is usually O(n log n) but in the worst case slows to O(n2 ) – Quicksort is generally faster, but Heapsort is better in time-critical applications • Heapsort is a really cool algorithm!
  • 3. What is a “heap”? • Definitions of heap: 1. A large area of memory from which the programmer can allocate blocks as needed, and deallocate them (or allow them to be garbage collected) when no longer needed 2. A balanced, left-justified binary tree in which no node has a value greater than the value in its parent • These two definitions have little in common • Heapsort uses the second definition
  • 4. Balanced binary trees • Recall: – The depth of a node is its distance from the root – The depth of a tree is the depth of the deepest node • A binary tree of depth n is balanced if all the nodes at depths 0 through n-2 have two children Balanced Balanced Not balanced n-2 n-1 n
  • 5. Left-justified binary trees • A balanced binary tree is left-justified if: – all the leaves are at the same depth, or – all the leaves at depth n+1 are to the left of all the nodes at depth n Left-justified Not left-justified
  • 6. Plan of attack • First, we will learn how to turn a binary tree into a heap • Next, we will learn how to turn a binary tree back into a heap after it has been changed in a certain way • Finally (this is the cool part) we will see how to use these ideas to sort an array
  • 7. The heap property • A node has the heap property if the value in the node is as large as or larger than the values in its children • All leaf nodes automatically have the heap property • A binary tree is a heap if all nodes in it have the heap property 12 8 3 Blue node has heap property 12 8 12 Blue node has heap property 12 8 14 Blue node does not have heap property
  • 8. siftUp • Given a node that does not have the heap property, you can give it the heap property by exchanging its value with the value of the larger child • This is sometimes called sifting up • Notice that the child may have lost the heap property 14 8 12 Blue node has heap property 12 8 14 Blue node does not have heap property
  • 9. Constructing a heap I • A tree consisting of a single node is automatically a heap • We construct a heap by adding nodes one at a time: – Add the node just to the right of the rightmost node in the deepest level – If the deepest level is full, start a new level • Examples: Add a new node here Add a new node here
  • 10. Constructing a heap II • Each time we add a node, we may destroy the heap property of its parent node • To fix this, we sift up • But each time we sift up, the value of the topmost node in the sift may increase, and this may destroy the heap property of its parent node • We repeat the sifting up process, moving up in the tree, until either – We reach nodes whose values don’t need to be swapped (because the parent is still larger than both children), or – We reach the root
  • 11. Constructing a heap III 8 8 10 10 8 10 8 5 10 8 5 12 10 12 5 8 12 10 5 8 1 2 3 4
  • 12. Other children are not affected • The node containing 8 is not affected because its parent gets larger, not smaller • The node containing 5 is not affected because its parent gets larger, not smaller • The node containing 8 is still not affected because, although its parent got smaller, its parent is still greater than it was originally 12 10 5 8 14 12 14 5 8 10 14 12 5 8 10
  • 13. A sample heap • Here’s a sample binary tree after it has been heapified • Notice that heapified does not mean sorted • Heapifying does not change the shape of the binary tree; this binary tree is balanced and left-justified because it started out that way 19 1418 22 321 14 119 15 25 1722
  • 14. Removing the root • Notice that the largest number is now in the root • Suppose we discard the root: • How can we fix the binary tree so it is once again balanced and left-justified? • Solution: remove the rightmost leaf at the deepest level and use it for the new root 19 1418 22 321 14 119 15 1722 11
  • 15. The reHeap method I • Our tree is balanced and left-justified, but no longer a heap • However, only the root lacks the heap property • We can siftUp() the root • After doing this, one and only one of its children may have lost the heap property 19 1418 22 321 14 9 15 1722 11
  • 16. The reHeap method II • Now the left child of the root (still the number 11) lacks the heap property • We can siftUp() this node • After doing this, one and only one of its children may have lost the heap property 19 1418 22 321 14 9 15 1711 22
  • 17. The reHeap method III • Now the right child of the left child of the root (still the number 11) lacks the heap property: • We can siftUp() this node • After doing this, one and only one of its children may have lost the heap property —but it doesn’t, because it’s a leaf 19 1418 11 321 14 9 15 1722 22
  • 18. The reHeap method IV • Our tree is once again a heap, because every node in it has the heap property • Once again, the largest (or a largest) value is in the root • We can repeat this process until the tree becomes empty • This produces a sequence of values in order largest to smallest 19 1418 21 311 14 9 15 1722 22
  • 19. Sorting • What do heaps have to do with sorting an array? • Here’s the neat part: – Because the binary tree is balanced and left justified, it can be represented as an array – All our operations on binary trees can be represented as operations on arrays – To sort: heapify the array; while the array isn’t empty { remove and replace the root; reheap the new root node; }
  • 20. Mapping into an array • Notice: – The left child of index i is at index 2*i+1 – The right child of index i is at index 2*i+2 – Example: the children of node 3 (19) are 7 (18) and 8 (14) 19 1418 22 321 14 119 15 25 1722 25 22 17 19 22 14 15 18 14 21 3 9 11 0 1 2 3 4 5 6 7 8 9 10 11 12
  • 21. Removing and replacing the root • The “root” is the first element in the array • The “rightmost node at the deepest level” is the last element • Swap them... • ...And pretend that the last element in the array no longer exists—that is, the “last index” is 11 (9) 25 22 17 19 22 14 15 18 14 21 3 9 11 0 1 2 3 4 5 6 7 8 9 10 11 12 11 22 17 19 22 14 15 18 14 21 3 9 25 0 1 2 3 4 5 6 7 8 9 10 11 12
  • 22. Reheap and repeat • Reheap the root node (index 0, containing 11)... • ...And again, remove and replace the root node • Remember, though, that the “last” array index is changed • Repeat until the last becomes first, and the array is sorted! 22 22 17 19 21 14 15 18 14 11 3 9 25 0 1 2 3 4 5 6 7 8 9 10 11 12 9 22 17 19 22 14 15 18 14 21 3 22 25 0 1 2 3 4 5 6 7 8 9 10 11 12 11 22 17 19 22 14 15 18 14 21 3 9 25 0 1 2 3 4 5 6 7 8 9 10 11 12
  • 23. Analysis I • Here’s how the algorithm starts: heapify the array; • Heapifying the array: we add each of n nodes – Each node has to be sifted up, possibly as far as the root • Since the binary tree is perfectly balanced, sifting up a single node takes O(log n) time – Since we do this n times, heapifying takes n*O(log n) time, that is, O(n log n) time
  • 24. Analysis II • Here’s the rest of the algorithm: while the array isn’t empty { remove and replace the root; reheap the new root node; } • We do the while loop n times (actually, n-1 times), because we remove one of the n nodes each time • Removing and replacing the root takes O(1) time • Therefore, the total time is n times however long it takes the reheap method
  • 25. Analysis III • To reheap the root node, we have to follow one path from the root to a leaf node (and we might stop before we reach a leaf) • The binary tree is perfectly balanced • Therefore, this path is O(log n) long – And we only do O(1) operations at each node – Therefore, reheaping takes O(log n) times • Since we reheap inside a while loop that we do n times, the total time for the while loop is n*O(log n), or O(n log n)
  • 26. Analysis IV • Here’s the algorithm again: heapify the array; while the array isn’t empty { remove and replace the root; reheap the new root node; } • We have seen that heapifying takes O(n log n) time • The while loop takes O(n log n) time • The total time is therefore O(n log n) + O(n log n) • This is the same as O(n log n) time