Ôn t p h th ng các công th c tính nguyên hàm                                                                     Ôn thi TN-THPT

                                                     CÔNG TH C TÍNH TÍCH PHÂN
                                                                                                              x n+1
       ∫ k.dx = k.x + C                                                             ∫ x dx =
                                                                                       n
1)                                                                           2)                                     +C
                                                                                                              n +1

       1                           1                                                     1
3)    ∫x   2
               dx = −
                                   x
                                     +C                                      4)     ∫ x dx = ln x + C
                       1                                  1                                  1                     1
5)     ∫ (ax + b)                  n
                                       dx = −
                                                a (n − 1)(ax + b) n −1
                                                                       +C;   6)    ∫ (ax + b) dx = a ln ax + b + C

7)     ∫ sin x.dx = − cos x + C                                              8)     ∫ cos x.dx = sin x + C
                                                 1                                                                       1
9)     ∫ sin(ax + b)dx = − a cos(ax + b) + C                                 10)        ∫ cos(ax + b)dx = a sin(ax + b) + C
                   1                                                                         1
11)    ∫ cos           2
                           x
                               dx = ∫ (1 + tan 2 x).dx = tan x + C           12)    ∫ sin        2
                                                                                                         x
                                                                                                             dx = ∫ (1 + cot 2 x ) dx = − cot x + C


                               1                 1                                                    1             1
13)    ∫ cos (ax + b) dx = a tan(ax + b) + C
                       2
                                                                             14)    ∫ sin        2
                                                                                                     (ax + b)
                                                                                                              dx = − cot(ax + b) + C
                                                                                                                    a


       ∫e                                                                           ∫e
               x
15)                dx = e x + C                                              16)          −x
                                                                                                 dx = −e − x + C

                                        1 ( ax +b )                                                                    1 (ax + b) n +1
       ∫ e dx =                                                                     ∫ (ax + b) .dx =
          ( ax + b )                                                                          n
17)                                       e         +C                       18)                                         .             + C (n ≠ 1)
                                        a                                                                              a    n +1
                                    ax                                                       1
       ∫ a dx =                                                                     ∫x
          x
19)                                     +C                                   20)                 dx = arctgx + C
                                   ln a                                                      2
                                                                                              +1

                   1       1 x −1                                                                1        1     x
21)        ∫x      2
                    −1
                       dx = ln
                           2 x +1
                                  +C                                         22)    ∫x       2
                                                                                                 +a 2
                                                                                                      dx = arctg + C
                                                                                                          a     a

                       1         1    x−a                                                            1
23)    ∫x      2
                       −a 2
                            dx =   ln
                                 2a x + a
                                          +C                                 24)    ∫        1− x2
                                                                                                               dx = arcsin x + C


                           1                         x                                               1
25)    ∫       a −x    2           2
                                       dx = arcsin
                                                     a
                                                       +C                    26)    ∫        x ±1    2
                                                                                                               dx = ln x + x 2 ± 1 + C


                           1                                                                                           x           a2       x
27)    ∫           x2 ± a2
                                       dx = ln x + x 2 ± a 2 + C             28)    ∫    a 2 − x 2 dx =
                                                                                                                       2
                                                                                                                         a2 − x2 +
                                                                                                                                   2
                                                                                                                                      arcsin + C
                                                                                                                                            a

                                            x 2        a2
29)    ∫       x 2 ± a 2 dx =
                                            2
                                              x ± a2 ±
                                                       2
                                                          ln x + x 2 ± a 2 + C


                                                 Biên so n: Nguy n Phan Anh Hùng                                                    -1-

Cong thuc-tich-phan

  • 1.
    Ôn t ph th ng các công th c tính nguyên hàm Ôn thi TN-THPT CÔNG TH C TÍNH TÍCH PHÂN x n+1 ∫ k.dx = k.x + C ∫ x dx = n 1) 2) +C n +1 1 1 1 3) ∫x 2 dx = − x +C 4) ∫ x dx = ln x + C 1 1 1 1 5) ∫ (ax + b) n dx = − a (n − 1)(ax + b) n −1 +C; 6) ∫ (ax + b) dx = a ln ax + b + C 7) ∫ sin x.dx = − cos x + C 8) ∫ cos x.dx = sin x + C 1 1 9) ∫ sin(ax + b)dx = − a cos(ax + b) + C 10) ∫ cos(ax + b)dx = a sin(ax + b) + C 1 1 11) ∫ cos 2 x dx = ∫ (1 + tan 2 x).dx = tan x + C 12) ∫ sin 2 x dx = ∫ (1 + cot 2 x ) dx = − cot x + C 1 1 1 1 13) ∫ cos (ax + b) dx = a tan(ax + b) + C 2 14) ∫ sin 2 (ax + b) dx = − cot(ax + b) + C a ∫e ∫e x 15) dx = e x + C 16) −x dx = −e − x + C 1 ( ax +b ) 1 (ax + b) n +1 ∫ e dx = ∫ (ax + b) .dx = ( ax + b ) n 17) e +C 18) . + C (n ≠ 1) a a n +1 ax 1 ∫ a dx = ∫x x 19) +C 20) dx = arctgx + C ln a 2 +1 1 1 x −1 1 1 x 21) ∫x 2 −1 dx = ln 2 x +1 +C 22) ∫x 2 +a 2 dx = arctg + C a a 1 1 x−a 1 23) ∫x 2 −a 2 dx = ln 2a x + a +C 24) ∫ 1− x2 dx = arcsin x + C 1 x 1 25) ∫ a −x 2 2 dx = arcsin a +C 26) ∫ x ±1 2 dx = ln x + x 2 ± 1 + C 1 x a2 x 27) ∫ x2 ± a2 dx = ln x + x 2 ± a 2 + C 28) ∫ a 2 − x 2 dx = 2 a2 − x2 + 2 arcsin + C a x 2 a2 29) ∫ x 2 ± a 2 dx = 2 x ± a2 ± 2 ln x + x 2 ± a 2 + C Biên so n: Nguy n Phan Anh Hùng -1-