Derivative Formulas
General Rules
d                                                 d                                                  d
   [ f (x) + g(x)] = f (x) + g (x)                   [ f (x) − g(x)] = f (x) − g (x)                    [c f (x)] = c f (x)
dx                                                dx                                                 dx
d                                                 d                                                  d      f (x)   f (x)g(x) − f (x)g (x)
   [ f (g(x))] = f (g(x))g (x)                       [ f (x)g(x)] = f (x)g(x) + f (x)g (x)                        =
dx                                                dx                                                 dx     g(x)           [g(x)]2


Power Rules
d n                                  d                                      d                               d √       1
   (x ) = nx n−1                        (c) = 0                                (cx) = c                        ( x) = √
dx                                   dx                                     dx                              dx       2 x


Exponential
d x                                  d x                                    d                               d
   [e ] = e x                           [a ] = a x ln a                        eu(x) = eu(x) u (x)             er x = r er x
dx                                   dx                                     dx                              dx


Trigonometric
d                                                     d                                                d
   (sin x) = cos x                                       (cos x) = −sin x                                 (tan x) = sec2 x
dx                                                    dx                                               dx
d                                                     d                                                d
   (cot x) = −csc2 x                                     (sec x) = sec x tan x                            (csc x) = −csc x cot x
dx                                                    dx                                               dx


Inverse Trigonometric
d                 1                                   d                    1                              d                1
   (sin−1 x) = √                                         (cos−1 x) = − √                                     (tan−1 x) =
dx              1 − x2                                dx                 1 − x2                           dx             1 + x2
d                  1                                  d                   1                               d                   1
   (cot−1 x) = −                                         (sec−1 x) =    √                                    (csc−1 x) = − √
dx               1 + x2                               dx             |x| x 2 − 1                          dx              |x| x 2 − 1


Hyperbolic
d                                                     d                                                   d
   (sinh x) = cosh x                                     (cosh x) = sinh x                                   (tanh x) = sech2 x
dx                                                    dx                                                  dx
d                                                     d                                                   d
   (coth x) = −csch2 x                                   (sech x) = −sech x tanh x                           (csch x) = −csch x coth x
dx                                                    dx                                                  dx


Inverse Hyperbolic
d                   1                                 d                  1                                d                 1
   (sinh−1 x) = √                                        (cosh−1 x) = √                                      (tanh−1 x) =
dx                1 + x2                              dx                x2 − 1                            dx              1 − x2
d                 1                                   d                   1                               d                    1
   (coth−1 x) =                                          (sech−1 x) = − √                                    (csch−1 x) = − √
dx              1 − x2                                dx               x 1 − x2                           dx               |x| x 2 + 1
Table of Integrals

Forms Involving a + bu
         1       1
 1.          du = ln |a + bu| + c
      a + bu     b

        u         1
 2.          du = 2 (a + bu − a ln |a + bu|) + c
      a + bu     b

        u2        1
 3.          du = 3 [(a + bu)2 − 4a(a + bu) + 2a 2 ln |a + bu|] + c
      a + bu     2b

          1         1     u
 4.             du = ln        +c
      u(a + bu)     a   a + bu

             1          b    a + bu    1
 5.                du = 2 ln        −    +c
      u 2 (a + bu)     a       u      au



Forms Involving (a + bu)2
          1             −1
 6.             du =           +c
      (a + bu)2      b(a + bu)

          u          1       a
 7.             du = 2            + ln |a + bu| + c
      (a + bu)2     b      a + bu

         u2          1                  a2
 8.             du = 3     a + bu −          − 2a ln |a + bu| + c
      (a + bu)2     b                 a + bu

          1               1       1      u
 9.              du =           + 2 ln        +c
      u(a + bu)2      a(a + bu)  a     a + bu

             1          2b    a + bu    a + 2bu
10.                 du = 3 ln        − 2          +c
      u 2 (a + bu)2     a       u     a u(a + bu)




Forms Involving               a + bu
       √               2
11.   u a + bu du =        (3bu − 2a)(a + bu)3/2 + c
                      15b2

         √                2
12.   u 2 a + bu du =         (15b2 u 2 − 12abu + 8a 2 )(a + bu)3/2 + c
                        105b3

         √                  2                          2na           √
13.   u n a + bu du =             u n (a + bu)3/2 −             u n−1 a + bu du
                        b(2n + 3)                   b(2n + 3)

      √
       a + bu       √                     1
14.           du = 2 a + bu + a         √       du
         u                             u a + bu
      √                                                     √
       a + bu        −1 (a + bu)3/2   (2n − 5)b              a + bu
15.           du =                  −                               du, n = 1
        u n        a(n − 1) u n−1     2a(n − 1)               u n−1
√        √
          1           1    a + bu − a
16a.    √       du = √ ln √        √ + c, a > 0
       u a + bu        a   a + bu + a


          1           2                 a + bu
16b.    √       du = √   tan−1                 + c, a < 0
       u a + bu       −a                  −a

                                   √
            1            −1         a + bu (2n − 3)b               1
 17.      √       du =                    −                       √       du, n = 1
       u n a + bu      a(n − 1)     u n−1   2a(n − 1)        u n−1 a + bu

          u         2          √
 18.   √       du = 2 (bu − 2a) a + bu + c
        a + bu     3b

         u2          2                           √
 19.   √       du =      (3b2 u 2 − 4abu + 8a 2 ) a + bu + c
        a + bu      15b3

         un             2        √            2na                 u n−1
 20.   √       du =           u n a + bu −                      √       du
        a + bu      (2n + 1)b              (2n + 1)b             a + bu


Forms Involving                 a 2 + u 2, a > 0
                           √                        √
 21.     a 2 + u 2 du = 1 u a 2 + u 2 + 1 a 2 ln u + a 2 + u 2 + c
                        2               2

                                          √                        √
 22.   u 2 a 2 + u 2 du = 1 u(a 2 + 2u 2 ) a 2 + u 2 − 1 a 4 ln u + a 2 + u 2 + c
                          8                            8

       √                                          √
        a2 + u2                              a+    a2 + u2
 23.            du =      a 2 + u 2 − a ln                 +c
          u                                         u
       √                                      √
        a2 + u2                                a2 + u2
 24.            du = ln u +       a2 + u2 −            +c
         u2                                      u

          1
 25.   √        du = ln u +       a2 + u2 + c
        a2 + u2

         u2         1             1
 26.   √        du = u a 2 + u 2 − a 2 ln u +          a2 + u2 + c
        a2 + u2     2             2

            1           1           u
 27.     √         du = ln        √      +c
       u a  2 + u2      a    a + a2 + u2
                           √
             1              a2 + u2
 28.      √         du = −            +c
       u 2 a2 + u2           a2 u


Forms Involving                 a 2 ¯¯ u 2 , a > 0
                           √                       u
 29.     a 2 − u 2 du = 1 u a 2 − u 2 + 1 a 2 sin−1 + c
                        2               2          a
                                          √                       u
 30.   u 2 a 2 − u 2 du = 1 u(2u 2 − a 2 ) a 2 − u 2 + 1 a 4 sin−1 + c
                          8                            8          a
       √                                          √
        a2 − u2                              a+    a2 − u2
 31.            du =      a 2 − u 2 − a ln                 +c
          u                                         u
       √               √
        a2 − u2         a2 − u2        u
 32.            du = −          − sin−1 + c
         u2               u            a
1               u
33.   √        du = sin−1 + c
       a2 − u2           a
                                          √
         1            1   a+               a2 − u2
34.    √        du = − ln                          +c
      u a2 − u2       a                     u

        u2           1             1         u
35.   √        du = − u a 2 − u 2 + a 2 sin−1 + c
       a2 − u2       2             2         a
                        √
          1              a2 − u2
36.     √        du = −          +c
      u2 a2 − u2          a2 u


Forms Involving                     u 2 ¯¯ a 2 , a > 0
                          √                        √
37.     u 2 − a 2 du = 1 u u 2 − a 2 − 1 a 2 ln u + u 2 − a 2 + c
                       2               2


                                         √                        √
38.   u 2 u 2 − a 2 du = 1 u(2u 2 − a 2 ) u 2 − a 2 − 1 a 4 ln u + u 2 − a 2 + c
                         8                            8

      √
       u2 − a2                                      |u|
39.            du =           u 2 − a 2 − a sec−1       +c
         u                                           a
      √                                             √
          u2 − a2                                       u2 − a2
40.               du = ln u +        u2 − a2 −                  +c
           u2                                             u

            1
41.   √               du = ln u +    u2 − a2 + c
          u2 − a2

           u2                1              1
42.   √               du =     u u 2 − a 2 + a 2 ln u +      u2 − a2 + c
          u2   − a2          2              2

         1          1      |u|
43.    √        du = sec−1     +c
      u u2 − a2     a       a
                      √
               1       u2 − a2
44.     √        du =          +c
      u2 u2 − a2        a2 u


Forms Involving                     2au ¯¯ u 2
                             1                    1                  a−u
45.     2au − u 2 du =         (u − a) 2au − u 2 + a 2 cos−1                +c
                             2                    2                   a

                              1                                1             a−u
46.   u 2au − u 2 du =          (2u 2 − au − 3a 2 ) 2au − u 2 + a 3 cos−1          +c
                              6                                2              a
      √
       2au − u 2                                         a−u
47.              du =          2au − u 2 + a cos−1               +c
         u                                                a
      √                  √
       2au − u 2        2 2au − u 2                        a−u
48.              du = −             − cos−1                          +c
         u2                 u                               a

               1                      a−u
49.   √                du = cos−1             +c
          2au − u 2                    a

               u                                           a−u
50.   √                du = − 2au − u 2 + a cos−1                 +c
          2au − u 2                                         a
u2              1                    3                           a−u
51.   √               du = − (u + 3a) 2au − u 2 + a 2 cos−1                        +c
          2au − u 2         2                    2                            a
                                    √
             1                          2au − u 2
52.    √                  du = −                  +c
      u 2au      − u2                     au



Forms Involving sin u OR cos u
53.   sin u du = −cos u + c


54.   cos u du = sin u + c


55.   sin2 u du = 1 u −
                  2
                             1
                             2    sin u cos u + c


56.   cos2 u du = 1 u +
                  2
                              1
                              2   sin u cos u + c


57.   sin3 u du = − 2 cos u −
                    3
                                        1
                                        3   sin2 u cos u + c


58.   cos3 u du =     2
                      3   sin u +   1
                                    3   sin u cos2 u + c

                          1                  n−1
59.   sinn u du = −         sinn−1 u cos u +                   sinn−2 u du
                          n                   n

                        1                  n−1
60.   cosn u du =         cosn−1 u sin u +                 cosn−2 u du
                        n                   n

61.   u sin u du = sin u − u cos u + c


62.   u cos u du = cos u + u sin u + c


63.   u n sin u du = −u n cos u + n              u n−1 cos u du + c


64.   u n cos u du = u n sin u − n             u n−1 sin u du + c

         1
65.             du = tan u − sec u + c
      1 + sin u

         1
66.             du = tan u + sec u + c
      1 − sin u

          1
67.             du = −cot u + csc u + c
      1 + cos u

          1
68.             du = −cot u − csc u + c
      1 − cos u

                                    sin(m − n)u   sin(m + n)u
69.   sin(mu) sin(nu) du =                      −             +c
                                      2(m − n)      2(m + n)

                                     sin(m − n)u   sin(m + n)u
70.   cos(mu) cos(nu) du =                       +             +c
                                       2(m − n)      2(m + n)
cos(n − m)u   cos(m + n)u
71.   sin(mu) cos(nu) du =                  −             +c
                                 2(n − m)      2(m + n)

                               sinm−1 u cosn+1 u   m−1
72.   sinm u cosn u du = −                       +                       sinm−2 u cosn u du
                                    m+n            m+n



Forms Involving Other Trigonometric Functions
73.   tan u du = −ln |cos u| + c = ln |sec u| + c


74.   cot u du = ln |sin u| + c


75.   sec u du = ln |sec u + tan u| + c


76.   csc u du = ln |csc u − cot u| + c


77.   tan2 u du = tan u − u + c


78.   cot2 u du = −cot u − u + c


79.   sec2 u du = tan u + c


80.   csc2 u du = −cot u + c


81.   tan3 u du =   1
                    2   tan2 u + ln |cos u| + c


82.   cot3 u du = − 1 cot2 u − ln |sin u| + c
                    2



83.   sec3 u du =   1
                    2   sec u tan u +   1
                                        2   ln |sec u + tan u| + c


84.   csc3 u du = − 1 csc u cot u +
                    2
                                            1
                                            2   ln |csc u − cot u| + c


                     1
85.   tann u du =       tann−1 u −               tann−2 u du, n = 1
                    n−1

                         1
86.   cotn u du = −         cotn−1 u −             cotn−2 u du, n = 1
                        n−1

                     1                   n−2
87.   secn u du =       secn−2 u tan u +                      secn−2 u du, n = 1
                    n−1                  n−1

                         1                   n−2
88.   cscn u du = −         cscn−2 u cot u +                    cscn−2 u du, n = 1
                        n−1                  n−1

         1
89.             du = 1 u ± ln |cos u ± sin u| + c
      1 ± tan u      2


         1
90.             du = 1 u ∓ ln |sin u ± cos u| + c
      1 ± cot u      2
1
 91.             du = u + cot u ∓ csc u + c
       1 ± sec u

          1
 92.             du = u − tan u ± sec u + c
       1 ± csc u


Forms Involving Inverse Trigonometric Functions
 93.   sin−1 u du = u sin−1 u +     1 − u2 + c


 94.   cos−1 u du = u cos−1 u −      1 − u2 + c


 95.   tan−1 u du = u tan−1 u − ln 1 + u 2 + c


 96.   cot−1 u du = u cot−1 u + ln 1 + u 2 + c


 97.   sec−1 u du = u sec−1 u − ln |u +      u 2 − 1| + c


 98.   csc−1 u du = u csc−1 u + ln |u +      u 2 − 1| + c

                                                √
 99.   u sin−1 u du = 1 (2u 2 − 1) sin−1 u + 1 u 1 − u 2 + c
                      4                      4


                                                √
100.   u cos−1 u du = 1 (2u 2 − 1) cos−1 u − 1 u 1 − u 2 + c
                      4                      4




Forms Involving eu
                  1 au
101.   eau du =     e +c
                  a

                      1    1
102.   ueau du =        u− 2      eau + c
                      a   a

                      1 2   2   2
103.   u 2 eau du =     u − 2u+ 3           eau + c
                      a    a   a

                      1 n au n
104.   u n eau du =     u e −         u n−1 eau du
                      a       a

                             1
105.   eau sin bu du =            (a sin bu − b cos bu)eau + c
                         a 2 + b2

                             1
106.   eau cos bu du =            (a cos bu + b sin bu)eau + c
                         a 2 + b2


Forms Involving ln u
107.   ln u du = u ln u − u + c


108.   u ln u du = 1 u 2 ln u − 1 u 2 + c
                   2            4
1                  1
109.   u n ln u du =       u n+1 ln u −          u n+1 + c
                       n+1              (n + 1)2

          1
110.          du = ln |ln u| + c
       u ln u


111.   (ln u)2 du = u(ln u)2 − 2u ln u + 2u + c


112.   (ln u)n du = u(ln u)n − n     (ln u)n−1 du



Forms Involving Hyperbolic Functions
113.   sinh u du = cosh u + c

114.   cosh u du = sinh u + c

115.   tanh u du = ln (cosh u) + c

116.   coth u du = ln |sinh u| + c

117.   sech u du = tan−1 |sinh u| + c

118.   csch u du = ln |tanh 1 u| + c
                            2


119.   sech2 u du = tanh u + c

120.   csch2 u du = −coth u + c

121.   sech u tanh u du = −sech u + c

122.   csch u coth u du = −csch u + c

          1
123.   √        da = sinh−1 a + c
         a2 + 1
          1
124.   √        da = cosh−1 a + c
         a2 − 1
         1
125.          da = tanh−1 a + c
       1 − a2
              1
126.       √        da = −csch−1 a + c
        |a| a 2 + 1
            1
127.     √        da = −sech−1 a + c
       a 1 − a2

Formulas

  • 1.
    Derivative Formulas General Rules d d d [ f (x) + g(x)] = f (x) + g (x) [ f (x) − g(x)] = f (x) − g (x) [c f (x)] = c f (x) dx dx dx d d d f (x) f (x)g(x) − f (x)g (x) [ f (g(x))] = f (g(x))g (x) [ f (x)g(x)] = f (x)g(x) + f (x)g (x) = dx dx dx g(x) [g(x)]2 Power Rules d n d d d √ 1 (x ) = nx n−1 (c) = 0 (cx) = c ( x) = √ dx dx dx dx 2 x Exponential d x d x d d [e ] = e x [a ] = a x ln a eu(x) = eu(x) u (x) er x = r er x dx dx dx dx Trigonometric d d d (sin x) = cos x (cos x) = −sin x (tan x) = sec2 x dx dx dx d d d (cot x) = −csc2 x (sec x) = sec x tan x (csc x) = −csc x cot x dx dx dx Inverse Trigonometric d 1 d 1 d 1 (sin−1 x) = √ (cos−1 x) = − √ (tan−1 x) = dx 1 − x2 dx 1 − x2 dx 1 + x2 d 1 d 1 d 1 (cot−1 x) = − (sec−1 x) = √ (csc−1 x) = − √ dx 1 + x2 dx |x| x 2 − 1 dx |x| x 2 − 1 Hyperbolic d d d (sinh x) = cosh x (cosh x) = sinh x (tanh x) = sech2 x dx dx dx d d d (coth x) = −csch2 x (sech x) = −sech x tanh x (csch x) = −csch x coth x dx dx dx Inverse Hyperbolic d 1 d 1 d 1 (sinh−1 x) = √ (cosh−1 x) = √ (tanh−1 x) = dx 1 + x2 dx x2 − 1 dx 1 − x2 d 1 d 1 d 1 (coth−1 x) = (sech−1 x) = − √ (csch−1 x) = − √ dx 1 − x2 dx x 1 − x2 dx |x| x 2 + 1
  • 2.
    Table of Integrals FormsInvolving a + bu 1 1 1. du = ln |a + bu| + c a + bu b u 1 2. du = 2 (a + bu − a ln |a + bu|) + c a + bu b u2 1 3. du = 3 [(a + bu)2 − 4a(a + bu) + 2a 2 ln |a + bu|] + c a + bu 2b 1 1 u 4. du = ln +c u(a + bu) a a + bu 1 b a + bu 1 5. du = 2 ln − +c u 2 (a + bu) a u au Forms Involving (a + bu)2 1 −1 6. du = +c (a + bu)2 b(a + bu) u 1 a 7. du = 2 + ln |a + bu| + c (a + bu)2 b a + bu u2 1 a2 8. du = 3 a + bu − − 2a ln |a + bu| + c (a + bu)2 b a + bu 1 1 1 u 9. du = + 2 ln +c u(a + bu)2 a(a + bu) a a + bu 1 2b a + bu a + 2bu 10. du = 3 ln − 2 +c u 2 (a + bu)2 a u a u(a + bu) Forms Involving a + bu √ 2 11. u a + bu du = (3bu − 2a)(a + bu)3/2 + c 15b2 √ 2 12. u 2 a + bu du = (15b2 u 2 − 12abu + 8a 2 )(a + bu)3/2 + c 105b3 √ 2 2na √ 13. u n a + bu du = u n (a + bu)3/2 − u n−1 a + bu du b(2n + 3) b(2n + 3) √ a + bu √ 1 14. du = 2 a + bu + a √ du u u a + bu √ √ a + bu −1 (a + bu)3/2 (2n − 5)b a + bu 15. du = − du, n = 1 u n a(n − 1) u n−1 2a(n − 1) u n−1
  • 3.
    √ 1 1 a + bu − a 16a. √ du = √ ln √ √ + c, a > 0 u a + bu a a + bu + a 1 2 a + bu 16b. √ du = √ tan−1 + c, a < 0 u a + bu −a −a √ 1 −1 a + bu (2n − 3)b 1 17. √ du = − √ du, n = 1 u n a + bu a(n − 1) u n−1 2a(n − 1) u n−1 a + bu u 2 √ 18. √ du = 2 (bu − 2a) a + bu + c a + bu 3b u2 2 √ 19. √ du = (3b2 u 2 − 4abu + 8a 2 ) a + bu + c a + bu 15b3 un 2 √ 2na u n−1 20. √ du = u n a + bu − √ du a + bu (2n + 1)b (2n + 1)b a + bu Forms Involving a 2 + u 2, a > 0 √ √ 21. a 2 + u 2 du = 1 u a 2 + u 2 + 1 a 2 ln u + a 2 + u 2 + c 2 2 √ √ 22. u 2 a 2 + u 2 du = 1 u(a 2 + 2u 2 ) a 2 + u 2 − 1 a 4 ln u + a 2 + u 2 + c 8 8 √ √ a2 + u2 a+ a2 + u2 23. du = a 2 + u 2 − a ln +c u u √ √ a2 + u2 a2 + u2 24. du = ln u + a2 + u2 − +c u2 u 1 25. √ du = ln u + a2 + u2 + c a2 + u2 u2 1 1 26. √ du = u a 2 + u 2 − a 2 ln u + a2 + u2 + c a2 + u2 2 2 1 1 u 27. √ du = ln √ +c u a 2 + u2 a a + a2 + u2 √ 1 a2 + u2 28. √ du = − +c u 2 a2 + u2 a2 u Forms Involving a 2 ¯¯ u 2 , a > 0 √ u 29. a 2 − u 2 du = 1 u a 2 − u 2 + 1 a 2 sin−1 + c 2 2 a √ u 30. u 2 a 2 − u 2 du = 1 u(2u 2 − a 2 ) a 2 − u 2 + 1 a 4 sin−1 + c 8 8 a √ √ a2 − u2 a+ a2 − u2 31. du = a 2 − u 2 − a ln +c u u √ √ a2 − u2 a2 − u2 u 32. du = − − sin−1 + c u2 u a
  • 4.
    1 u 33. √ du = sin−1 + c a2 − u2 a √ 1 1 a+ a2 − u2 34. √ du = − ln +c u a2 − u2 a u u2 1 1 u 35. √ du = − u a 2 − u 2 + a 2 sin−1 + c a2 − u2 2 2 a √ 1 a2 − u2 36. √ du = − +c u2 a2 − u2 a2 u Forms Involving u 2 ¯¯ a 2 , a > 0 √ √ 37. u 2 − a 2 du = 1 u u 2 − a 2 − 1 a 2 ln u + u 2 − a 2 + c 2 2 √ √ 38. u 2 u 2 − a 2 du = 1 u(2u 2 − a 2 ) u 2 − a 2 − 1 a 4 ln u + u 2 − a 2 + c 8 8 √ u2 − a2 |u| 39. du = u 2 − a 2 − a sec−1 +c u a √ √ u2 − a2 u2 − a2 40. du = ln u + u2 − a2 − +c u2 u 1 41. √ du = ln u + u2 − a2 + c u2 − a2 u2 1 1 42. √ du = u u 2 − a 2 + a 2 ln u + u2 − a2 + c u2 − a2 2 2 1 1 |u| 43. √ du = sec−1 +c u u2 − a2 a a √ 1 u2 − a2 44. √ du = +c u2 u2 − a2 a2 u Forms Involving 2au ¯¯ u 2 1 1 a−u 45. 2au − u 2 du = (u − a) 2au − u 2 + a 2 cos−1 +c 2 2 a 1 1 a−u 46. u 2au − u 2 du = (2u 2 − au − 3a 2 ) 2au − u 2 + a 3 cos−1 +c 6 2 a √ 2au − u 2 a−u 47. du = 2au − u 2 + a cos−1 +c u a √ √ 2au − u 2 2 2au − u 2 a−u 48. du = − − cos−1 +c u2 u a 1 a−u 49. √ du = cos−1 +c 2au − u 2 a u a−u 50. √ du = − 2au − u 2 + a cos−1 +c 2au − u 2 a
  • 5.
    u2 1 3 a−u 51. √ du = − (u + 3a) 2au − u 2 + a 2 cos−1 +c 2au − u 2 2 2 a √ 1 2au − u 2 52. √ du = − +c u 2au − u2 au Forms Involving sin u OR cos u 53. sin u du = −cos u + c 54. cos u du = sin u + c 55. sin2 u du = 1 u − 2 1 2 sin u cos u + c 56. cos2 u du = 1 u + 2 1 2 sin u cos u + c 57. sin3 u du = − 2 cos u − 3 1 3 sin2 u cos u + c 58. cos3 u du = 2 3 sin u + 1 3 sin u cos2 u + c 1 n−1 59. sinn u du = − sinn−1 u cos u + sinn−2 u du n n 1 n−1 60. cosn u du = cosn−1 u sin u + cosn−2 u du n n 61. u sin u du = sin u − u cos u + c 62. u cos u du = cos u + u sin u + c 63. u n sin u du = −u n cos u + n u n−1 cos u du + c 64. u n cos u du = u n sin u − n u n−1 sin u du + c 1 65. du = tan u − sec u + c 1 + sin u 1 66. du = tan u + sec u + c 1 − sin u 1 67. du = −cot u + csc u + c 1 + cos u 1 68. du = −cot u − csc u + c 1 − cos u sin(m − n)u sin(m + n)u 69. sin(mu) sin(nu) du = − +c 2(m − n) 2(m + n) sin(m − n)u sin(m + n)u 70. cos(mu) cos(nu) du = + +c 2(m − n) 2(m + n)
  • 6.
    cos(n − m)u cos(m + n)u 71. sin(mu) cos(nu) du = − +c 2(n − m) 2(m + n) sinm−1 u cosn+1 u m−1 72. sinm u cosn u du = − + sinm−2 u cosn u du m+n m+n Forms Involving Other Trigonometric Functions 73. tan u du = −ln |cos u| + c = ln |sec u| + c 74. cot u du = ln |sin u| + c 75. sec u du = ln |sec u + tan u| + c 76. csc u du = ln |csc u − cot u| + c 77. tan2 u du = tan u − u + c 78. cot2 u du = −cot u − u + c 79. sec2 u du = tan u + c 80. csc2 u du = −cot u + c 81. tan3 u du = 1 2 tan2 u + ln |cos u| + c 82. cot3 u du = − 1 cot2 u − ln |sin u| + c 2 83. sec3 u du = 1 2 sec u tan u + 1 2 ln |sec u + tan u| + c 84. csc3 u du = − 1 csc u cot u + 2 1 2 ln |csc u − cot u| + c 1 85. tann u du = tann−1 u − tann−2 u du, n = 1 n−1 1 86. cotn u du = − cotn−1 u − cotn−2 u du, n = 1 n−1 1 n−2 87. secn u du = secn−2 u tan u + secn−2 u du, n = 1 n−1 n−1 1 n−2 88. cscn u du = − cscn−2 u cot u + cscn−2 u du, n = 1 n−1 n−1 1 89. du = 1 u ± ln |cos u ± sin u| + c 1 ± tan u 2 1 90. du = 1 u ∓ ln |sin u ± cos u| + c 1 ± cot u 2
  • 7.
    1 91. du = u + cot u ∓ csc u + c 1 ± sec u 1 92. du = u − tan u ± sec u + c 1 ± csc u Forms Involving Inverse Trigonometric Functions 93. sin−1 u du = u sin−1 u + 1 − u2 + c 94. cos−1 u du = u cos−1 u − 1 − u2 + c 95. tan−1 u du = u tan−1 u − ln 1 + u 2 + c 96. cot−1 u du = u cot−1 u + ln 1 + u 2 + c 97. sec−1 u du = u sec−1 u − ln |u + u 2 − 1| + c 98. csc−1 u du = u csc−1 u + ln |u + u 2 − 1| + c √ 99. u sin−1 u du = 1 (2u 2 − 1) sin−1 u + 1 u 1 − u 2 + c 4 4 √ 100. u cos−1 u du = 1 (2u 2 − 1) cos−1 u − 1 u 1 − u 2 + c 4 4 Forms Involving eu 1 au 101. eau du = e +c a 1 1 102. ueau du = u− 2 eau + c a a 1 2 2 2 103. u 2 eau du = u − 2u+ 3 eau + c a a a 1 n au n 104. u n eau du = u e − u n−1 eau du a a 1 105. eau sin bu du = (a sin bu − b cos bu)eau + c a 2 + b2 1 106. eau cos bu du = (a cos bu + b sin bu)eau + c a 2 + b2 Forms Involving ln u 107. ln u du = u ln u − u + c 108. u ln u du = 1 u 2 ln u − 1 u 2 + c 2 4
  • 8.
    1 1 109. u n ln u du = u n+1 ln u − u n+1 + c n+1 (n + 1)2 1 110. du = ln |ln u| + c u ln u 111. (ln u)2 du = u(ln u)2 − 2u ln u + 2u + c 112. (ln u)n du = u(ln u)n − n (ln u)n−1 du Forms Involving Hyperbolic Functions 113. sinh u du = cosh u + c 114. cosh u du = sinh u + c 115. tanh u du = ln (cosh u) + c 116. coth u du = ln |sinh u| + c 117. sech u du = tan−1 |sinh u| + c 118. csch u du = ln |tanh 1 u| + c 2 119. sech2 u du = tanh u + c 120. csch2 u du = −coth u + c 121. sech u tanh u du = −sech u + c 122. csch u coth u du = −csch u + c 1 123. √ da = sinh−1 a + c a2 + 1 1 124. √ da = cosh−1 a + c a2 − 1 1 125. da = tanh−1 a + c 1 − a2 1 126. √ da = −csch−1 a + c |a| a 2 + 1 1 127. √ da = −sech−1 a + c a 1 − a2