SlideShare a Scribd company logo
Flow and Noise Simulation of the NASA
  Tandem Cylinder Experiment using OpenFOAM

                                              Con Doolan
                                     School of Mechanical Engineering
                                          University of Adelaide
                                      Adelaide, South Australia 5005
                                      con.doolan@adelaide.edu.au


                                             May 11, 2009



C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   1 / 40
Overview
Introduction
Numerical Method
  Aerodynamic Simulation
            Code:OpenFOAM
            Computational Details
     Acoustic Simulation
Aerodynamic Results
   Mean Flow
   Unsteady Flow
Acoustic Results
Summary and Conclusions

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   2 / 40
Introduction



Aerodynamic Noise: Aircraft Landing Gear




Khorrami et al. PRELIMINARY ANALYSIS OF ACOUSTIC MEASUREMENTS FROM THE NASA-GULFSTREAM
AIRFRAME NOISE FLIGHT TEST. 14th AIAA/CEAS Aeroacoustics Conference (2008) AIAA-2008-2814-922

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   3 / 40
Introduction



Previous Work: Vortex Wake



                            G/D = 1




                             G/D = 3




                                                                               Power Ratio

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference           May 11-13, 2009   4 / 40
Introduction



Aims of this work



  1. To present a 2D URANS flow simulation of the NASA tandem
     cylinder experiment using OpenFOAM and compare the flow
     results with published experimental data.
  2. To present a statistical noise calculation method, use it to
     predict tandem cylinder noise and assess its performance against
     published experimental data.




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   5 / 40
Introduction



NASA Tandem Cylinder Experiment
       Tandem Cylinder Experiment, NASA QFF, Re = 166, 000,
       M = 0.1274, L/D = 3.7
       Jenkins et al., 36th AIAA Fluid Dynamics Conference (2006)
       Baseline experimental data for CAA validation, focus of future
       CAA validation workshops




                        (a) Layout                                         (b) Installation in QFF
C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference        May 11-13, 2009   6 / 40
Numerical Method    Aerodynamic Simulation



OpenFOAM
       OpenFOAM = (Open Field Operation and Manipulation) CFD
       Toolbox
       Open source finite volume CFD solver
       Written in C++
       Supplied with numerous pre-configured solvers, utilities and
       libraries, or can write your own!
       3D unstructured mesh as standard (2D, orthogonal treated as
       subset)
       Robust, implicit, pressure-velocity, iterative solution framework
       Parallel running is easy

       See: http://www.opencfd.co.uk/openfoam/

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   7 / 40
Numerical Method    Aerodynamic Simulation



Computational Details
       Unsteady Reynolds Averaged Navier Stokes (URANS), second
       order.
       C-Mesh, orthogonal mesh of diameter 16d clearance all about
       objects, 205,508 nodes
       30 ≤ y + ≤ 40, k − turbulence model using a wall function




          (a) Full domain                                                (b) Detail about cylinders


C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference        May 11-13, 2009   8 / 40
Numerical Method      Aerodynamic Simulation



Convergence


Table: Summary of average results from three computational grids and
comparison with experiment.

          Case                    Nodes              C D,up            CL,up C D,down           CL,down
         Grid 1                  101,902             0.271             0.075   0.237             0.393
         Grid 2                  146,406             0.305             0.082   0.240             0.438
         Grid 3                  205,508             0.338             0.086   0.245             0.487
       Experiment1                  -              0.49-0.52             -   0.24-0.35             -
1
    Jenkins et al., 36th AIAA Fluid Dynamics Conference (2006)




C. Doolan (University of Adelaide)        15th AIAA/CEAS Aeroacoustics Conference         May 11-13, 2009   9 / 40
Numerical Method    Acoustic Simulation



Noise Generation: Theory of Curle
Sound generated by fluctating pressures on a rigid, non-moving
object:
                                                          ∂             lj
                    4πc2 (ρ(˜, t) − ρ0 ) =
                       0    x                                              [pδij ] dS(˜)
                                                                                      y               (1)
                                                         ∂xi        S   r
c0 : speed of sound
ρ0 : the fluid density in the medium at rest
y : point on the rigid surface
˜
x: observer point
˜
r = |˜ − y |
      x ˜
li are the components of the unit vector that is normal to the surface
p: pressure
ρ: density The square brackets denote a value taken at the retarded
time t − r/c0 .

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference        May 11-13, 2009   10 / 40
Numerical Method    Acoustic Simulation



Noise Generation: Compact Theory of Curle



                                                          ∂ Fi   1 xi ∂Fi
                 4πc2 (ρ(˜, t) − ρ0 ) = −
                    0    x                                     =                                  (2)
                                                         ∂xi r   c0 r2 ∂t
where Fi are the three vector components of the resulting force
applied on the fluid.




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   11 / 40
Numerical Method    Acoustic Simulation



Compact Limits
When λ/d > 1, can consider acoustically compact.
                                                fd   1 1
                                       St =        =                                              (3)
                                                U0   M (λ/d)
Experiment:
                                              M = 0.1274
Therefore, frequency “limit” for compactness to hold,

                                                St < 7.84

In this work:
                                             0.1 ≤ St ≤ 2
Hence compact assumption valid.

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   12 / 40
Numerical Method      Acoustic Simulation



Unsteady Surface Pressures

                                                                                           φ1 = +90◦



                                                                                            φ2 = −90◦



                                                                                            φ = φ1 − φ2



               Re = 2 × 104
                                                     Random, low frequency beating
                                                                  4



Data: Norberg. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures (2003)
C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference                  May 11-13, 2009       13 / 40
Numerical Method    Acoustic Simulation



Temporal Phase Dispersion Model

True signal y(t) is convolved with the simulated (URANS) signal x(t)
over a signal of time length T using an impulse response function h(t)
                                                    T
                                     y(t) =             h(τ )x(t − τ ) dτ                          (4)
                                                0


                                               h(t) = e−iφτ                                        (5)
The true signal can be considered as a sum of a number of original
simulated signals, each with a randomly dispersed phase difference
φτ = φτ (τ ).



C. Doolan (University of Adelaide)    15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   14 / 40
Numerical Method    Acoustic Simulation



Temporal Phase Dispersion Model


Assume correlation coefficient can be distributed according to
Laplacian statistics

                                     ρτ (τt ) = exp (−wτ (τt ))                                   (6)

Use a linear distribution of variance over 0 ≤ τt ≤ 1

                                         wτ (τt ) = wτ,max τt                                     (7)
Gaussian statistics could also be assumed.




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   15 / 40
Numerical Method    Acoustic Simulation



Temporal Phase Dispersion Model
Retarded time modulated using:
                                                              φτ d
                                            Θτ = Θ +                                                (8)
                                                              2π U0

       100 URANS signals, each with a randomly dispersed phase, are
       used to create a single temporally decorrelated signal.
       Assumed that disturbances occur at about every Nτ = 60 vortex
       shedding periods.
       Assuming this is equal to the standard deviation,
                                          −2
                                2πNτ
       1/wτ,max ∼                St0
                                               ∼ 10−6 .
       This is a crude estimate of the variance, however, as shown, it
       produces reasonable results.

C. Doolan (University of Adelaide)     15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009   16 / 40
Numerical Method    Acoustic Simulation



Spatial Phase Dispersion Model
                                     Sound recombines at microphone
                                     from each cylinder segment with
                                     constructive/destructive interference


                                                     Sound
                                        Flow

                         Sound




                                                 Cylinder with N segments,
                                                 each with an aerodynamic
                                                 force that has different phase



C. Doolan (University of Adelaide)    15th AIAA/CEAS Aeroacoustics Conference     May 11-13, 2009   17 / 40
Numerical Method    Acoustic Simulation



Spatial Phase Dispersion Model

       After temporally decorrelating the signal, spanwise decorrelation
       effects are taken into account.
       The model developed by Casalino and Jacob, JSV, (2003) was
       used with 30-100 spanwise segments.
Laplacian statistics:

                                                                  |η|
                                        ρ(η) = exp −                                               (9)
                                                                  Ll
                                       wmax = 1/Ll                                                (10)
                                                             φη d
                                           Θη = Θ +                                               (11)
                                                             2π U0


C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference    May 11-13, 2009    18 / 40
Aerodynamic Results



Sources of Experimental Data

       Aerodynamic Data: Jenkins et al. Measurements of Unsteady
       Wake Interference Between Tandem Cylinders. 36 th AIAA Fluid
       Dynamics Conference and Exhibit AIAA Paper 2006-3202 (2006)
       PIV and Aerodynamic Data: Khorrami et al. Unsteady
       Flowfield Around Tandem Cylinders as Prototype Component
       Interaction in Airframe Noise. AIAA Journal (2007) vol. 45 (8)
       pp. 1930-1941
       Acoustic and Aerodynamic Data: Lockard et al. Tandem
       Cylinder Noise Predictions. 13 th AIAA/CEAS Aeroacoustics
       Conference AIAA Paper 2007-3450 (2007)



C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   19 / 40
Aerodynamic Results     Mean Flow



Mean streamwise velocity: URANS


       1.5
                                                                                                           1.2



        1
                                                                                                           1




       0.5                                                                                                 0.8




                                                                                                           0.6
y/d




        0
                                                                                                           0.4

      −0.5
                                                                                                           0.2



       −1
                                                                                                           0




      −1.5                                                                                                 −0.2
         −1          0               1             2                 3       4     5             6
                                                               x/d




C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   20 / 40
Aerodynamic Results   Mean Flow



Mean streamwise velocity: NASA PIV




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   21 / 40
Aerodynamic Results   Mean Flow



Mean streamwise velocity between cylinders, y = 0
                       0.6

                       0.5

                       0.4

                       0.3

                       0.2
               U/U0




                       0.1

                          0                                       Experiment BART
                                                                  URANS
                      −0.1

                      −0.2

                      −0.3
                          1          1.5          2         2.5          3     3.5           4
                                                            x/d

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference         May 11-13, 2009   22 / 40
Aerodynamic Results   Mean Flow



Streamlines
         <8-+quot;FL~|{kU]X
         =:.AD'KNmg Z
         0 BEHOzTe Y
         > ,#!J }Qj h [
         1 C&I PoV
         2 *(G upia
         ? $ Mw b
          3 % vqd
          @)
          ;6
          45
           /9
           7      yc
                  xW
                   tr f
                   R_
                   s`
                   lS^
                   n




                                                                           Computed




                                                     Experiment

C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference          May 11-13, 2009   23 / 40
Aerodynamic Results     Mean Flow



Mean vertical velocity: URANS


       1.5                                                                                                 0.3




        1                                                                                                  0.2




       0.5                                                                                                 0.1
y/d




        0                                                                                                  0




      −0.5                                                                                                 −0.1




       −1                                                                                                  −0.2




      −1.5                                                                                                 −0.3
         −1          0               1             2                 3       4     5             6
                                                               x/d




C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   24 / 40
Aerodynamic Results   Mean Flow



Mean vertical velocity: NASA PIV




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   25 / 40
Aerodynamic Results     Mean Flow



Time averaged streamwise velocity fluctuation:
URANS

       1.5

                                                                                                           0.25

        1

                                                                                                           0.2

       0.5

                                                                                                           0.15
y/d




        0

                                                                                                           0.1
      −0.5


                                                                                                           0.05
       −1


      −1.5
         −1          0               1             2                 3       4     5             6
                                                               x/d




C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   26 / 40
Aerodynamic Results   Mean Flow



Time averaged streamwise velocity fluctuation:
NASA PIV




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   27 / 40
Aerodynamic Results     Mean Flow



Instantaneous spanwise vorticity: URANS


       1.5                                                                                                 15




        1                                                                                                  10




       0.5                                                                                                 5
y/d




        0                                                                                                  0




      −0.5                                                                                                 −5




       −1                                                                                                  −10




      −1.5                                                                                                 −15
         −1          0               1             2                 3       4     5             6
                                                               x/d




C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   28 / 40
Aerodynamic Results   Mean Flow



Instantaneous spanwise vorticity: NASA PIV




C. Doolan (University of Adelaide)   15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   29 / 40
Aerodynamic Results   Mean Flow



Mean Surface Pressure

      1.5                                                             1.5
                               Experiment BART                                                   Experiment BART
       1                                                               1
                               Experiment QFF                                                    Experiment QFF
      0.5                      URANS                                  0.5                        URANS

       0                                                               0
Cp




                                                                Cp
     −0.5                                                            −0.5

      −1                                                              −1

     −1.5                                                            −1.5

      −2                                                              −2

     −2.5                                                            −2.5
         0    50   100   150    200    250      300   350                0     50   100   150     200    250      300   350
                         θ (degrees)                                                      θ (degrees)

             (a) Upstream cylinder                                           (b) Downstream cylinder




C. Doolan (University of Adelaide)     15th AIAA/CEAS Aeroacoustics Conference                  May 11-13, 2009         30 / 40
Aerodynamic Results     Unsteady Flow



RMS Pressure: URANS Visualisation


       1.5


        1                                                                                                    0.25




       0.5                                                                                                   0.2
y/d




        0                                                                                                    0.15




      −0.5                                                                                                   0.1




       −1                                                                                                    0.05




      −1.5                                                                                                   0
         −1          0               1             2                 3           4   5             6
                                                               x/d




C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference         May 11-13, 2009   31 / 40
Aerodynamic Results   Unsteady Flow



Unsteady Surface Pressure

           0.2                                                                1
                                  Experiment BART                                                    Experiment BART
                                  Experiment QFF                                                     Experiment QFF
                                                                             0.8
          0.15                    URANS                                                              URANS


                                                                             0.6
C′p,rms




                                                                     p,rms
           0.1




                                                                   C′
                                                                             0.4

          0.05
                                                                             0.2


            0                                                                 0
             0   50   100   150    200    250      300   350                   0   50   100   150     200    250      300   350
                            θ (degrees)                                                       θ (degrees)

(a) Surface pressure: upstream cylin-                             (b) Surface pressure:                      downstream
der                                                               cylinder




C. Doolan (University of Adelaide)        15th AIAA/CEAS Aeroacoustics Conference                   May 11-13, 2009         32 / 40
Aerodynamic Results   Unsteady Flow



Simulated unsteady lift and drag coefficients

            1.5                                                                  1.5
                                                       C                                                                 C
                                                       L                                                                 L
             1                                         C                          1                                      C
                                                       D                                                                 D


            0.5                                                                  0.5
CL or CD




                                                                           D
                                                                       C or C
             0                                                                    0




                                                                           L
           −0.5                                                                 −0.5


            −1                                                                   −1


           −1.5                                                                 −1.5
               0      10    20           30       40       50                       0       10    20           30   40         50
                                 tU0/D                                                                 tU0/D

                   (a) Upstream cylinder                                                (b) Downstream cylinder




C. Doolan (University of Adelaide)            15th AIAA/CEAS Aeroacoustics Conference                  May 11-13, 2009       33 / 40
Acoustic Results



Spanwise Correlation - Fitted Model

              1.5                                                                    1.5
                                         Experiment BART                                                          Experiment BART
                                         Experiment QFF                                                           Experiment QFF
                                         Model Ll = 0.25                                                          Model Ll = 0.35
               1                         Model L = 0.17                               1                           Model L = 0.17
Correlation




                                                                       Correlation
                                                l                                                                        l
                                         Model Ll = 0.1                                                           Model L = 0.1
                                                                                                                         l



              0.5                                                                    0.5




               0                                                                      0
                0   0.1   0.2   0.3   0.4     0.5     0.6    0.7                       0    0.1   0.2   0.3     0.4    0.5      0.6    0.7
                                  z/Lz                                                                    z/Lz

                    (a) Upstream cylinder                                                  (b) Downstream cylinder


Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007)




C. Doolan (University of Adelaide)            15th AIAA/CEAS Aeroacoustics Conference                         May 11-13, 2009         34 / 40
Acoustic Results



Microphone Locations
                              Microphones

                                     B                                       C
            A



                                     r/d = 33.74
                                                               r/d = 38.45
  r/d = 29.03




                                                           Name                     x/d   y/d
                                                       Microphone A                -8.33 27.817
                                                       Microphone B                 9.11 32.49
                                                       Microphone C                26.55 27.815
                       Cylinders

C. Doolan (University of Adelaide)       15th AIAA/CEAS Aeroacoustics Conference       May 11-13, 2009   35 / 40
Acoustic Results



Simulated acoustic pressure at Microphone B
                                           −3
                                        x 10
                                    8

                                    6

                                    4
                        p /(ρU0)
                       2




                                    2

                                    0
                      ′




                                   −2

                                   −4

                                   −6
                                     0             50          100           150     200   250
                                                                     tU /D
                                                                       0




C. Doolan (University of Adelaide)             15th AIAA/CEAS Aeroacoustics Conference     May 11-13, 2009   36 / 40
Acoustic Results



Acoustics at Microphone A, r/d = 29.03
                                120
                                                                      URANS + Statistics
                                110
                                                                      2D URANS
                                100                                   Experiment (NASA QFF)

                                 90
                  PSD [dB/Hz]




                                 80

                                 70

                                 60

                                 50

                                 40
                                  0.1     0.2                 0.4            0.8 1    1.4        2
                                                                 St


Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007)
C. Doolan (University of Adelaide)      15th AIAA/CEAS Aeroacoustics Conference             May 11-13, 2009   37 / 40
Acoustic Results



Acoustics at Microphone B, r/d = 33.74
                                120
                                                                      URANS + Statistics
                                110
                                                                      2D URANS
                                100                                   Experiment (NASA QFF)

                                 90
                  PSD [dB/Hz]




                                 80

                                 70

                                 60

                                 50

                                 40
                                  0.1     0.2                 0.4            0.8 1    1.4        2
                                                                 St


Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007)
C. Doolan (University of Adelaide)      15th AIAA/CEAS Aeroacoustics Conference             May 11-13, 2009   38 / 40
Acoustic Results



Acoustics at Microphone C, r/d = 38.45
                                120
                                                                      URANS + Statistics
                                110
                                                                      2D URANS
                                100                                   Experiment (NASA QFF)

                                 90
                  PSD [dB/Hz]




                                 80

                                 70

                                 60

                                 50

                                 40
                                  0.1     0.2                 0.4            0.8 1    1.4        2
                                                                 St


Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007)
C. Doolan (University of Adelaide)      15th AIAA/CEAS Aeroacoustics Conference             May 11-13, 2009   39 / 40
Summary and Conclusions



Summary and Conclusions

       OpenFOAM can provide accurate noise source data for low
       Mach number bluff body aeroacoustic flows.
       Using a statistical approach in the time domain, the effects of
       spanwise phase dislocation can be simulated.
       2D URANS flow results can therefore be used to recreate 3D
       acoustics, hence significantly reducing simulation requirements.




                                     Questions?

C. Doolan (University of Adelaide)    15th AIAA/CEAS Aeroacoustics Conference   May 11-13, 2009   40 / 40

More Related Content

What's hot

OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAMによる気液2相流解析の基礎と設定例OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAMによる気液2相流解析の基礎と設定例
takuyayamamoto1800
 
Basic Boundary Conditions in OpenFOAM v2.4
Basic Boundary Conditions in OpenFOAM v2.4Basic Boundary Conditions in OpenFOAM v2.4
Basic Boundary Conditions in OpenFOAM v2.4
Fumiya Nozaki
 
Spatial Interpolation Schemes in OpenFOAM
Spatial Interpolation Schemes in OpenFOAMSpatial Interpolation Schemes in OpenFOAM
Spatial Interpolation Schemes in OpenFOAMFumiya Nozaki
 
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件についてOpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件についてFumiya Nozaki
 
OpenFOAMのinterfoamによる誤差
OpenFOAMのinterfoamによる誤差OpenFOAMのinterfoamによる誤差
OpenFOAMのinterfoamによる誤差
takuyayamamoto1800
 
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)takuyayamamoto1800
 
Mixer vessel by cfmesh
Mixer vessel by cfmeshMixer vessel by cfmesh
Mixer vessel by cfmesh
Etsuji Nomura
 
Motor bike by cfmesh
Motor bike by cfmeshMotor bike by cfmesh
Motor bike by cfmeshEtsuji Nomura
 
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
Fumiya Nozaki
 
OpenFOAMの壁関数
OpenFOAMの壁関数OpenFOAMの壁関数
OpenFOAMの壁関数
Fumiya Nozaki
 
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
Fumiya Nozaki
 
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
Fumiya Nozaki
 
6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple systemetcenterrbru
 
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)takuyayamamoto1800
 
OpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能についてOpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能について
Fumiya Nozaki
 
OpenFOAM の境界条件をまとめよう!
OpenFOAM の境界条件をまとめよう!OpenFOAM の境界条件をまとめよう!
OpenFOAM の境界条件をまとめよう!Fumiya Nozaki
 
OpenFOAM LES乱流モデルカスタマイズ
OpenFOAM LES乱流モデルカスタマイズOpenFOAM LES乱流モデルカスタマイズ
OpenFOAM LES乱流モデルカスタマイズ
mmer547
 
CFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMCFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMFumiya Nozaki
 
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
ARPIT SINGHAL
 
Workshop on Digital Datcom and Simulink
Workshop on Digital Datcom and SimulinkWorkshop on Digital Datcom and Simulink
Workshop on Digital Datcom and Simulink
DHA Suffa University, AeroX
 

What's hot (20)

OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAMによる気液2相流解析の基礎と設定例OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAMによる気液2相流解析の基礎と設定例
 
Basic Boundary Conditions in OpenFOAM v2.4
Basic Boundary Conditions in OpenFOAM v2.4Basic Boundary Conditions in OpenFOAM v2.4
Basic Boundary Conditions in OpenFOAM v2.4
 
Spatial Interpolation Schemes in OpenFOAM
Spatial Interpolation Schemes in OpenFOAMSpatial Interpolation Schemes in OpenFOAM
Spatial Interpolation Schemes in OpenFOAM
 
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件についてOpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
 
OpenFOAMのinterfoamによる誤差
OpenFOAMのinterfoamによる誤差OpenFOAMのinterfoamによる誤差
OpenFOAMのinterfoamによる誤差
 
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
 
Mixer vessel by cfmesh
Mixer vessel by cfmeshMixer vessel by cfmesh
Mixer vessel by cfmesh
 
Motor bike by cfmesh
Motor bike by cfmeshMotor bike by cfmesh
Motor bike by cfmesh
 
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
 
OpenFOAMの壁関数
OpenFOAMの壁関数OpenFOAMの壁関数
OpenFOAMの壁関数
 
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
 
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
 
6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system
 
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
 
OpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能についてOpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能について
 
OpenFOAM の境界条件をまとめよう!
OpenFOAM の境界条件をまとめよう!OpenFOAM の境界条件をまとめよう!
OpenFOAM の境界条件をまとめよう!
 
OpenFOAM LES乱流モデルカスタマイズ
OpenFOAM LES乱流モデルカスタマイズOpenFOAM LES乱流モデルカスタマイズ
OpenFOAM LES乱流モデルカスタマイズ
 
CFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMCFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAM
 
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
Tutorial to set up a case for chtMultiRegionFoam in OpenFOAM 2.0.0
 
Workshop on Digital Datcom and Simulink
Workshop on Digital Datcom and SimulinkWorkshop on Digital Datcom and Simulink
Workshop on Digital Datcom and Simulink
 

Viewers also liked

OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-Fumiya Nozaki
 
Turbulence Models in OpenFOAM
Turbulence Models in OpenFOAMTurbulence Models in OpenFOAM
Turbulence Models in OpenFOAM
Fumiya Nozaki
 
Dynamic Mesh in OpenFOAM
Dynamic Mesh in OpenFOAMDynamic Mesh in OpenFOAM
Dynamic Mesh in OpenFOAMFumiya Nozaki
 
CAESES Free チュートリアル
CAESES Free チュートリアルCAESES Free チュートリアル
CAESES Free チュートリアルFumiya Nozaki
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming TipsFumiya Nozaki
 
ParaView による可視化 Tips
ParaView による可視化 TipsParaView による可視化 Tips
ParaView による可視化 TipsFumiya Nozaki
 
Adjoint Shape Optimization using OpenFOAM
Adjoint Shape Optimization using OpenFOAMAdjoint Shape Optimization using OpenFOAM
Adjoint Shape Optimization using OpenFOAMFumiya Nozaki
 
blockCoupledSwirlTestチュートリアル
blockCoupledSwirlTestチュートリアルblockCoupledSwirlTestチュートリアル
blockCoupledSwirlTestチュートリアル
Fumiya Nozaki
 
Limited Gradient Schemes in OpenFOAM
Limited Gradient Schemes in OpenFOAMLimited Gradient Schemes in OpenFOAM
Limited Gradient Schemes in OpenFOAMFumiya Nozaki
 
無償のモデリングソフトウェアCAESESを使ってみた
無償のモデリングソフトウェアCAESESを使ってみた無償のモデリングソフトウェアCAESESを使ってみた
無償のモデリングソフトウェアCAESESを使ってみた
Fumiya Nozaki
 
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたオープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたFumiya Nozaki
 
Gian khoan tu nang 90m nuoc dau tien tai vn
Gian khoan tu nang 90m nuoc dau tien tai vnGian khoan tu nang 90m nuoc dau tien tai vn
Gian khoan tu nang 90m nuoc dau tien tai vnrobinking277
 
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1Fumiya Nozaki
 
OpenFOAMにおけるDEM計算の衝突モデルの解読
OpenFOAMにおけるDEM計算の衝突モデルの解読OpenFOAMにおけるDEM計算の衝突モデルの解読
OpenFOAMにおけるDEM計算の衝突モデルの解読
takuyayamamoto1800
 
OpenFOAM Training v5-1-en
OpenFOAM Training v5-1-enOpenFOAM Training v5-1-en
OpenFOAM Training v5-1-en
Cyprien Soulaine
 
OpenFOAM+のCo-simulation機能とFMUの試作
OpenFOAM+のCo-simulation機能とFMUの試作OpenFOAM+のCo-simulation機能とFMUの試作
OpenFOAM+のCo-simulation機能とFMUの試作
Amane Tanaka
 
OpenFOAM を用いた Adjoint 形状最適化事例1
OpenFOAM を用いた Adjoint 形状最適化事例1OpenFOAM を用いた Adjoint 形状最適化事例1
OpenFOAM を用いた Adjoint 形状最適化事例1
Fumiya Nozaki
 

Viewers also liked (17)

OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
 
Turbulence Models in OpenFOAM
Turbulence Models in OpenFOAMTurbulence Models in OpenFOAM
Turbulence Models in OpenFOAM
 
Dynamic Mesh in OpenFOAM
Dynamic Mesh in OpenFOAMDynamic Mesh in OpenFOAM
Dynamic Mesh in OpenFOAM
 
CAESES Free チュートリアル
CAESES Free チュートリアルCAESES Free チュートリアル
CAESES Free チュートリアル
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming Tips
 
ParaView による可視化 Tips
ParaView による可視化 TipsParaView による可視化 Tips
ParaView による可視化 Tips
 
Adjoint Shape Optimization using OpenFOAM
Adjoint Shape Optimization using OpenFOAMAdjoint Shape Optimization using OpenFOAM
Adjoint Shape Optimization using OpenFOAM
 
blockCoupledSwirlTestチュートリアル
blockCoupledSwirlTestチュートリアルblockCoupledSwirlTestチュートリアル
blockCoupledSwirlTestチュートリアル
 
Limited Gradient Schemes in OpenFOAM
Limited Gradient Schemes in OpenFOAMLimited Gradient Schemes in OpenFOAM
Limited Gradient Schemes in OpenFOAM
 
無償のモデリングソフトウェアCAESESを使ってみた
無償のモデリングソフトウェアCAESESを使ってみた無償のモデリングソフトウェアCAESESを使ってみた
無償のモデリングソフトウェアCAESESを使ってみた
 
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたオープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
 
Gian khoan tu nang 90m nuoc dau tien tai vn
Gian khoan tu nang 90m nuoc dau tien tai vnGian khoan tu nang 90m nuoc dau tien tai vn
Gian khoan tu nang 90m nuoc dau tien tai vn
 
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1
CAESES-FFW,GridPro,OpenFOAMを使用した形状最適化事例#1
 
OpenFOAMにおけるDEM計算の衝突モデルの解読
OpenFOAMにおけるDEM計算の衝突モデルの解読OpenFOAMにおけるDEM計算の衝突モデルの解読
OpenFOAMにおけるDEM計算の衝突モデルの解読
 
OpenFOAM Training v5-1-en
OpenFOAM Training v5-1-enOpenFOAM Training v5-1-en
OpenFOAM Training v5-1-en
 
OpenFOAM+のCo-simulation機能とFMUの試作
OpenFOAM+のCo-simulation機能とFMUの試作OpenFOAM+のCo-simulation機能とFMUの試作
OpenFOAM+のCo-simulation機能とFMUの試作
 
OpenFOAM を用いた Adjoint 形状最適化事例1
OpenFOAM を用いた Adjoint 形状最適化事例1OpenFOAM を用いた Adjoint 形状最適化事例1
OpenFOAM を用いた Adjoint 形状最適化事例1
 

Similar to Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM

Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
drboon
 
Hypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separationHypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separation
Deepak Ramanath, PhD
 
Project presentaion
Project presentaionProject presentaion
Project presentaion
shafqat55
 
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Maosi Chen
 
Aero testing without a wind tunnel
Aero testing without a wind tunnelAero testing without a wind tunnel
Aero testing without a wind tunnel
acoggan1
 
Ad beam test_redalice.2017
Ad beam test_redalice.2017Ad beam test_redalice.2017
Ad beam test_redalice.2017
Solangel Rojas Torres
 
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
Eric Williams
 
Radioactive pollution
Radioactive pollutionRadioactive pollution
Radioactive pollutionNajlaa Harb
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
Toshihiro FUJII
 
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shiftJEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
ALLEN Overseas
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
Arkansas State University
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1
Forward2025
 
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
EROMOR
 
07 progress on inspection and evaluation of ciscc at canister of dry storage ...
07 progress on inspection and evaluation of ciscc at canister of dry storage ...07 progress on inspection and evaluation of ciscc at canister of dry storage ...
07 progress on inspection and evaluation of ciscc at canister of dry storage ...
leann_mays
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
Energy-Education-Resource-Center
 
16Mitch-BrachyPrimaryStandards.pdf
16Mitch-BrachyPrimaryStandards.pdf16Mitch-BrachyPrimaryStandards.pdf
16Mitch-BrachyPrimaryStandards.pdf
Nishant835443
 
6%2E2015-2384
6%2E2015-23846%2E2015-2384
6%2E2015-2384Alex Sano
 

Similar to Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM (20)

Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Hypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separationHypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separation
 
Project presentaion
Project presentaionProject presentaion
Project presentaion
 
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
 
dighe (3)
dighe (3)dighe (3)
dighe (3)
 
Aero testing without a wind tunnel
Aero testing without a wind tunnelAero testing without a wind tunnel
Aero testing without a wind tunnel
 
Ad beam test_redalice.2017
Ad beam test_redalice.2017Ad beam test_redalice.2017
Ad beam test_redalice.2017
 
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions wit...
 
Radioactive pollution
Radioactive pollutionRadioactive pollution
Radioactive pollution
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
MOHAN PPT
MOHAN PPTMOHAN PPT
MOHAN PPT
 
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shiftJEE Main 2022 Session 1 Physics Paper and Solution 1st shift
JEE Main 2022 Session 1 Physics Paper and Solution 1st shift
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1Radar 2009 a 10 radar clutter1
Radar 2009 a 10 radar clutter1
 
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
Study of columnar growth polycrystalline (sn, cr) co doped in2 o3 films depos...
 
07 progress on inspection and evaluation of ciscc at canister of dry storage ...
07 progress on inspection and evaluation of ciscc at canister of dry storage ...07 progress on inspection and evaluation of ciscc at canister of dry storage ...
07 progress on inspection and evaluation of ciscc at canister of dry storage ...
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
 
16Mitch-BrachyPrimaryStandards.pdf
16Mitch-BrachyPrimaryStandards.pdf16Mitch-BrachyPrimaryStandards.pdf
16Mitch-BrachyPrimaryStandards.pdf
 
6%2E2015-2384
6%2E2015-23846%2E2015-2384
6%2E2015-2384
 
microphone-strut-catalog
microphone-strut-catalogmicrophone-strut-catalog
microphone-strut-catalog
 

Recently uploaded

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
Vlad Stirbu
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
ViralQR
 

Recently uploaded (20)

De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
 

Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM

  • 1. Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM Con Doolan School of Mechanical Engineering University of Adelaide Adelaide, South Australia 5005 con.doolan@adelaide.edu.au May 11, 2009 C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 1 / 40
  • 2. Overview Introduction Numerical Method Aerodynamic Simulation Code:OpenFOAM Computational Details Acoustic Simulation Aerodynamic Results Mean Flow Unsteady Flow Acoustic Results Summary and Conclusions C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 2 / 40
  • 3. Introduction Aerodynamic Noise: Aircraft Landing Gear Khorrami et al. PRELIMINARY ANALYSIS OF ACOUSTIC MEASUREMENTS FROM THE NASA-GULFSTREAM AIRFRAME NOISE FLIGHT TEST. 14th AIAA/CEAS Aeroacoustics Conference (2008) AIAA-2008-2814-922 C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 3 / 40
  • 4. Introduction Previous Work: Vortex Wake G/D = 1 G/D = 3 Power Ratio C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 4 / 40
  • 5. Introduction Aims of this work 1. To present a 2D URANS flow simulation of the NASA tandem cylinder experiment using OpenFOAM and compare the flow results with published experimental data. 2. To present a statistical noise calculation method, use it to predict tandem cylinder noise and assess its performance against published experimental data. C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 5 / 40
  • 6. Introduction NASA Tandem Cylinder Experiment Tandem Cylinder Experiment, NASA QFF, Re = 166, 000, M = 0.1274, L/D = 3.7 Jenkins et al., 36th AIAA Fluid Dynamics Conference (2006) Baseline experimental data for CAA validation, focus of future CAA validation workshops (a) Layout (b) Installation in QFF C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 6 / 40
  • 7. Numerical Method Aerodynamic Simulation OpenFOAM OpenFOAM = (Open Field Operation and Manipulation) CFD Toolbox Open source finite volume CFD solver Written in C++ Supplied with numerous pre-configured solvers, utilities and libraries, or can write your own! 3D unstructured mesh as standard (2D, orthogonal treated as subset) Robust, implicit, pressure-velocity, iterative solution framework Parallel running is easy See: http://www.opencfd.co.uk/openfoam/ C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 7 / 40
  • 8. Numerical Method Aerodynamic Simulation Computational Details Unsteady Reynolds Averaged Navier Stokes (URANS), second order. C-Mesh, orthogonal mesh of diameter 16d clearance all about objects, 205,508 nodes 30 ≤ y + ≤ 40, k − turbulence model using a wall function (a) Full domain (b) Detail about cylinders C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 8 / 40
  • 9. Numerical Method Aerodynamic Simulation Convergence Table: Summary of average results from three computational grids and comparison with experiment. Case Nodes C D,up CL,up C D,down CL,down Grid 1 101,902 0.271 0.075 0.237 0.393 Grid 2 146,406 0.305 0.082 0.240 0.438 Grid 3 205,508 0.338 0.086 0.245 0.487 Experiment1 - 0.49-0.52 - 0.24-0.35 - 1 Jenkins et al., 36th AIAA Fluid Dynamics Conference (2006) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 9 / 40
  • 10. Numerical Method Acoustic Simulation Noise Generation: Theory of Curle Sound generated by fluctating pressures on a rigid, non-moving object: ∂ lj 4πc2 (ρ(˜, t) − ρ0 ) = 0 x [pδij ] dS(˜) y (1) ∂xi S r c0 : speed of sound ρ0 : the fluid density in the medium at rest y : point on the rigid surface ˜ x: observer point ˜ r = |˜ − y | x ˜ li are the components of the unit vector that is normal to the surface p: pressure ρ: density The square brackets denote a value taken at the retarded time t − r/c0 . C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 10 / 40
  • 11. Numerical Method Acoustic Simulation Noise Generation: Compact Theory of Curle ∂ Fi 1 xi ∂Fi 4πc2 (ρ(˜, t) − ρ0 ) = − 0 x = (2) ∂xi r c0 r2 ∂t where Fi are the three vector components of the resulting force applied on the fluid. C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 11 / 40
  • 12. Numerical Method Acoustic Simulation Compact Limits When λ/d > 1, can consider acoustically compact. fd 1 1 St = = (3) U0 M (λ/d) Experiment: M = 0.1274 Therefore, frequency “limit” for compactness to hold, St < 7.84 In this work: 0.1 ≤ St ≤ 2 Hence compact assumption valid. C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 12 / 40
  • 13. Numerical Method Acoustic Simulation Unsteady Surface Pressures φ1 = +90◦ φ2 = −90◦ φ = φ1 − φ2 Re = 2 × 104 Random, low frequency beating 4 Data: Norberg. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures (2003) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 13 / 40
  • 14. Numerical Method Acoustic Simulation Temporal Phase Dispersion Model True signal y(t) is convolved with the simulated (URANS) signal x(t) over a signal of time length T using an impulse response function h(t) T y(t) = h(τ )x(t − τ ) dτ (4) 0 h(t) = e−iφτ (5) The true signal can be considered as a sum of a number of original simulated signals, each with a randomly dispersed phase difference φτ = φτ (τ ). C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 14 / 40
  • 15. Numerical Method Acoustic Simulation Temporal Phase Dispersion Model Assume correlation coefficient can be distributed according to Laplacian statistics ρτ (τt ) = exp (−wτ (τt )) (6) Use a linear distribution of variance over 0 ≤ τt ≤ 1 wτ (τt ) = wτ,max τt (7) Gaussian statistics could also be assumed. C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 15 / 40
  • 16. Numerical Method Acoustic Simulation Temporal Phase Dispersion Model Retarded time modulated using: φτ d Θτ = Θ + (8) 2π U0 100 URANS signals, each with a randomly dispersed phase, are used to create a single temporally decorrelated signal. Assumed that disturbances occur at about every Nτ = 60 vortex shedding periods. Assuming this is equal to the standard deviation, −2 2πNτ 1/wτ,max ∼ St0 ∼ 10−6 . This is a crude estimate of the variance, however, as shown, it produces reasonable results. C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 16 / 40
  • 17. Numerical Method Acoustic Simulation Spatial Phase Dispersion Model Sound recombines at microphone from each cylinder segment with constructive/destructive interference Sound Flow Sound Cylinder with N segments, each with an aerodynamic force that has different phase C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 17 / 40
  • 18. Numerical Method Acoustic Simulation Spatial Phase Dispersion Model After temporally decorrelating the signal, spanwise decorrelation effects are taken into account. The model developed by Casalino and Jacob, JSV, (2003) was used with 30-100 spanwise segments. Laplacian statistics: |η| ρ(η) = exp − (9) Ll wmax = 1/Ll (10) φη d Θη = Θ + (11) 2π U0 C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 18 / 40
  • 19. Aerodynamic Results Sources of Experimental Data Aerodynamic Data: Jenkins et al. Measurements of Unsteady Wake Interference Between Tandem Cylinders. 36 th AIAA Fluid Dynamics Conference and Exhibit AIAA Paper 2006-3202 (2006) PIV and Aerodynamic Data: Khorrami et al. Unsteady Flowfield Around Tandem Cylinders as Prototype Component Interaction in Airframe Noise. AIAA Journal (2007) vol. 45 (8) pp. 1930-1941 Acoustic and Aerodynamic Data: Lockard et al. Tandem Cylinder Noise Predictions. 13 th AIAA/CEAS Aeroacoustics Conference AIAA Paper 2007-3450 (2007) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 19 / 40
  • 20. Aerodynamic Results Mean Flow Mean streamwise velocity: URANS 1.5 1.2 1 1 0.5 0.8 0.6 y/d 0 0.4 −0.5 0.2 −1 0 −1.5 −0.2 −1 0 1 2 3 4 5 6 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 20 / 40
  • 21. Aerodynamic Results Mean Flow Mean streamwise velocity: NASA PIV C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 21 / 40
  • 22. Aerodynamic Results Mean Flow Mean streamwise velocity between cylinders, y = 0 0.6 0.5 0.4 0.3 0.2 U/U0 0.1 0 Experiment BART URANS −0.1 −0.2 −0.3 1 1.5 2 2.5 3 3.5 4 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 22 / 40
  • 23. Aerodynamic Results Mean Flow Streamlines <8-+quot;FL~|{kU]X =:.AD'KNmg Z 0 BEHOzTe Y > ,#!J }Qj h [ 1 C&I PoV 2 *(G upia ? $ Mw b 3 % vqd @) ;6 45 /9 7 yc xW tr f R_ s` lS^ n Computed Experiment C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 23 / 40
  • 24. Aerodynamic Results Mean Flow Mean vertical velocity: URANS 1.5 0.3 1 0.2 0.5 0.1 y/d 0 0 −0.5 −0.1 −1 −0.2 −1.5 −0.3 −1 0 1 2 3 4 5 6 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 24 / 40
  • 25. Aerodynamic Results Mean Flow Mean vertical velocity: NASA PIV C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 25 / 40
  • 26. Aerodynamic Results Mean Flow Time averaged streamwise velocity fluctuation: URANS 1.5 0.25 1 0.2 0.5 0.15 y/d 0 0.1 −0.5 0.05 −1 −1.5 −1 0 1 2 3 4 5 6 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 26 / 40
  • 27. Aerodynamic Results Mean Flow Time averaged streamwise velocity fluctuation: NASA PIV C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 27 / 40
  • 28. Aerodynamic Results Mean Flow Instantaneous spanwise vorticity: URANS 1.5 15 1 10 0.5 5 y/d 0 0 −0.5 −5 −1 −10 −1.5 −15 −1 0 1 2 3 4 5 6 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 28 / 40
  • 29. Aerodynamic Results Mean Flow Instantaneous spanwise vorticity: NASA PIV C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 29 / 40
  • 30. Aerodynamic Results Mean Flow Mean Surface Pressure 1.5 1.5 Experiment BART Experiment BART 1 1 Experiment QFF Experiment QFF 0.5 URANS 0.5 URANS 0 0 Cp Cp −0.5 −0.5 −1 −1 −1.5 −1.5 −2 −2 −2.5 −2.5 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 θ (degrees) θ (degrees) (a) Upstream cylinder (b) Downstream cylinder C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 30 / 40
  • 31. Aerodynamic Results Unsteady Flow RMS Pressure: URANS Visualisation 1.5 1 0.25 0.5 0.2 y/d 0 0.15 −0.5 0.1 −1 0.05 −1.5 0 −1 0 1 2 3 4 5 6 x/d C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 31 / 40
  • 32. Aerodynamic Results Unsteady Flow Unsteady Surface Pressure 0.2 1 Experiment BART Experiment BART Experiment QFF Experiment QFF 0.8 0.15 URANS URANS 0.6 C′p,rms p,rms 0.1 C′ 0.4 0.05 0.2 0 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 θ (degrees) θ (degrees) (a) Surface pressure: upstream cylin- (b) Surface pressure: downstream der cylinder C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 32 / 40
  • 33. Aerodynamic Results Unsteady Flow Simulated unsteady lift and drag coefficients 1.5 1.5 C C L L 1 C 1 C D D 0.5 0.5 CL or CD D C or C 0 0 L −0.5 −0.5 −1 −1 −1.5 −1.5 0 10 20 30 40 50 0 10 20 30 40 50 tU0/D tU0/D (a) Upstream cylinder (b) Downstream cylinder C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 33 / 40
  • 34. Acoustic Results Spanwise Correlation - Fitted Model 1.5 1.5 Experiment BART Experiment BART Experiment QFF Experiment QFF Model Ll = 0.25 Model Ll = 0.35 1 Model L = 0.17 1 Model L = 0.17 Correlation Correlation l l Model Ll = 0.1 Model L = 0.1 l 0.5 0.5 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 z/Lz z/Lz (a) Upstream cylinder (b) Downstream cylinder Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 34 / 40
  • 35. Acoustic Results Microphone Locations Microphones B C A r/d = 33.74 r/d = 38.45 r/d = 29.03 Name x/d y/d Microphone A -8.33 27.817 Microphone B 9.11 32.49 Microphone C 26.55 27.815 Cylinders C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 35 / 40
  • 36. Acoustic Results Simulated acoustic pressure at Microphone B −3 x 10 8 6 4 p /(ρU0) 2 2 0 ′ −2 −4 −6 0 50 100 150 200 250 tU /D 0 C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 36 / 40
  • 37. Acoustic Results Acoustics at Microphone A, r/d = 29.03 120 URANS + Statistics 110 2D URANS 100 Experiment (NASA QFF) 90 PSD [dB/Hz] 80 70 60 50 40 0.1 0.2 0.4 0.8 1 1.4 2 St Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 37 / 40
  • 38. Acoustic Results Acoustics at Microphone B, r/d = 33.74 120 URANS + Statistics 110 2D URANS 100 Experiment (NASA QFF) 90 PSD [dB/Hz] 80 70 60 50 40 0.1 0.2 0.4 0.8 1 1.4 2 St Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 38 / 40
  • 39. Acoustic Results Acoustics at Microphone C, r/d = 38.45 120 URANS + Statistics 110 2D URANS 100 Experiment (NASA QFF) 90 PSD [dB/Hz] 80 70 60 50 40 0.1 0.2 0.4 0.8 1 1.4 2 St Experiment: Lockard et al 13 th AIAA/CEAS Aeroacoustics Conference (2007) C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 39 / 40
  • 40. Summary and Conclusions Summary and Conclusions OpenFOAM can provide accurate noise source data for low Mach number bluff body aeroacoustic flows. Using a statistical approach in the time domain, the effects of spanwise phase dislocation can be simulated. 2D URANS flow results can therefore be used to recreate 3D acoustics, hence significantly reducing simulation requirements. Questions? C. Doolan (University of Adelaide) 15th AIAA/CEAS Aeroacoustics Conference May 11-13, 2009 40 / 40